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Abstract: The spatial heterogeneity and nonlinearity exhibited by bio-optical relationships in turbid
inland waters complicate the retrieval of chlorophyll-a (Chl-a) concentration from multispectral
satellite images. Most studies achieved satisfactory Chl-a estimation and focused solely on the spectral
regions from near-infrared (NIR) to red spectral bands. However, the optical complexity of turbid
waters may vary with locations and seasons, which renders the selection of spectral bands challenging.
Accordingly, this study proposes an optimization process utilizing available spectral models to
achieve optimal Chl-a retrieval. The method begins with the generation of a set of feature candidates,
followed by candidate selection and optimization. Each candidate links to a Chl-a estimation model,
including two-band, three-band, and normalized different chlorophyll index models. Moreover, a set
of selected candidates using available spectral bands implies an optimal composition of estimation
models, which results in an optimal Chl-a estimation. Remote sensing images and in situ Chl-a
measurements in Lake Kasumigaura, Japan, are analyzed quantitatively and qualitatively to evaluate
the proposed method. Results indicate that the model outperforms related Chl-a estimation models.
The root-mean-squared errors of the Chl-a concentration obtained by the resulting model (OptiM-3)
improve from 11.95 mg·m−3 to 6.37 mg·m−3, and the Pearson’s correlation coefficients between the
predicted and in situ Chl-a improve from 0.56 to 0.89.

Keywords: water quality mapping; Chl-a estimation model; multispectral satellite images;
chlorophyll-a; inland turbid water

1. Introduction

Detecting drastic changes in water quality is necessary to prevent unexpected environmental
incidents. Conventional water sampling methods are reliable but are ineffective in identifying detailed
spatial variations of water quality, which renders comprehensive management infeasible [1–3]. Remote
sensing techniques have been proven effective in the selection of aquaculture sites and the qualitative
measurement of regional water parameters, including suspended sediment, chlorophyll-a (Chl-a),
and pollutant loads [4–6]. Kuhn et al. [7] used Landsat-8 and Sentinel-2 aquatic remote sensing
reflectance products to estimate turbidity over the Amazon, Columbia, and Mississippi rivers. The ease
of remote sensing techniques relies on the determination of the optical properties of water bodies.
Phytoplankton and related materials, such as debris, heterotrophic organisms, and excreted organic
matters, dominate the optical properties of waters in deep ocean waters; they are referred to as Case I
waters whose optical properties vary with phytoplankton concentration [8]. The ratio of blue and green
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spectral reflectance has been proven a reliable measure for Chl-a concentration in Case I waters [9].
However, in most inland and coastal waters with high turbidity, which are referred to as Case II
waters [8], optical properties are highly influenced by mineral particles, colored dissolved organic
matters (CDOM), or microbubbles, apart from phytoplankton. The effect of the optical properties
causes difficulty in differentiating phytoplankton from turbid waters [10]. The bio-optical relationship
of Case II waters exhibits spatial nonlinearity and heterogeneity, which creates inaccuracy in the ratio
of blue and green spectral reflectance for Chl-a concentration estimation [11–13].

Chl-a is an effective measure for estimating the nutritional status of a lake. From chlorophyll
concentration, the status of eutrophication can be quickly assessed [14]. Numerous methods on
the Chl-a concentration estimation of turbid inland waters have been proposed. These methods
can be classified as empirical- and analytical-based methods. Analytical-based methods analyze
the physical interconnections among absorption, scattering coefficients, and water parameters at
different wavelengths of spectral bands, based on the radiative transfer equation [3,15–17]. By contrast,
empirical-based methods address the link between spectral bands of satellite images and measured
water parameters of interest [12,13,18–20]. Recently, a neural network was also applied to define
the various eutrophic levels and estimate the water quality parameters [21,22]. Statistical techniques
are leveraged on empirical-based methods to relate water quality observations directly to remotely
sensed spectral information [23]. The three- or two-band reflectance model was originally developed
to estimate the Chl-a concentration of terrestrial vegetation [12,24]. The three- or two-band reflectance
model has been widely used to estimate Chl-a in turbid waters using the reflectances in the near-infrared
(NIR) band (710 and 750 nm) and red band (near 670 nm) [20]. In addition, Mishra and Mishra [25]
proposed a normalized difference chlorophyll index (NDCI), which is based on the normalized
differences between two spectral bands, to estimate Chl-a concentration; Han and Rundquist [26]
and Moses et al. [18] introduced another two-band model using near-infrared (NIR) and red spectral
bands. The two-band, three-band, and NDCI models have demonstrated good performances in Chl-a
concentration estimation. However, the selection of appropriate spectral bands in the model for
the mapping and estimation of water quality in various water environments remain challenging [1].
These methods are simple and efficient, but they utilize solely NIR–red spectral regions and do not
search for the optimal model [27,28].

This study proposes an optimization process for spectral feature selection in water quality
estimation. The proposed model is a combination of empirical models with optimal spectral bands.
A set of feature candidates is generated by following the knowledge of two-band, three-band, and
NDCI models with available spectral bands. Moreover, the spatial pattern of water quality can be
estimated on the basis of the optimal features. The remainder of this paper is organized as follows:
Section 2 introduces the study area and datasets; Section 3 presents the methodology; Section 4 displays
the experimental results; Section 5 shows the detailed discussion; and Section 6 provides the conclusion
and future works.

2. Materials and Study Area

Lake Kasumigaura (36◦09′ N, 140◦14′ E) is the second largest lake in Japan a 220 km2 surface
area and 4.0 m average depth. The in situ samples collected by the University of Tsukuba in 2008
and 2010 were utilized, respectively (Figure 1). The acquisition dates of the in situ samples coincided
with those of the medium-resolution imaging spectrometer (MERIS) images. Water sample collections
were performed between 10:00 and 14:00 h local time over optically deep waters. They were kept in
ice boxes and taken to the laboratory. Chlorophyll-a was extracted using methanol (100%) at 4 ◦C
under dark conditions for 24 h. The optical density of the extracted chlorophyll-a was measured
at four wavelengths (750, 663, 645, and 630 nm), and the concentration was calculated according
to SCOR-UNESCO equations [29]. Following the sample filtering strategy in [30], several in situ
samples were regarded as outliers using the standard deviation of the difference between the actual
Chl-a concentration and predicted Chl-a concentration. A total of 26 in situ samples remain after
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outlier filtering. The descriptive statistics shows extensive variation in the Chl-a concentration ranges,
4.40 (min), 76.90 (max), 62.90 (median) mg·m−3 and 36.60 (min), 83.40 (max), 44.80 (median) mg·m−3

in 2008 and 2010, respectively (Figure 2). The Chl-a concentration is high in upstream areas where
Lake Kasumigaura receives high-turbidity waters from two narrow rivers, including Sakura River and
Koise River; Lake Kasumigaura is under the influence of agricultural activities. During the monsoon
season, which is generally in May, the fresh water inflow lowers the Chl-a concentrations [31].

Figure 1. Study area and locations of in situ samples in 2008 and 2010.

Figure 2. Box-plots of the summary statistics for chlorophyll-a (Chl-a) in 2008 and 2010.
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The in situ samples were divided into two sets, namely, training and testing. The first set with
10 samples in 2010 was used for feature candidate optimization and training, and the second set with
the remaining 10 samples in 2010 and 6 samples in 2008 was used for testing. In addition, The MERIS
images were atmospherically corrected using the method in [32]. To ensure that the water pixels were
neither mixed with land pixels nor contaminated by clouds, data collected less than one MERIS pixel
from the bank and/or covered by clouds were excluded. Moreover, MERIS has 15 narrow spectral
bands in the visible and NIR spectral ranges [33]. The reflectances of 14 narrow spectral bands were
used for feature generation and selection without considering B15(900).

3. Methods

The workflow of the proposed method consisted of three main steps, namely, feature candidate
generation, candidate optimization, and Chl-a retrieval model determination (Figure 3). The inputs to
the method were the remote sensing reflectance Rrs(λ) of MERIS images and their corresponding in situ
Chl-a measurements. In the first step, a set of feature candidates formed from the two-band, three-band,
and NDCI models, was generated. Next, candidate optimization based on neighborhood component
analysis [34] was performed in the second step to determine the significances of feature candidates.
In the third step, a multivariate linear regression was conducted with the optimal determined features
to determine the Chl-a estimation model. Sections 3.1 and 3.2 introduce feature candidate generation
and feature optimization, respectively. Section 3.3 presents Chl-a retrieval model determination,
mapping, and validation.

Figure 3. Procedures of the study, including feature candidate generation from three-band, two band,
and the normalized difference chlorophyll index (NDCI), as well as feature optimization and Chl-a
retrieval model determination.
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3.1. Feature Candidate Generation

The candidates were generated from two-band, three-band, and NDCI models. These three models
are briefly introduced. The three-band model based on NIR and red spectral bands was proposed by
Dall’Olmo and Gitelson [35]. The model is based on the fact that the difference in reciprocal surface
reflectance Rrs(λ1)

−1 and Rrs(λ2)
−1 on two spectral wavelengths λ1 and λ2 must be small to omit the

absorption of suspended solids and CDOM. In addition, this model assumes that the total absorption
of Chl-a, CDOM, and total suspended solids beyond the spectral wavelength of 730 nm is nearly zero,
and the back-scattering coefficient of Chl-a is spectrally invariant. Given these facts and assumptions,
the structure of three-band model is defined as[

R−1
rs (λ1) −R−1

rs (λ2)
]
×Rrs(λ3). (1)

Dall’Olmo et al. [12,35] suggested setting the wavelength λ1 to the red spectral region between 660
and 690 nm to maximize the sensitivity to the changes in Chl-a concentrations, setting the wavelength
λ2 to the range between 690 and 730 nm; the aim is to remove the influence of other absorption factors,
such as tripton and CDOM, and locating the wavelength λ3 in the range between 730 and 760 nm to
eliminate misestimation caused by particulate backscattering. The structure of the two-band model is
defined as

R−1
rs (λ1) ×Rrs(λ2). (2)

Moses et al. [18] presented another two-band algorithm to retrieve the Chl-a of Case II waters.
The model is formulated as R−1

rs (665) × Rrs(709) to match the designed bands of the MERIS sensor.
The λ3 is set to 709 nm instead of 753 nm because of the following: (1) The wavelength at 709 nm can
better represent the chlorophyll-induced reflectance than that at 753 nm. (2) The magnitude of the
water-leaving radiance at 753 nm is lower than that at 709 nm given the increased absorption by water
at long wavelengths. Thus, the uncertainties of the atmospheric correction procedure attributed to
a low signal-to-noise ratio are less amplified at 709 nm than at 753 nm. (3) λ3 = 708 nm is close to
λ1 = 665 nm. Thus, the atmospheric effect at 709 nm is closer to that at 665 nm. This characteristic
reduces the sensitivity of the two-band model with λ3 at 709 nm to spectral non-uniform atmospheric
effects. Mishra and Mishra [25] developed NDCI to estimate Chl-a concentration in turbid waters.
This method utilizes the spectral main absorption peak in the red spectral region at 665 and 709 nm.
The NDCI is formulated as the normalized spectral difference between Rrs(709) and Rrs(665); that
is,[Rrs(665) −Rrs(709)]/[Rrs(665) + Rrs(709)]. Thus, the measurement form is represented by

[Rrs(λ1) −Rrs(λ2)]/[Rrs(λ1) + Rrs(λ2)]. (3)

The current study selected the four bands B7(665), · · · , B10(754) as the common bands as suggested
in previous studies [13,18,25,36]. The following were the priority choices: four common spectral
regions, namely, the 7th–10th spectral bands of MERIS images with wavelength centers of 665, 681, 709,
and 754 nm (denoted as B7(665), B8(681), B9(709), and B10(754), respectively), and one band from the
remaining bands. In each candidate set, five bands were selected and the feature candidates based
on the three models were generated. Table 1 shows the examples of feature candidate generation.
A total of 30 possible feature candidates were generated by using the three-band model in Equation (1).
A total of 10 possible feature candidates were generated by using the two-band model in Equation (2).
A total of 10 possible feature candidates were generated by using the NDCI in Equation (3). In total,
50 possible candidates were generated.
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Table 1. Example of feature candidate generation from the selected bands.

Selected Spectral
Bands Possible Feature Candidates Models Of Candidates Notation

B6(620)
B7(665)
B8(681)
B9(709)
B10(754)

[
R−1

rs (620) −R−1
rs (665)

]
×Rrs(681)[

R−1
rs (681) −R−1

rs (709)
]
×Rrs(754)

Three-band model
(Equation (1)) 30

C1
...

C30

R−1
rs (620) ×Rrs(665)

R−1
rs (620) ×Rrs(681)

Two-band model
(Equation (2)) 10

C31
...

C40
[Rrs(620) −Rrs(665)] ×
[Rrs(620) + Rrs(665)]−1,
[Rrs(665) −Rrs(681)] ×
[Rrs(665) + Rrs(681)]−1,

NDCI
(Equation (3)) 10

C41
...

C50

3.2. Feature Optimization

Feature optimization is performed to select substantial candidates from the candidate pool{
C1, · · · , Cnc

}
(where nc represents the number of candidates) such that the selected candidates are

sensitive to the changes in Chl-a concentration and are effective in Chl-a concentration estimation.
The candidate sample vector xi :

{
xi,1, · · · , xi,nc

}
is defined. xi, j belongs to the candidate model C j

for the i-th in situ sample (denoted as Si). The in situ sample Si is represented as a pair (xi, yi),
where yi ∈ R denotes the Chl-a value of sample Si. Candidate selection is based on neighborhood
component analysis [34], which is a nonparametric classification and feature selection method.
The optimization aims to identify substantial values for each candidate. Given a set of training data
T =

{
S1 : (x1, y1), · · · , Sns : (xns , yns)

}
containing ns samples, the optimization aims to find a substantial

value for each candidate x. The procedure begins with the selection of a sample from T as the reference
sample, which is denoted as Sr : (xr, yr), and the weighted distance is calculated between the reference
sample and other samples using

w_dist(xi, xr) =

nc∑
j = 1

w j
∣∣∣xi, j − xr, j

∣∣∣, (4)

where w_dist(xi, xr) represents the weighted distance between xi and xr, and w j denotes the weight
and significance of the feature candidate C j that the optimization wishes to obtain. A leave-one-out
strategy is adopted to predict the response for reference xr by using the dataset T −

{
Sr : (xr, yr)

}
; that is,

the training set T excluding the reference sample (xr, yr), to obtain the weights and to define the
objective function of the optimization. Next, the probability of using xi in the prediction of reference xr

is defined as measuring a normalized distance between these two samples with a Gaussian kernel
function; that is,

pir(x1, · · · , xns) = g[w_dist(xi, xr)]/
ns∑

j = 1

g
[
w_dist

(
xi, x j

)]
, (5)

where g(·) represents the Gaussian kernel function. Given these probabilities, the cost function
fr(S1, · · · , Sns) for the reference sample is defined as the summation of the loss caused by the response
of the reference sample and that of other samples multiplied by their probability; that is,

fr(S1, · · · , Sns) =
∑

ns
i = 1, i,rpirl(yi, yr), (6)

where l(yi, yr) represents a loss function that measures the similarity between the response yi in
the sample Si and the response yr in the reference sample Sr. The loss function is formulated as
l(yi, yr) =

∣∣∣yi − yr
∣∣∣ in the implementation.

The overall objective function is obtained by summing the cost function from each reference
sample. In addition, a regularization term is introduced to the optimization to avoid overfitting.
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The objective function can be formulated combining these two terms. Considering the objective
function, the optimal weights are defined as

w̃ = arg min
w = {w1,··· ,wnc }

{∑
ns
r = 1 fr(S1, · · · , Sns) + α×

(
w2

1 + · · ·+ w2
nc

)}
, (7)

where α is the parameter for balancing the fitness of the cost functions and the smoothness of the
obtained weights. The optimization in Equation (7) is solved to search for the optimal weights w̃ by
using the gradient descent method [37], which is a commonly used optimization solver that iteratively
moves toward the optimal solution from an initial solution in search space with the aid of the gradient
direction of the objective function.

3.3. Chl-A Estimation, Mapping, and Validation

After determining the weights in the candidates, the optimal feature can be found. The relation
between Chl-a concentrations and the optimal features is identified using the regression model, and the
spatial pattern of Chl-a concentration is estimated on the basis of the best regression model with
optimal features.

To evaluate the generated and related Chl-a estimation models, the commonly used measurements,
including the slope of the regressed line denoted by m, the root-mean-square error (RMSE),
and Pearson’s correlation coefficient denoted by r between the estimated and measured Chl-a,
were adopted as

RMSE =

√√∑nv
i = 1

(
chlap

i − chlam
i

)2

nv
, (8)

r =

∑nv
i = 1

(
chlap

i − chlap
)(

chlam
i − chlam

)
√(∑nv

i = 1

(
chlap

i − chlap
)2

)(∑nv
i = 1

(
chlam

i − chlam
)2

) , (9)

m =

∑nv
i = 1

(
chlap

i − chlap
)(

chlam
i − chlam

)
∑nv

i = 1

(
chlap

i − chlap
)2 , (10)

where chlap
i and chlam

i represent the predicted and measured Chl-a concentration of sample Si,

respectively;chlap and chlam denote the average predicted and average measured Chl-a concentration,
respectively; and nv represents the number of testing samples. The RMSE indicates the absolute fit of
the model to the data; that is, how close the observed data points are to the model’s predicted values.
The correlation and the slope of the regression line were defined as the statistical association between
observation and prediction. The better model exists in the lower RMSE, with a higher correlation
between observation and prediction and the 1:1 slope of the regression line between observation
and prediction.

4. Results

4.1. Results of Feature Optimization

The Chl-a estimation models were generated by the proposed method from the candidate sets
(OptiM-1–OptiM-5) and the related methods from the two-band model [18] (denoted as TwoB-M),
three-band model [13] (denoted as ThreeB-G), and NDCI model [25] in Table 2. Table 3 shows the
regression models between the Chl-a concentrations and spectral features. The Chl-a in situ samples
from Lake Kasumigaura and MERIS images with the same acquisition data were used as test data,
and the coefficient of determination R2 was adopted as the measurement of regression fitness. The R2

of estimation results from the resulting models are between 0.57 and 0.62, which are superior to those
from the two-band model, three-band model, and NDCI model [25] (R2 = 0.44 − 0.55). Based on
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these measurements, the optimal model is OptiM-3, which contains two candidates in the form of a
three-band model; that is,

[
R−1

rs (665) −R−1
rs (709)

]
×Rrs(510) and

[
R−1

rs (665) −R−1
rs (510)

]
×Rrs(709).

Table 4 shows the model performance comparisons for validation. This result agrees with the
conclusions of previous studies [38,39] and indicates that the performance of three-band model is
slightly better than that of two-band models and NDCI. In addition, the comparisons show that the
RMSE of the best model is 6.37 mg·m−3 (Figure 4). By contrast, the RMSEs of the related previous
models (ThreeB-G, TwoB-M, NDCI) are close to 12 mg·m−3 (Figure 4). The combination of these
two three-band candidates outperforms the three-band model with optimal bands [13]. Therefore,
the obtained model can preserve the characteristics of the three-band model while optimally estimating
Chl-a concentrations.

Table 2. Proposed and related Chl-a estimation models.

Model Name Model Feature

OptiM-1
{[

R−1
rs (665) −R−1

rs (709)
]
×Rrs(681)

}
.

OptiM-2
{[

R−1
rs (665) −R−1

rs (709)
]
×Rrs(490)

}
OptiM-3


[
R−1

rs (665) −R−1
rs (709)

]
×Rrs(510),[

R−1
rs (665) −R−1

rs (510)
]
×Rrs(709)


OptiM-4


[
R−1

rs (665) −R−1
rs (560)

]
×Rrs(681),[

R−1
rs (709) −R−1

rs (560)
]
×Rrs(681)


OptiM-5

{[
R−1

rs (709) −R−1
rs (620)

]
×Rrs(681)

}
ThreeB-G [13]

{[
R−1

rs (665) −R−1
rs (709)

]
×Rrs(754) }

TwoB-M [18]
{[

Rrs(709) ×R−1
rs (665)

]
}

NDCI [25]
{[

R−1
rs (709) −R−1

rs (665)
]
/
[
R−1

rs (709) −R−1
rs (665)

]}
Table 3. Chl-a estimation models using regression fitness. The intercept and two slopes of the regression
lines are denoted as a0, a1, and a2, respectively.

Models a0 a1 a2 R2

OptiM-1 0.77 235.32 – 0.57
OptiM-2 1.93 174.26 – 0.61
OptiM-3 −7.74 94.03 106.40 0.61
OptiM-4 −174.57 691.61 −280.42 0.62
OptiM-5 48.51 −183.61 – 0.59

ThreeB-G [13] 24.91 115.14 – 0.44
TwoB-M [18] −87.93 103.95 – 0.55

NDCI [25] 9.17 295.02 – 0.55

Table 4. Comparison of performance of Chl-a estimation models using the RMSE, Pearson’s correlation
coefficient, and slope m.

Models
RMSE(

mg·m−3
) Pearson’s

Coefficient m

No. of testing samples (n = 16)

OptiM-1 11.91 0.58 0.40
OptiM-2 9.14 0.77 0.57
OptiM-3 6.37 0.89 0.75
OptiM-4 13.65 0.52 0.56
OptiM-5 9.56 0.71 0.54

ThreeB-G [13] 11.95 0.63 0.37
TwoB-M [18] 12.24 0.57 0.38

NDCI [25] 12.30 0.56 0.38

OptiM-3: Optimal resulting model.
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Figure 4. Comparison between estimated and measured chlorophyll-a (Chl-a) concentration provided
by compared models in OptiM-3, ThreeB-G, TwoB-M, and NDCI models.

4.2. Mapping with Various Spectral Features

Chl-a concentration maps are generated by the resulting model and the related empirical models
in Figure 5. Spatial patterns of Chl-a in the four maps are similar. The Chl-a concentration is relatively
low in the southern area in the map generated by our model compared with that generated by the
compared models, especially the regions near the lake boundaries. In addition, the map generated
by our model is spatially smoother than the compared model, and the spatial distribution of Chl-a
concentration in our map is more fitted with the result in [40]. Moreover, the Chl-a concentration
map can be used to identify the Chl-a hotspot in the lake. For instance, a high Chl-a concentration
can be found at the northern part of the lake. The selection of appropriate features is complex and
challenging because the changes in the chemical and physical properties of water can lead to different
model/feature determination. This study provides an accurate satellite Chl-a model of turbid water
by using optimal feature generation and selection based on feature generation from the two-band,
three-band, and NDCI models. The regional and spatial information of Chl-a concentration can be
generated considering a model with such satellite information.
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Figure 5. Maps of spatial distribution of Chl-a in 2010 generated by our proposed model (OptiM-3),
ThreeB-G [13], TwoB-M [18], and NDCI [25] (unit: mg·m−3).

5. Discussion

The model for optimal feature selection is based on feature generation from the two-band,
three-band, and NDCI models. This study can eventually provide an accurate satellite Chl-a model of
turbid productive (Case II) water by conducting empirical and optimal feature generation and selection.

The optical properties in clear waters are controlled by phytoplankton. Chl-a retrieval in clear
waters is commonly used at the blue and green spectral regions, whereas Chl-a retrieval in turbid
waters shifts from the blue and green to the red and NIR spectral regions to avoid high absorption of
CDOM and non-algal particles [41]. However, changes in Chl-a concentration are sensitive at the red
region between 660 and 690 nm [13]. The wavelength at 708 nm fully represents the Chl-a-induced
reflectance peak in the NIR, whereas the reflectance at 753 nm does not because it mostly depends
only on the scattering of suspended particles. The commonly used models [42] consider the following
ratios: first, reflectances at the blue region (440–510 nm) within the first peak of strong absorption
to reflectances at the green region (550–555 nm) with the minimum absorption [43]; and second,
reflectances at the NIR region (685–710 nm) with the minimum absorption to reflectances at the red
region (670–675 nm) with the second peak of absorption [44]. In this paper, the features from the models
typically include blue, red, and NIR spectral regions and are highly related to reflectances within the
first peak of strong absorption at the blue region to reflectances at the second peak absorption and
minimum absorption at the red and NIR regions (665 and 709 nm). The features from the existing
models correlate with the reflectances at the red and NIR regions at 620, 681, and 709 nm. However,
the existing models [13,18,25,45] are between the red and NIR spectral regions. This result matches
previous results [13,27], showing that the NIR spectral regions are negligibly affected by the presence of
particles and CDOM in the estimation of Chl-a concentrations [28]. The model obtains the three-band
features based on our schemes, and its accuracy is higher than those of the existing widely applied
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empirical algorithms from previous studies. The selection of appropriate features is complex and
challenging due to the changes in chemical and physical properties of water.

This study primarily applies feature selection optimization to satellite-based water quality
mapping. Selecting the important features in the feature selection algorithm aims to derive accurate
predictive models for the estimation of Chl-a concentration. The optimal feature selection is useful
for determining site-specific and generally used parameters for Chl-a estimation. From the selected
features, the band at 709 nm is commonly selected in the models. The radiance peak at 709 nm
in water-leaving radiance, that is, the MERIS maximum chlorophyll index, is extensively used to
measure the presence of high Chl-a concentration against a scattering background [13]. Moreover,
the Chl-a concentration map can be used to identify the Chl-a hotspot in the lake. The high Chl-a
in the water environments becomes warmer in the summer, leading to increased algal growth rates.
For example, high Chl-a concentration can be found at the northern part of the lake. The regional and
spatial information of Chl-a concentration cannot be generated without such satellite information and
modeling. In addition, the selected model will affect the spatial pattern of Chl-a estimation. The Chl-a
concentration in the proposed model is lower in the southern area than those in the previous models,
especially in the boundary of the lake.

6. Conclusions

This study provides a systematic approach for water quality estimation based on optimal feature
generation and selection and proposes an optimization of feature generation and selection for the
determination of a Chl-a concentration model. A set of candidates was generated on the basis of
the two-band, three-band, and NDCI models. The optimal model, which consists of one or several
candidates with substantial weights, was determined through neighborhood component analysis with
an objective function. In situ samples from Lake Kasumigaura, Japan, and MERIS images were used to
test the feasibility of the proposed process. The Chl-a concentration estimation performance of the
obtained model was compared with that of related models.

The model can successfully estimate Chl-a concentrations from optimal spectral features. However,
the geographical and seasonal variations in the environments of turbid inland waters complicate
the selection of spectral bands used in the empirical models. The combination of spectral bands
is identified as the optimal features using the proposed optimization. Quantitative measurements,
including RMSE, r, and m, demonstrate the superiority of the obtained optimal model over the previous
related models. In future work, images from Sentinel 3, a successor of MERIS, and additional in situ
Chl-a samples will be utilized. Moreover, a nonlinear estimation model will be developed by using an
artificial neural network.
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