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Purpose: A gene expression analysis of hypoxic rat retina was undertaken to gain a deeper understanding of the possible
molecular mechanisms that underlie hypoxia-induced retinal pathologies and identify possible therapeutic targets.
Methods: Rats were made severely hypoxic (6%–7% O2) for 3 h. Some rats were sacrificed at this time, and others were
allowed to recover for 24 h under normoxic conditions. A focused oligonucleotide microarray of 1,178 genes, qRT–PCR
of selected transcripts, and western analysis of hypoxia inducible factor-1α (HIF-1α) were used to compare retinas from
the hypoxic and recovery groups to control animals that were not made hypoxic. SAM analysis was used to identify
statistically significant changes in microarray data, and the bioinformatics programs GoMiner, Gene Set Enrichment
Analysis (GSEA), and HiMAP were used to identify significant ontological categories and analyze the N-methyl-D-
aspartate (NMDA) receptor interactome.
Results: HIF-1α protein, but not mRNA, was elevated up to 15-fold during hypoxia, beginning at 0.5 h, the shortest
duration examined. Of the total of 1,178 genes examined by microarray, 119 were significantly upregulated following
hypoxia. Of these, 86 were still significantly upregulated following recovery. However, 24 genes were significantly
downregulated following hypoxia, with 12 still significantly downregulated after recovery. Of the 1035 genes that did not
change with hypoxia, the expression of 36 genes was significantly changed after recovery. Ontological analyses showed
significant upregulation of a large number of genes in the glutamate receptor family, including 3 of the 5 NMDA subunits.
qRT–PCR analysis further corroborated these findings. Genes known to directly interact specifically with the NR1 subunit
of the NMDA receptor were identified using HiMAP databases. GSEA analysis revealed that these genes were not affected
by either hypoxia or altered after recovery.
Conclusions: The identification of gene expression alterations as a function of hypoxia and recovery from hypoxia is
important to understand the molecular mechanisms underlying retinal dysfunction associated with a variety of diseases.
Gene changes were identified in hypoxic retina that could be linked to specific networks. Retinas recovering from hypoxia
also showed distinct patterns of gene expression that were different from both normoxic control retinas and hypoxic retinas,
indicating that hypoxia initiates a complex pattern of gene expression. Diseases of which hypoxia is a component may
exhibit the several changes found here. Several potential therapeutic targets have been identified by our approach, including
modulation of NMDA receptor expression and signaling, which until now have only been shown to play a role in
responding to ischemia.

Evidence continues to accumulate that retinal tissue
hypoxia is an important intermediate step in the pathogenesis
of many retinal diseases. In most cases, hypoxia is caused by
either a dysfunction of the retinal vasculature, as in diabetic
retinopathy and retinal artery and vein occlusions, or it is due
to a mismatch between nutrient supply and demand, as in the
case of a retinal detachment, where the retina is separated too
far from the choroid to receive sufficient oxygen. Some
evidence of the involvement of retinal tissue hypoxia has
come from in vivo measurements in animal models of disease,
though the onset of hypoxia and the severity of the insult have
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been difficult to identify. Linsenmeier et al. [1] measured
intraretinal PO2 with microelectrodes in cats with long-
standing diabetes and concluded that the retina was hypoxic
in the early stages of retinopathy. Harris et al. [2] also provided
evidence of the presence of retinal hypoxia in the early stages
of diabetes by showing that contrast sensitivity was improved
when patients with early diabetic retinopathy were made
hyperoxic. Further evidence of hypoxia is suggested by the
increases in vascular endothelial growth factor (VEGF)
expression in patients with diabetic retinopathy [3–5] and
retinopathy of prematurity (ROP) [6], because VEGF is
known to be a hypoxia-inducible gene [7,8]. Hypoxia is also
implicated in glaucoma by the finding of elevated hypoxia-
inducible factor [9]. Experimental hypoxia rapidly reduces
photoreceptor oxidative metabolism and increases glycolysis
[10–13]. Chronic experimental hypoxia kills photoreceptors
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in adult rat retina [14] and can lead to retinal angiogenesis
[15].

Little is known about the molecular effects of hypoxia on
the retina and the underlying relationship between hypoxia
and the pathogenesis of retinal diseases. Conventional studies
investigating molecular effects of hypoxia in the retina have
focused on one particular pathway or one particular class of
molecules at a time. For example, hypoxia has been reported
to induce VEGF expression in the retina, both at the mRNA
[16,17] and protein levels [16]. Another important molecule,
the transcription factor hypoxia inducible factor-1 (HIF-1), is
well established as a key molecular signal linking oxygen
level to gene expression in many tissues. HIF-1 activation has
been observed in oxygen-induced ischemic retinopathy [17]
and in hypoxia [16]. In addition, temporal [17] and spatial
[16,17] correlations between increased levels of HIF-1α, the
regulatory subunit of HIF-1, and increased VEGF expression
have been shown, indicating that HIF-1 may control the
expression of VEGF in the retina under hypoxic conditions.

The advent of microarray technology, with its capacity to
monitor the expression of thousands of genes simultaneously,
has provided a novel opportunity to identify individual genes,
groups of genes, and related “gene families” associated with
a given biologic process. Microarray-based gene profiling has
been used to examine many aspects of retina biology and
pathology. Gene expression patterns in normal adult or the
developing retina have been reported for mouse [18–23], aged
and normal adult human [24–26], canine [27], and rabbit
[28]. Farkas et al. [29] and Ivanov et al. [30] reported on gene
expression profiling in purified populations of rat retinal
ganglion cells. Trimarchi et al. [31] performed single cell
expression profiling of developing murine ganglion and
amacrine cells.

To date, only one microarray-based study examining the
effects of hypoxia on retinal gene expression has been
reported [32]. In the present study, we therefore used
microarray technology to investigate the concurrent
expression of 1,178 genes in the rat retina both following
hypoxia and following a post-hypoxic 24 h reoxygenation
period. GoMINER [33,34], Gene Set Enrichment Analysis
(GSEA) [35] and Human Interactome Mapping (HiMAP)
were then applied to identify those gene families that showed
differential expression during hypoxia or recovery.

Of particular interest were the N-methyl-D-aspartate
receptor (NMDAR) genes, which were further studied by
qRT–PCR. NMDARs are part of the large family of glutamate
receptors, and are unique in that they require both glutamate
and glycine or serine [36] to become fully active. They play
a pivotal role in regulating synaptic transmission, modulating
excitotoxicity responsible for much of the neuronal damage
caused by hypoxic insult in the brain [37], and are expressed
in retinal photoreceptors, horizontal cells, and bipolar cells as
well as the amacrine and ganglion cells of the inner retina

[38–41]. Hama et al. [42] reported that modulators of the
glycine site of NMDAR are markedly enhanced in in vivo,
excitotoxin-induced, retinal ganglion cell damage. We found
that the expression of distinct NMDAR subunit mRNAs was
enriched in both hypoxic and post-hypoxia retina.

METHODS
Induction of hypoxia and Isolation of tissues: Adult Long-
Evans pigmented rats were used in all experiments. Rats were
obtained from Harlan Sprague-Dawley (Madison,
Wisconsin), maintained on a 12–12 light-dark cycle and had
access to standard rat chow and water ad lib. This research
included measures to reduce suffering and minimize the total
number of animals. It was approved by the Northwestern
University IACUC and conformed to the NIH Guide for the
Care and Use of Laboratory Animals. Animals were brought
to the investigators’ laboratory for the hypoxia exposure and
sacrifice. Hypoxia was induced by placing rats in a large
Plexiglas chamber in which oxygen content was maintained
at 6%–7% using a ProOx oxygen control module (Biospherix,
Redfield, NY). During the hypoxic episode, animals were left
in their home cages in the hypoxia chamber to minimize stress.
For microarray and qRT–PCR measurements (i.e., all
molecular measurements except those for HIF-1α message
and protein), animals were sacrificed by decapitation without
anesthesia either immediately following 3 h of hypoxia or
following a 24 h post-hypoxia recovery period in normal air.
The rationale for choosing these time points was based on our
finding that HIF-1α was maximally upregulated by 3 h, and
on previous work in brain [43]. Control animals for all studies
were brought to the laboratory and left in their home cages for
the same duration as those subjected to hypoxia and were then
decapitated. Animals that were allowed to recover from
hypoxia were returned to the animal care facility and brought
back to the laboratory for sacrifice. Animals used for
measurement of HIF-1α mRNA and protein were made
hypoxic for variable durations, from 0.5 to 6 h, before
sacrifice. A group of 3 h hypoxic animals was allowed to
recover for 24 h before sacrifice and measurement of HIF-1α.

Following decapitation, the retinas were rapidly removed
by using the method described by Winkler [12]. Briefly, the
eyeball was proptosed by placing forceps around the optic
nerve close to its exit from the eye. A slit was then made in
the cornea using a sharp blade, and the globe was opened. The
cornea and lens were then removed. The forceps was then
moved toward the eye to increase pressure and gently separate
the retina. The retina was then dissected out and immediately
frozen at −80 °C. This procedure from decapitation to freezing
was completed in less than two minutes.
Blood gas measurements: Blood gas measurements were
made on a group of adult Long-Evans pigmented rats separate
from those used in the molecular studies. Anesthesia was
induced and maintained using isoflurane. Induction of
anesthesia took place in a plastic box placed in the fume hood
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through which a gas mixture of approximately 5% isoflurane,
35% oxygen and 60% nitrogen was passed. After induction,
anesthesia was maintained by use of a nose cone with a rubber
diaphragm that fitted tightly around the rat snout and was
vented to a snorkel. A tracheal cannula was inserted, and the
isoflurane was then administered through the cannula. The
percentage of isoflurane was reduced to 2% to maintain
surgical anesthesia. A cannula was inserted into the femoral
artery for blood pressure recording and measurements of
PO2, pH, and PCO2. During surgery, anesthesia was monitored
via toe pinch, muscle relaxation, and respiration. Temperature
was maintained at 37–38 °C by a thermostatically controlled
water blanket. Once surgery was completed, the rats were
exposed to a gas mixture of approximately 2% isoflurane and
air, and blood gas measurements were made with a Ciba-
Corning 860 Blood Gas Analyzer (Siemens, Norwood, MA).
Rats were then exposed to a mixture of approximately 2%
isoflurane, 6 to7% oxygen, and 92% nitrogen. Blood gas
measurements were similarly recorded.
mRNA sample preparation and qRT–PCR: Total RNA was
extracted from the retinal samples using RNeasy Lipid Tissue
Mini Kit (Qiagen, Inc., Valencia, CA). cDNA synthesized by
reverse transcription of 1 µg RNA primed with oligo(dT) and
random 9-mer primers was used as the substrate for
quantitation of mRNA expression levels by quantitative RT–
PCR in the presence of SYBR® Green (Stratagene, La Jolla,
CA). Gene-specific primers were designed to generate
approximately  100 bp   amplicons  with PerlPrimer software
[44] and Primer3 software, or determined from previous
reports [45]. Primers were chosen from exons separated by
large introns, when possible, and PCR reaction quality and

specificity were verified by gel electrophoresis and melting-
curve dissociation analysis of the amplified product.
Amplification parameters including primer concentrations,
and annealing temperatures were optimized for each primer
pair. The primers used for quantitative RT–PCR are listed in
Table 1. Relative quantification of original input RNA
amounts were calculated by comparison to standard curves
using purified PCR product as a template for the mRNAs of
interest and were normalized to the amount of acidic
ribosomal phosphoprotein P0 mRNA [24,46].
Microarray experiments:

Oligonucleotide probe selection and synthesis—The
1,178 genes comprising the Falk Center for Molecular
Therapeutics (FCMT) Rat CNS microarray were compiled
from currently available NCBI/EMBL/TIGR rat sequence
databases and commercially available central nervous system
(CNS) microarrays (Affymetrix, Santa Clara, CA) and
provided representation from greater than 90% of the major
gene ontological categories [47]. Individual 45-mer
oligonucleotides corresponding to mRNAs of each gene were
used as probes, and immobilized on microarray slides, as
described below. Array Designer software v2.03 (Premier
Biosoft International, Palo Alto, CA) was used to select and
optimize these oligonucleotides, as described [47]. This
optimization was based on combining very stringent selection
criteria (minimal secondary structure, minimal homology to
other genes in the available rat genomic databases, no low
complexity or repeat regions, and defined Tm) with a
statistical ranking algorithm [48]. By employing standard
phosphoramidite chemistry, we synthesized oligonucleotides
with a PolyPlexTM 96 well oligonucleotide synthesizer

TABLE 1. qRT–PCR PRIMERS USED IN THE STUDY.     

GenBank gene ID
Accession
number Primer sequence (5′-3′)

Primer
concentration

(μM)

Annealing
temperature

(°C)
Acidic ribosomal phosphoprotein (P0) NM_022402 F: AGTACCTGCTCAGAACAC 200 55

R: TCGCTCAGGATTTCAATGG
Erythropoietin (EPO) NM_017001 F: CTCAGAAGGAATTGATGTCG 400 55

R: GGAAGTTGGAGTAGACCC
Erythropoietin receptor (EPOR) NM_017002 F: CTCGTCCTCATCTCACTG 400 61

R: ACCCTCAAACTCATTCTCTG
N-methyl-D-aspartate receptor 1 (NR1) NM_017010 F: ATGGCTTCTGCATAGACC 400 59

R: GTTGTTTACCCGCTCCTG
N-methyl D-aspartate receptor 2A (NR2A) NM_012573 F: AGTTCACCTATGACCTCTACC 400 59

R: GTTGATAGACCACTTCACCT
N-methyl-D-aspartate receptor 2B (NR2B) NM_012574 F: AAGTTCACCTATGACCTTTACC 400 59

R: CATGACCACCTCACCGAT
N-methyl D-aspartate receptor 2C (NR2C) U08259 F: GGCCCAGCTTTTGACCTTAGT 400 59

R: CCTGTGACCACCGCAAGAG
N-methyl D-aspartate receptor 2D (NR2D) NM_022797 F: GTTATGGCATCGCCCTAC 600 59

R: CATCTCAATCTCATCGTCCC
Vascular endothelial growth factor (VEGF) NM_031836 F: AGGAAAGGGAAAGGGTCA 400 57

R: ACAAATGCTTTCTCCGCT
VEGF receptor 1 (FLT-1) NM_019306 F: ATAAGAACCCTGATTACGTGAG 400 57

R: TCACTCTTGGTGCTGTAGAC
VEGF receptor 2 (FLK-1) U93306 F: AAGCAAATGCTCAGCAGGAT 400 57

R: TAGGCAGGGAGAGTCCAGAA
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(GeneMachines®, Palo Alto, CA). The oligonucleotide probes
were quantitated using a spectrophotometer and immobilized
on the microarrays via inclusion of a 5′-amino linker (Glen
Research, Sterling, VA) onto each oligonucleotide.

Array fabrication—Each microarray was manufactured
using an OmniGridTM robotic microarrayer (GeneMachines).
The oligonucleotides, suspended in 1.5 M betaine in 3X SSC
buffer at a concentration of 500 ng/µl, were covalently linked
in quadruplicate to aldehyde-coated glass microscope slides
at a spacing of 250 microns. A four pin configuration was used
in printing the slides, and four large subarrays were printed on
each slide. After printing, the arrays were baked ad vacuo at
80 °C for 2 h and stored desiccated at room temperature until
use.

Target preparation and microarray hybridization—
Total RNA was extracted from retinal samples using RNeasy
Lipid Tissue Mini Kit (Qiagen) and was the substrate for
amplification and labeling using a procedure based on the
Eberwine protocol [49]. Specifically, reverse transcription of
5 µg total RNA primed with an oligo(dT) primer bearing a T7
promoter was followed by in vitro transcription, generating
multiple antisense copies of each mRNA in the sample
(Ambion, Austin, TX). Inclusion of modified amino-allyl
dUTP at a ratio of 3:2 with unmodified dUTP in the in-vitro
transcription reaction generated antisense RNA (aRNA)
capable of chemically coupling to amine reactive dyes. aRNA
was also prepared from a universal rat reference sample
(Stratagene, La Jolla, CA) following the same procedure.
Study samples (control, hypoxic, recovery) were labeled with
Cy5 dye, and reference samples were labeled with Cy3 dye.
After purification, 2 μg of each of the two prepared aRNA
samples under study were combined in a hybridization
solution containing 8 μg polyd(A), 10 μg rat Cot-1 DNA,
4 μl Liquid Block Solution (Amersham, Piscataway, NJ),
0.2% SDS, and 1.5X SSC in a final volume of 53 μl. The
combined samples were subsequently denatured and
hybridized to the microarrays in a humidified hybridization
chamber at 46 °C for 16 h. For each time point, retinal RNA
samples from each of 5 rats were studied in triplicate (3
microarray slides per rat). Because each oligonucleotide was
spotted in quadruplicate on the array, there were a total of 12
expression measurements per gene in each experimental
group.
Data acquisition: Arrays were scanned using two lasers (633
nm and 543 nm) at 5 μ resolution with ScanArray 4000XL
(Packard Biochip Technologies, Billerica, MA) using
ScanArray Express software v2.0. Data from these scans were
collected as two 16-bit .tiff images. Individual spot intensities
from these images were quantitated using median pixel
intensity with BlueFuse software (BlueGnome, Cambridge,
UK). Along with each of the 16-bit .tiff files relating to both
the Cy3 and the Cy5 samples, raw data files containing spot
intensity values were uploaded to an in-house server running
GeneTraffic (Iobion Informatics, La Jolla, CA). GeneTraffic

is a bioinformatics server system for microarray data storage
and analysis in Minimum Information about a Microarray
Experiment (MIAME) compliant format [50]. Prior to
normalization, quality confidence measurements (spot
diameter, spot area, array footprint, spot circularity, signal to
noise ratio, spot uniformity, background uniformity, and
replicate uniformity) were determined for each scanned array
on a spot-by-spot basis to assess quality. Spots that did not
pass these criteria were not included in further analysis. The
mean log2 ratios for each spot were normalized using the
LOWESS curve-fitting equation on a print-tip specific basis
to allow for differences among the four printing pins used
during array manufacturing. This method is recommended for
routine normalization of cDNA arrays as it corrects the M-
values for both subarray spatial variation and for intensity-
based trends [51,52].
Significance analysis of microarrays using rank scores: To
identify statistically significant differentially expressed
genes, statistical analyses were performed using the
permutation-based significance analysis of microarrays using
rank scores (SAM-RS) [53] based within the traditional SAM
software package (v2.0, Stanford University, Palo Alto, CA)
[53]. In our analyses, appropriately normalized data were
analyzed using two-class, unpaired analysis on a minimum of
500 permutations and was performed by comparing
expression data derived from experimental versus control
retinas. The cutoff for significance in these experiments was
set at a false discovery rate (FDR) of approximately 5%.
GoMiner: Traditionally, microarray results have been
analyzed using a gene-by-gene approach. In this study, genes
identified as differentially expressed by SAM analysis were
examined for their biologic association to the gene ontology
(GO) categories [34] as defined by the GO Consortium [33].
This provides both additional statistical stringency to the
identified genes and identifies groups of related genes or
“gene families” which were modulated following hypoxia.
Analyses were performed using the ontological mapping
software GoMiner. This software calculated the enrichment
or depletion of individual ontological categories with genes
that had changed expression and identified cellular pathways
potentially relevant to hypoxia. Pathways within three
independent functional hierarchies, namely biologic process,
molecular function, and cellular component, were queried.
Gene set enrichment analysis: Gene Set Enrichment Analysis
(GSEA) is a microarray data-mining technique used to
determine whether there is coordinated differential expression
or “enrichment” in a set of functionally related genes when
comparing control and experimental samples [35]. In the
current study, sets of a priori, user-defined functionally related
genes were input into GSEA as well as normalized gene
expression data from both control versus hypoxia and control
versus recovery microarray analyses. The gene sets used were
identical to the categories defined by the GO project and used
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in the GoMiner Analysis. Initially, genes were ranked in a list
by the d-statistic as determined by SAM. To determine
whether members of a particular gene set were enriched at the
top of the list, a Kolmogorov–Smirnov (K-S) running statistic
summation was then computed beginning with the top-
ranking gene. This running sum increased when a gene
defined as belonging to a particular gene set was encountered;
otherwise, the sum decreased. The enrichment score (ES) for
a single set was then defined as the greatest positive deviation
of the running sum across all genes. The ES was computed for
every gene set using actual data and the maximum ES (MES)
over all of the gene sets was recorded. To determine the
significance of these changes, phenotype labels were
randomized, genes were reordered and the ES values were
recomputed. Permutations were then performed 1,000 times,
and a histogram of the corresponding enrichment scores,
ESNULL, was generated. An estimate of the nominal p-value
was calculated as the fraction of the 1,000 random
permutations in which the top pathway gave a larger ES result
than that observed in the actual data.
HIF-1α protein sample preparation and western blot
analysis: The same methods of inducing hypoxia were used
to study HIF-1α protein and message as for the microarray
studies, but variable durations of hypoxia, from 0.5 h to 6 h,
were used in different rats. Levels of HIF-1α message were
determined by qRT–PCR, and protein levels were determined
with western blots. For protein measurements, retinal samples
were isolated and immediately frozen at −80 °C. Nuclear
protein extracts were prepared as previously described [54].
Briefly, retinal samples were homogenized at 4 °C in buffer
containing 10 mM Tris (pH 7.4), 1 mM EDTA, 0.15 M sodium
chloride, 0.5% NP-40, with protease inhibitors (20 µg/ml
aprotinin, 5 µg/ml leupeptin, and 1 mM phenylmethane
sulfonyl fluoride-PMSF). The lysates were then incubated on
ice at 4 °C for 30 min and centrifuged for 5 min at 500x g at
4 °C. The nuclear pellet was resuspended in a second lysis
buffer containing 50 mM HEPES (pH 7.9), 0.4 M sodium
chloride, and 1 mM EDTA, with protease inhibitors (20 µg/
ml aprotinin, 5 µg/ml leupeptin, and 1 mM PMSF). The
suspension was then centrifuged for 5 min at 20,000x g at 4 °C.
Total protein concentrations were determined using the
bicinchonic acid (BCA) colorimetric protein assay system
(Pierce Endogen, Rockford, IL). Sample absorbances were
read at a wavelength of 562 nm with a spectrophotometer and
compared to a standard curve. HIF-1α protein expression was
measured by electrophoresing 100 μg of nuclear extracts on
12.5% SDS-polyacrylamide gels. For a positive control,
nuclear extracts were prepared from a rat C6 glioblastoma cell
line incubated in the presence of CoCl2 for 2 h. CoCl2 is known
to increase HIF-1α protein levels [55]. These CoCl2-treated
C6 nuclear extracts were concurrently electrophoresed with
the rat retinal protein samples. Following electrophoresis,
proteins were transferred to polyvinylidene difluoride
membrane, and the membrane was blocked with 5.0% nonfat

dry milk in 0.1% Tween-20 in Tris buffered saline (TBS) for
1 h. The membrane was then incubated with a 1:500 dilution
of mouse monoclonal anti-HIF-1α antibody (Novus
Biologicals, Littleton, CO) in 5.0% nonfat dry milk in 0.1%
Tween-20 in TBS at 4 °C overnight. Then the membrane was
washed 3 times for 10 min in 0.1% Tween-20 in TBS. Next,
it was incubated with a 1:2,000 dilution of horseradish
peroxidase-conjugated antimouse IgG (Amersham) for 1 h at
room temperature in 0.1% Tween-20 in TBS. The membrane
was then washed as already described and developed with the
ECL Chemiluminescence detection system (Amersham)
according to the manufacturer’s instructions. Protein
expression levels were quantitated using the software Scion
Image (Scion Corporation, Frederick, MD).
Statistics: Statistically significant differences among control,
hypoxic and recovery values were determined for (a) select
gene expression values, as measured by qRT–PCR and (b)
among time points for HIF-1α mRNA and protein expression.
Comparisons were made by ANOVA followed by the Tukey
procedure for posthoc comparisons.

RESULTS
Generation of in vivo retinal hypoxia: Arterial PaO2 was
measured in a subset of rats before and immediately following
exposure to 6%–7% O2, as described in the Methods. The
severe systemic hypoxemia reduced arterial PaO2 from
84.3±11.0 mmHg during air breathing to 20.3±1.2 mmHg
during hypoxia (n=3 rats). Retinal PO2 has not been measured
during hypoxia in rats, but this arterial PO2 has been shown to
reduce retinal PO2 in cats [10].
HIF-1α protein and mRNA: Figure 1B shows that after 0.5 h
of hypoxia, HIF-1α protein levels (normalized to levels of β-
actin protein expression) were elevated approximately
sevenfold relative to the control. HIF-1α protein continued to
increase to approximately 15-fold more than the control level
after 3 h of hypoxia. A statistically significant increase was
observed relative to control at all hypoxic time points up to
the 6 h duration of hypoxia. The average HIF-1α protein level
was somewhat smaller after 6 h of hypoxia than after three
hours, but this decrease was not significant. HIF-1α returned
to control levels after 24 h of recovery from 3 h of hypoxia
(not shown). This is consistent with results of Bernaudin et al.
[43], who reported no difference in HIF-1α protein levels in
the neonatal rat brain after a 24 h reoxygenation period
compared to control.

HIF-1 α mRNA levels were measured by quantitative
RT–PCR analyses at the same time points (Figure 1A). Data
were normalized to acidic ribosomal phosphoprotein P0
mRNA levels [24,46]. Northern blotting analyses were
performed on control and 3 h hypoxic samples to confirm that
mRNA levels for P0 remained unchanged during hypoxia. No
significant differences were observed between HIF-1α
mRNA levels in control animals and hypoxic animals at any
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time point. Thus, as in other tissues, it is likely that control of
HIF-1α in the retina is largely posttranscriptional, probably at
the level of protein turnover.
Expression of known hypoxia-associated mRNAs: The
expression of a few retinal mRNAs known to be induced by
hypoxia, including HIF-1α, was assessed by qRT–PCR
analysis of total RNA isolated from retinal tissue following
exposure to 3 h of 6%–7% O2. Additionally, expression of
these mRNAs was also assessed following 24 h of recovery
from hypoxia in room air compared to that in retinas isolated

Figure 1. HIF-1α mRNA and protein expression in rat retina during
hypoxia. Rats were exposed to 6%–7% O2 (hypoxia) for varying
durations up to 6 h. A: HIF-1α mRNA abundance, normalized to
acidic ribosomal protein P0 mRNA, was calculated by qRT–PCR.
Data represent mean (±SD) of 3 independent experiments. No
significant differences (n/s; p>0.05) were observed between control
and hypoxic HIF-1α mRNA expression levels at any time point. B:
Quantitation of HIF-1α protein expression in nuclear protein extracts
by western analysis. Data represent mean (±SD) of at least 3
independent experiments and were normalized to β-actin expression
levels. HIF-1α protein levels were higher in all hypoxic samples
relative to controls (ANOVA followed by post-hoc test; p<0.05) but
were not different between any two hypoxic time points. The inset
depicts the western result from a representative time course
experiment, as well as the return of HIF-1α protein levels to control
levels 24 h after exposure to 3 h hypoxia.

from control animals exposed only to air (Figure 2). These
included genes associated primarily with the vascular changes
resulting from oxygen deprivation; namely (a) VEGF and its
receptors Flk-1 and Flt-1 [17,56]; and (b) erythropoietin
(EPO) and its receptor (EPOR) [16]. The expression of
VEGF, Flk-1, and EPO were significantly upregulated
following hypoxia. The expression of EPOR, although
unchanged immediately following hypoxia, was significantly
upregulated relative to control after 24 h of recovery.

Gene expression analyses: Identification of hypoxia-
associated genes: To detect novel changes in gene expression,
we used a focused microarray platform to evaluate the
expression profile of retinas from hypoxic animals compared
to that in retinas isolated from control animals exposed to
room air. Analyses were performed with 5 animals per group
(control, 3 h of hypoxia, and 24 h or recovery after 3 h
hypoxia) to decrease bias that may be introduced by donor-
specific gene expression patterns. As described in the
Methods, a reference experimental design was used. RNA
samples were studied in triplicate (i.e., 3 microarray slides for
each retina).

Statistical evaluation at a stringent FDR of approximately
5% for the hypoxic-control comparison identified 119 genes
whose expression was preferentially upregulated in hypoxic
retinas, and 24 that were preferentially downregulated (Figure
3). At this stringent FDR, only 7 of these changes were
expected to be false positives. Appendix 1 shows the
identities, functional annotations, and relative expression
ratios of these genes. Although the abundance ratios of most
of these genes were less than twofold, possibly because of the
heterogeneity of retinal tissue, significant changes could be
detected. Many functional categories of genes were
represented in these analyses, including calcium signaling,
cytokines, and growth factor pathways. Several of the
identified genes were representative of pathways previously
described in other tissues exposed to hypoxia, including genes
in the stress response, apoptotic, proliferation, and synaptic
transmission pathways. Many of the genes known to be
directly transactivated by the overexpression of the
transcription co-factor HIF-1α were identified, and included
inducible nitric oxide synthetase 2, insulin-like growth factor
1, insulin-like growth factor binding protein 2, and
hexokinase 2. VEGF and its receptors and erythropoietin were
not on the microarray, but as shown in Figure 2, these were
also upregulated. However, many genes and pathways not yet
described in the context of hypoxia were also identified.

Changes extending beyond hypoxia itself were also
observed when comparing the data sets (Figure 3). Of the 119
genes upregulated following hypoxia, 72% remained
upregulated after a 24 h period of recovery under normoxic
conditions. The remainder returned to control levels. None of
the changes were observed to reverse directionality during the
recovery period. Of the 24 genes downregulated following
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hypoxia, the expression of approximately half remained lower
than control levels after recovery. Thus, the majority of the
gene expression differences observed persisted for a
significant period of time after return to normoxic conditions.
As noted above, HIF-1α protein levels returned to normal

Figure 2. qRT–PCR analysis of known hypoxia-associated mRNAs.
For each mRNA, transcript abundance, normalized to acidic
ribosomal protein P0, was calculated by qRT–PCR. Values were then
further normalized to the control level of each transcript. Data
represent mean (±SD) of 5 independent experiments. A: The
expression of VEGF and VEGF receptors Flk-1 and Flt-1 mRNA
was measured in the rat retina immediately following 3 h of hypoxia
and after 24 h of recovery in air. VEGF and Flk-1 were significantly
higher in hypoxic samples as compared to control. Flt-1 tended to
increase during hypoxia, but the difference from control was not
significant. B: The expression of erythropoietin (EPO) and
erythropoietin receptor (EPOR) mRNA was measured in the rat
retina immediately following 3 h of hypoxia and after 24 h of
recovery in air. EPO mRNA levels were significantly higher in
hypoxic samples as compared to control. A significant difference was
also observed for the EPOR control and hypoxia mRNA levels
between hypoxic and recovery samples. The asterisks indicate
significance levels assessed via ANOVA followed by post-hoc tests:
* - p<0.05; ** - p<0.01; *** - p<0.001.

within this time-frame as did message for VEGF, Flk-1, and
EPO (Figure 2).

Ontological analyses:
GOMiner—To provide additional statistical stringency

to the identification of potential targets, we then analyzed the
data sets generated by the SAM-RS analysis of the microarray
data  for  hypoxia-associated  coregulation  of  multiple,
functionally related genes. The genes identified as
differentially expressed when comparing hypoxic and control
retinal samples and when comparing recovery and control
retinal samples at a FDR of approximately 5% were examined
for their biologic association to GO categories. Using the
GOMiner algorithm, two independent category structures
(biologic process and molecular function) based on the 1178
rat genes represented on the microarray (of which 923
currently carry GO annotations) were initially constructed and
used as Query gene files. The genes identified in this study
were then loaded as a “Query Changed Gene File” into the
program to examine the distribution of these genes within the
GO category structures. All of these queried genes carried
current GO annotations. Table 2 lists the GO categories that
were significantly enriched in hypoxia and recovery. Among
the most interesting ones identified were those associated with
1) the large category of transport, and the more specific
categories of carbohydrate transport and cation:amino acid

Figure 3. Summary of microarray data. Shown is an examination of
the microarray databased on the number of genes upregulated,
downregulated, or not changed. These gene changes were
categorized into major functional groups. Upward arrows indicate
numbers of genes that were significantly upregulated; down arrows
indicate those that were downregulated; and horizontal bars represent
those that were not altered. The recovery column shows how the
genes in each category were affected during recovery. Ellipses
indicate that these were not the only categories affected.

Molecular Vision 2009; 15:296-311 <http://www.molvis.org/molvis/v15/a30> © 2009 Molecular Vision

302

http://www.molvis.org/molvis/v15/a30


symport; 2) several related to calcium, including calcium ion
binding, calmodulin binding, and voltage gated calcium
channel activity; 3) DNA damage response and signal
transduction; 4) response to oxidative stress; and 5) oxygen
and reactive oxygen species metabolism.

Gene set enrichment analysis—A limitation of GO
analysis is that the predetermined categories may not match
the ones of functional interest in a particular tissue. The list in
Appendix 1 suggested that some categories that we defined,
particularly related to synaptic function, were not GO
categories, so GSEA analysis, which allows the creation of
additional categories, was employed. GSEA demonstrated
significant enrichment in NMDAR subunit expression both

during hypoxia and following recovery. χ2 analysis was used
to determine both the extent and significance of NMDAR
enrichment as compared to what would be expected by chance
alone. As compared to normoxic controls, a statistically
significant enrichment of 5.9-fold (χ2=7.750, p=0.0054, 2-
tailed) was found in hypoxic retinas and 6.3-fold (χ2=8.432,
p=0.0037, 2-tailed) was found in recovery retinas.
NMDA-R  qRT–PCR corroboration:  The  expression  pattern
of the individual NMDA-R subunits (NR1, NR2A, NR2B,
NR2C, and NR2D) was further studied by quantitative real-
time RT–PCR. NR1, NR2C, and NR2D were significantly
elevated in hypoxic retinas compared with controls; these

TABLE 2. GENE ONTOLOGY CATEGORIES SIGNIFICANTLY ALTERED DURING HYPOXIA AND RECOVERY

Hypoxia

p value

Recovery

p value
Ontological Category Ontologica l Category

  Biologic ProcessBiologic Process
 Synaptic Vesicle Endocytosis 0.005

Translation 0.002 Sulfur Metabolism 0.014
Regulation of Translation 0.003 Microtubule Polymerization 0.016
Carboxylic Acid Metabolism 0.014 Cytoskeleton-Dependent Intracellular Transport 0.017
Regulation of Heart Contraction 0.022 Microtubule-Based Movement 0.017
Nitrogen Compound Metabolism 0.023 Oxygen and Reactive Oxygen Species Metabolism 0.018
Carbohydrate Transport 0.026 Regulation of Heart Contraction 0.026
Monosaccharide Metabolism 0.041 DNA Damage Response, Signal Transduction 0.029
Transport 0.041 Microtubule Polymerization or Depolymerization 0.029
  Microtubule-Based Process 0.034

Cellular Component  Protein Polymerization 0.034
Membrane-Bound Vesicle 0.003 Microtubule Cytoskeleton Organization and Biogenesis 0.046
Vesicle 0.003 Response to Oxidative Stress 0.049
Golgi Vesicle 0.004
Cytoplasmic Membrane-Bound Vesicle 0.005 Cellular Component
Chromatin 0.007 Vesicle Membrane 0.002
Nuclear Chromosome 0.007 Intracellular Non-Membrane-Bound Organelle 0.003
Chromosome 0.008 Condensed Chromosome 0.016
Intracellular Non-Membrane-Bound Organelle 0.013 Integral to Membrane of Membrane Fraction 0.016
Condensed Chromosome 0.014 Tubulin 0.016
Integral-to-Membrane of Membrane Fraction 0.014 Voltage-Gated Calcium Channel Complex 0.023
Perinuclear Region 0.026 Cytoskeleton 0.034
Mitochondrial Membrane 0.03 Organelle Membrane 0.035
Organelle Envelope 0.034 Cytosol 0.043
Clathrin-coated Vesicle 0.043 Microtubule 0.046
Envelope 0.043 Protein Complex 0.047
Vesicle Membrane 0.043
  Molecular Function

Molecular Function  Amino Acid Binding 0.034
Amino Acid Binding 0.032 Calmodulin Binding 0.041
Cation:Amino Acid Symporter Activity 0.032 Voltage-Gated Calcium Channel Activity 0.049
Sugar Transporter Activity 0.032 Calcium Ion Binding 0.05
Structural Molecule Activity 0.048

The genes identified as differentially expressed when comparing hypoxic and control retinal samples and when comparing
recovery and control retinal samples were examined for their biologic association to GO categories (detailed in the text). Using
GOMiner software, three independent category structures (biologic process, cellular component, and molecular function) were
initially constructed and the genes identified in this study were examined for their distribution within these three GO category
structures. The significance of the calculated enrichment in each GO category was calculated as a p-value using Fisher's Exact
Test. A p<0.05 was considered significant.
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results were in close agreement with the microarray results
(Figure 4).
NR1 interactome analysis: Insight into the novel role that
NMDA receptors play in retinal responses to hypoxia may be
derived from study of the coordinated expression patterns of
genes that interact, either directly or indirectly, with the
NMDA receptor; namely, the NMDA interactome. Initially,
the subset of members interacting with NR1, the obligatory
subunit of all functional NMDA receptor complexes [57], was
identified using the Human Interactome Map (HiMAP)
database. HiMAP is a searchable, online browser that allows
exploration of both known and predicted protein–protein
interactions. Literature-confirmed interactions come from the
Human Protein Reference Database, the yeast-two-hybrid-
defined interactions come from two recent publications [58,
59] and predicted interactions were generated by a Bayesian
Analysis [60] From among the >40,000 interactions in the
HiMAP network, 32 genes that interact with the NMDAR1
subunit (specifically, the NMDAR1 interactome) were
identified (Figure 5A). We found 22 of these genes were
represented on our focused array (GPR51, GRIA3, GRIA4,
GRID2, GRIK 1, GRIK3, GRIK4, GRIN1, GRIN2A GRIN2B,
GRIN2C, GRIN2D, GRIN3A, GRM1, GRM2, GRM3, GRM4,
GRM5, GRM6, GRM7, GRM8, and GUCY2F). Ten were not
represented (AKAP9, BAIAP1, CASR, DLG2, EPHB4,
GRIN3B, GUCY2C, GUCY2D, NPR2, and PRKCABP). We

Figure 4. NMDA receptor subunit mRNA expression in the rat retina
following hypoxia and 24-h recovery in air. For each mRNA,
transcript abundance, normalized to acidic ribosomal protein P0, was
measured by qRT–PCR. Values were then further normalized to the
control level of each transcript. Data represent mean (±SD) of 5
independent experiments. NMDAR1 mRNA levels were higher in
hypoxic samples compared to control and in recovery samples
compared to control. NMDAR2C mRNA levels were higher in
hypoxia samples compared to the control samples. NMDAR2D
mRNA levels were higher in hypoxia samples compared to the
control samples. The asterisks indicate significance levels assessed
via ANOVA followed by post-hoc tests: * - p<0.05; ** - p<0.01; ***
- p<0.001.

used this 22 gene-defined NMDAR1 interactome to calculate
the statistical enrichment of this geneset using GSEA. As a
whole, there was no statistically significant enrichment of this
geneset. If, however, we partitioned this geneset into discrete
subsets (of ≥2 genes) based on ligand specificity (see
Categories in Figure 5B), along with the expected significant
enrichment of NMDA receptors (p<0.05), there was also
significant enrichment in the expression of the metabotropic
receptors following hypoxia and recovery (p<0.01).

DISCUSSION
The purpose of this study was to identify changes in gene
expression induced by hypoxia in rat retina both immediately
following hypoxia as well as following a 24 h recovery period
post hypoxia. To do so, we used an in-house-fabricated,
focused microarray platform, detailed in Kroes et al. [47], that
deserves further elaboration. The quality of our platform has
been rigorously evaluated in terms of dynamic range,
discrimination power, accuracy, reproducibility, and
specificity. The ability to reliably measure even low levels of
statistically significant differential gene expression stems
from coupling a) stringently designed and quality controlled
chip manufacturing and transcript labeling protocols; b)
rigorous data analysis algorithms; and c) flexible ontological
and interactome analyses (the bioinformatics tools GoMiner,
GSEA, and HiMAP-based interactome analysis) capable of
demonstrating significant correlations between the expression
of specific genesets. Used together, these technologies
provide maximal statistical rigor to analyses of coregulation
of genesets that are functionally related or related by
involvement in a given biologic pathway. When combined
with robust qRT–PCR corroboration, this approach provides
a powerful platform to identify fundamental, biologically
relevant gene families significantly altered in the hypoxic
retina.

Many studies have demonstrated that meaningful
expression patterns can involve groups of transcripts whose
relative abundance changes at levels considerably less than
twofold [61,62]. Additionally, the interpretation of levels of
change in gene expression in isolation, without the additional
statistical rigor provided by the concomitant analysis of
ontological interaction networks, may severely limit critical
insights into relevant biologic processes. Thus, interactome
hubs such as NR1 may exhibit low levels of change in
individual gene expression following hypoxia, but, based on
analysis of interaction networks, are likely to play an
important role in regulating the biologic response.

From a more global perspective, 22 gene families, of the
over 200 identified, were found to be significantly altered by
hypoxia. In particular, alterations in genes associated with
response to stress, apoptosis, ion channel activity, and
neuronal and synaptic modeling were observed. After 24 h of
recovery from hypoxia, similar gene families were altered as
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well. Most (72%) of the genes overexpressed due to hypoxia
remained overexpressed after 24 h of recovery, and 50% of
the genes that showed a reduction in expression due to hypoxia
remained at significantly lower levels of expression than non-
hypoxic controls after 24 h of recovery. It therefore is clear
that after 24 h of recovery, the retina remains markedly
different than pre-hypoxic controls in terms of gene
expression patterns. It is also noteworthy that neither
overexpressed genes nor genes reduced in expression
compared to controls ever showed the opposite patterns of
expression in the 24 h recovery retinas. Apart from the EPO-
EPOR changes, which are probably protective, it is not clear
in most cases which gene changes help the retina survive
hypoxia, and which may participate in detrimental effects
such as neovascularization and apoptosis. However, within

the group that remain altered after 24 h are some genes that
may underly the positive effects of hypoxic preconditioning
[43,63].

Our results confirmed and extended previous
observations that genes associated with hypoxia (specifically
VEGF, Flk-1, and EPO) are indeed elevated following
hypoxia in the retina. However, hypoxia-associated genes,
Flt-1 and EPOR, showed no significant changes in the current
study. Interestingly, after 24 h of recovery from hypoxia
VEGF, Flk-1, and EPO returned to control levels of
expression, but EPOR was significantly elevated. Consistent
with this finding, EPOR protein levels continued to rise for 72
h after the end of ischemia in rat retina [64]. EPO has now
been shown to be protective against ischemic injury [64] and
light damage [16], and the upregulation of EPOR following a

Figure 5. NMDAR1 Interactome. A:
The molecular network of direct
physical, transcriptional, and enzymatic
interactions with NMDAR1 (GRIN1),
referred to as the NMDAR1
“interactome,” was derived from the
HiMAP database. Using evidence from
literature-confirmed interactions within
the Human Protein Reference Database
and predicted interactions generated by
Bayesian Analysis, greater than
>40,000 molecular relationships were
queried. B: Subsets of the NMDA
Interactome were created based on
ligand specificity. In these subsets, the
25 genes in the NMDA interactome
(above) were organized into
progressively smaller subsets and
further analyzed by GSEA.
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recovery period post-hypoxia is likely important in this
protection.

We found a substantial increase in HIF-1 protein during
hypoxia, but this does not mean that HIF-1 alone regulated
gene expression. Most of the genes that were upregulated
during hypoxia in our study are not known to be controlled by
HIF-1. Wenger et al. [65] compiled a list of the 70 genes that
were known to be regulated directly by HIF-1. This may not
be an exhaustive list of the HIF-1 regulated genes, but only a
few of the genes that were altered in our study are on that list.
Even for those that are under the control of HIF-1,
upregulation may require additional factors as well [65]. It
should also be noted that hypoxia can act on transcription
without involving HIF-1. Among the other possible pathways
that have been described as mediating hypoxic responses are
those using jun, AP-1, calmodulin, and MAP kinase as
intermediates [66].

There have been several recent reports in which some of
the same transcripts have been altered by hypoxia or
manipulations involving hypoxia. Yoshimura et al. [67] used
microarrays to examine gene expression in rat retinal
ischemia-reperfusion injury. Retinal expression profiles were
investigated 12 h after a 1 h ischemic episode and compared
to non-ischemic controls. At this time point, 135 genes and
expressed sequence tags (ESTs) were significantly
upregulated or downregulated relative to control. Upregulated
genes clustered into at least 7 functional groups, including
immediate early genes or transcription factors, cell-cycle
related genes, stress-responsive protein genes, cell signaling
protein genes, cell adhesion and cell surface protein genes,
genes involved in translation and protein turnover, and genes
encoding metabolic proteins. Kaur et al. [68] examined
selected gene expression patterns in rat retinas from 3 to 14
days after hypoxia. mRNAs and protein expression for
HIF-1α, VEGF, nitric oxide synthase, and glutamate receptor
subunits NMDAR1, GluR2, GluR3 were each found to be
upregulated at 3 h and 24 h, but all returned to control levels
by 14 days.

Several studies have investigated the genomic response
of the brain to hypoxic preconditioning. Tang et al. [63]
identified differential expression in hypoxia. Several genes
were identified as upregulated after 1 h of hypoxia including
adenosine receptor A2AR, and another group of genes was
increased after 6 h of hypoxia including VEGF,
adrenomedullin, and GLUT-1. Similarly, Bernaudin et al.
[43] found increased expression of 18 genes in the neonatal
rat brain following hypoxia (8% O2 for 3 h) including several
known hypoxia inducible genes such as MAP kinase
phosphatase-1 (MKP-1), several HIF-1 target genes including
VEGF and GLUT-1, genes implicated in apoptosis, signal
transduction molecules, and transcription factors. Several
novel hypoxia inducible genes, such as a calcium-activated
potassium channel (AF083341) and a voltage-dependent

potassium channel (X12589), were upregulated. Interestingly,
it has been suggested that the initial signal responsible for
triggering the development of hypoxic preconditioning in the
brain involves the opening of ATP-sensitive potassium
channels via the activation of adenosine A1 receptors [69]. In
the present study, we identified the modulation of several K+

ion channels in addition to adenosine A3 receptors during both
hypoxia and recovery.

Recently, in investigating preconditioning in the retina,
Thiersch et al. [32] reported microarray results for mouse at
different time points after 6 h of severe hypoxia (6% O2).
Using an Affymetrix microarray platform, they found 431
genes significantly altered immediately after hypoxia (of
approximately 39,000 transcripts on the Mouse Genome 430
2.0 array); in contrast to the present results in which the effect
of hypoxia was persistent, only 3 transcripts were significantly
altered after 16 h of recovery.

We chose to investigate the expression of NMDARs in
more detail. This receptor-ionophore complex is well
established as playing a significant role in excitotoxic damage
to retinal neurons [38,40,70]. The precise role of NMDARs
in ganglion cell death remains somewhat controversial,
because one recent study, using cultured neonatal retinal
ganglion cells, showed that ganglion cells, in contrast to
amacrine cells, were not killed by NMDA [71]. Nevertheless,
retinal hypoxia induced by glutamate-mediated excitotoxicity
is thought to be a key antecedent to such retinal diseases as
glaucoma and diabetic retinopathy [39,72,73].

The NMDA receptor subtype mRNAs for NR1, NR2A-
D, and NR3 are expressed in mouse retinal ganglion and
amacrine cells [74]. Only NR1 mRNA expression could be
detected in bipolar cells, and no NMDAR subunit mRNA
expression was detected in rods [74]. To provide additional
information on NMDARs, we used the following: 1) GSEA;
2) qRT–PCR; and 3) interactome analysis using HiMAP.
First, GSEA analysis showed a nearly sixfold enrichment in
NMDAR both after hypoxia and 24 h after recovery. Kaur et
al. [68] found a maximal elevation of about twofold in the NR1
subunit of the NMDAR complex after 24 h of hypoxia using
qRT–PCR. Second, in our model, qRT–PCR analysis of NR1
expression showed about a 30% increase over controls that
was also significant (p<0.01). We also found significant
increases in NR2C and NR2D subunits, but not in NR2A or
NR2B. Interestingly, only the NR1 subunit remained
significantly elevated after 24 h of recovery from hypoxia, so
these transcripts exhibit differential responsiveness to
hypoxia than other NR subunits. Third, HiMAP interactome
analysis coupled with GSEA analysis allowed us to extend our
study to all of the genes that NR1 receptors directly interact
with. These analyses revealed that expression of the
metabotropic glutamate receptor family was also significantly
enriched following hypoxia and recovery

Our results focused on mRNA expression and not protein
expression or functional NMDAR changes after hypoxia and
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recovery. Nevertheless these results may have important
implications for the design of retinal neuroprotective agents
because they suggest that NR2C and NR2D-containing
NMDAR subtypes may be the best targets. It has been noted
that NMDAR antagonists would not be good candidates for
neuroprotection because of the need to maintain retinal
function for normal visual information processing.
Interestingly, it has recently been shown that memantine, an
uncompetitive NMDA receptor antagonist that inhibits
overactivity of NMDARs, was able to prevent retinal ganglion
cell degeneration in streptozotocin-induced diabetic rats [73].
Perhaps partial agonists, directed at these receptor subtypes
will have the greatest neuroprotective potential for they would
have the ability to inhibit excessive receptor activity without
totally shutting down the receptor’s ability to perform normal
neuronal functions. Two such partial agonists with clinical
potential are D-cycloserine and GLYX-13 [75,76].
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Appendix 1. Hypoxia-associated gene expression in the rat retina.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a PDF file. Categories
are convenient functional groupings and are not related to GO
categories. The fold change was calculated between mean
values of hypoxic retinas (n=6) and control normoxic (n=6)
retinas in the hypoxia column and between mean values from

retinas after 24 h of recovery from hypoxia (n=6) and control
normoxic retinas (n=6) in the recovery column. Positive
values indicate an increase and negative values indicate a
decrease in gene expression relative to control retina. No
significant change is indicated by nc. RGD represents Rat
Genome Database.
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