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Abstract: The tomography of a single quantum particle (i.e., a quantum wave packet) in an accel-
erated frame is studied. We write the Schrödinger equation in a moving reference frame in which
acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem
to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of
a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence
of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaf-
fected by the uniform force field. This implies that, similar to in the case of a force-free motion, the
uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem,
the wave packet centroid moves according to classic Newton’s law of a particle experiencing the
effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction
spread in the configuration space but not in momentum space. Then, using Radon transform, we
determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally,
we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic
tomogram evolution in the related tomographic space.

Keywords: Radon transform; marginal distribution; equivalence principle; Schrödinger equation;
accelerated frame

1. Introduction

It is well known that quantum tomography provides a very useful probability rep-
resentation of quantum states in terms of the so-called marginal distribution [1–3]. It has
all of the features of a classical probability density [4], although it contains all informa-
tion carried by a Wigner quasidistribution [5]. Thus, it is worth noting that, while the
marginal distribution is positive definite, the Wigner quasidistribution is not positive
definite. Marginal distribution and Wigner quasidistribution are related by one-to-one
transformation, usually referred to as the Radon transform [6]. It has been proven [4] that
the probability distribution for the rotated quadrature phase can be expressed in terms
of the Glauber–Sudarshan distribution [7,8] (i.e., the P-function), the Husimi function [9]
(Q-function), and the Wigner quasidistribution. Remarkably, the inverse of this statement
is true as well, provided that the probability distribution for the rotated quadrature phase
is known for each angle of rotation ϕ in the interval [0 ≤ ϕ ≤ π] [4].

However, since there exists also an invertible transformation between Wigner quasidis-
tribution and the wave function, the quantum states given in the configuration space can
be directly characterized in terms of the tomographic representation, namely they are char-
acterized by the tomographic probability density, usually referred to as the tomogram [10].
This approach received a great deal of attention in the literature [11], especially for its
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diverse applications in a number of quantum problems, ranging from linear to nonlinear
quantum mechanics (see, e.g., [12,13] ).

Similar approaches have been also developed in the quantum-like domain to provide
the tomographic probability representation of electromagnetic (EM) radiation. It is well
known that the paraxial propagations of an EM beam in a linear or nonlinear medium is
governed by suitable Schrödinger-like equations [14,15] for a wave function in which the
squared modulus is proportional to the EM energy density (photon density). A Fresnel
entropic characterization of optical Laguerre–Gaussian beams has been provided [16].

According to the Thermal Wave Model [17–21], a similar paraxial representation,
based on a Schrödinger-like equation, can be adopted for relativistic charged particle
(CP) beams while propagating in a vacuum or in other media. Therefore, the notion of a
tomogram can be provided for the CP beams [22,23].

More recently, the concept of tomographic entropy has been proposed within the
context of quantum tomography to characterize quantum states and related tomograms
from the viewpoint of quantum information. Remarkably, the entropic uncertainty relations
associated with a quantum state and the related tomogram have been also found and
discussed [24,25].

Relevant mathematical and physical aspects of the tomograms and of the related
entropy associated with the quantum states [1–16] are worth mentioning in the present
context. (i) There exist symplectic tomograms and optical tomograms that are suitable for
optics applications. (ii) The tomograms are related to the wave functions by invertible
integral transforms associated with Radon transform and fractional Fourier transform
for optical and symplectic tomograms. The paraxial evolution equations of the tomo-
gram (marginal distribution) is governed by a Boltzmann-like equation in the space of
tomographic parameters (i.e., tomographic space). It carries all information that is carried
by the beam wave function as a solution to the (macroscopic) paraxial Schrödinger-like
equation in the configuration space and by the Wigner quasidistribution as a solution to
the Wigner–Moyal equation or the von Neumann-like equation in the phase space [26].

The aim of this paper is to carry out a theoretical investigation for the study, both
analytical and numerical, of the spatiotemporal evolution of the tomogram associated with
a single quantum particle (i.e., a quantum wave packet) in an accelerated frame in which
the initial wave function is assumed to be Gaussian. In the following section, we present the
formulation of our problem. Then, we reduce our problem to finding the spatiotemporal
evolution of the quantum wave packet in an inertial frame in the presence of a uniform force
field with an arbitrary time dependence of the acceleration. In Section 3, we show that such
a wave packet remains Gaussian during the entire time evolution, i.e., the uncertainties
of the position and of the momentum are unaffected by the uniform force field. Next, we
describe the time evolution of the motion of both the envelope and the centroid. Similr
to the case in free motion, the product of the position and momentum uncertainties is
unaffected by the acceleration. Remarkably, the wave packet centroid is shown to move
according to classic Newton’s law of motion of a single particle experiencing the effects
of uniform acceleration, according to the Ehrenfest theorem. In Section 4, we extend our
analysis to the tomographic space. We find the optical and the simplectic tomograms to be
associated with the quantum wave packet. Some interesting examples for problems in the
transport of charged and neutral particles are provided. Finally, remarks and conclusions
are given in Section 5.

2. Formulation of the Problem

We want to study the 1D motion of a quantum particle of mass m that moves along
the z-axis with nonrelativistic speed in an uniformly accelerated frame, where the latter
accelerates along z. Let us denote by ψ(z, t) the wave function that characterizes the
quantum wave packet associated with the particle, where its group velocity, i.e., the particle
velocity, is given by v = v(t) ẑ. Here, z and t are space and time coordinates, respectively.
In order to describe the spatiotemporal evolution of the quantum wave packet, we proceed
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according to the following steps: (i) we write the Schrödinger equation in the accelerated
frame, which is specified above. (ii) We reduce our problem to solve the Schrödinger
equation, as given in the inertial frame, for a quantum particle experiencing the following
uniform force field F(z, t) = F(t) ẑ. Note that, correspondingly, the potential energy
appearing in the transformed Schrödinger equation is of the form U(z, t) = −F(t) z.

2.1. The Schrödinger Equation for a Single Particle in an Accelerated Frame

According to the above notation, we write the Schrödinger equation for the single
nonrelativistic particle describing free motion, i.e.,

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂z2 , (1)

that we cast as follows (with m being the single-particle rest mass):

iλc
∂Ψ
∂s

= −λ2
c

2
∂2Ψ
∂z2 , (2)

where we introduced the Compton wavelength, i.e., λc = h̄/mc, and the time-like variable,
i.e., s = ct (with c being the speed of light in vacuo) and set Ψ = Ψ(z, s) = ψ(z, s/c). In
order to write Equation (2) in an accelerated frame, we introduce the following coordinate
transformation:

z′ = z′(z, s) = z + ζ(s),

s′ = s′(z, s) = s, (3)

Ψ′
(
z′, s′

)
= Ψ

(
z
(
z′, s′

)
, s
(
z′, s′

))
,

where z′ = z′(z, s) and s′ = s′(z, s) denote the direct transformation whilst z = z(z′, s′) and
s = s(z′, s′) denote the inverse one. Note that, if ζ(s) is a linear function of s, transforma-
tion (3) and its inverse reduces to Galilean transformations. Therefore, in order to write
Equation (2) in an accelerated frame, we assume that at least ζ̈ 6= 0, where each dot stands
for the first derivative with respect to the time-like variable s. By introducing Equation (3)
into Equation (2) one easily arrives at

iλc

(
∂Ψ′

∂s′
+ ζ̇

∂Ψ′

∂z′

)
= −λ2

c
2

∂2Ψ′

∂z′2
, (4)

where the dragging term, i.e., iλc ζ̇ ∂Ψ′/∂z′, accounts for the velocity of the frame. Note
that thearea accessible to the single-particle phase space is expressed as “length × angle”,
namely “meters × radiants” (see, f.i., Schrödinger–Robertson uncertainty relation). Note
that, if ζ(s) is a linear function of s, transformation (3) and its inverse reduces to Galilean
transformations. However, this does not mean that the dragging term is zero.

2.2. Reduction to Motion in the Presence of a Uniform Force Field

In order to reduce Equation (4) to the Schrödinger equation for a single particle in the
presence of a force field, we cast the wave function Ψ′(z′, s′) in the following symplectic
tomographic form:

Ψ′
(
z′, s′

)
= Φ

(
z′, s′

)
exp

{
i

λc
S
(
z′, s′

)}
, (5)

where S(z′, s′) is a real function. Then, by substituting Equation (5) into Equation (4), after
some algebra, one finally obtains the following Schrödinger equation for Φ(x′, s′), viz.,

iλc
∂Φ
∂s′

= −λ2
c

2
∂2Φ
∂z′2

− ζ̈
(
s′
)

z′ Φ (6)
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and an equation for S(z′, s′), viz.,

S
(
z′, s′

)
= −ζ̇ z′ +

1
2

∫
ζ̇2 ds′ . (7)

Note that the last term on the right-hand side of Equation (6), i.e., − ζ̈(s) z′, can be thought
of as the (dimensionless) potential energy term associated with the time-dependent uniform
force. In other words, by means of transformation (5), the noninertiality of the system can
be identified in such an energy potential term. Moreover, one can also think of Equation (6)
as given in an inertial frame describing the spatiotemporal evolution of the wave function
of a single particle in the presence of the force field F(s) = ζ̈(s) ẑ provided that the formal
substitutions z′ → z and s′ → s are performed,

iλc
∂Φ
∂s

= −λ2
c

2
∂2Φ
∂z2 − ζ̈(s) z Φ . (8)

Remarkably, according to the equivalence principle, one may also think of the above force
term as the time-dependent uniform gravitational field generated by the acceleration of
the frame or simply the uniform gravitational field generated by a suitable spatial mass
distribution. Furthermore, if the single particle is also charged, one may identify the above
force term as the one generated by an uniform electric field experienced by the quantum
particle. The main property exhibited by Equation (5) is that |Ψ′(z′, s′)|2 = |Φ(z′, s′)|2. This
implies the conservation of the probability density, namely, the conservation of the norm.

3. Gaussian Solution for an Arbitrary Acceleration

We look for a Gaussian wave packet solution to Equation (8), i.e.,

Φ(z, s) =
1

4
√

2πσ2(s)
exp

{
i

λc

[
α1(s)z2 + α2(s)z + α3(s)

]}
exp

{[
− (z− β(s))2

4σ2(s)

]}
, (9)

where σ(s), β(s), α1(s), α2(s), and α3(s) are functions of a time-like variable to be deter-
mined. To this end, we substitute the expression of Φ on the right-hand side of Equation (8).
Then, after some simple algebra, we arrive at the following set of constraints for the
above functions:

α1 =
σ̇

2 σ
, (10)

α2 = β̇− β
σ̇

σ
, (11)

α̇3 =
λ2

c β2 − 2 λ2
c σ2 − 4 α2

2 σ4

8σ4 , (12)

β̈ = −ζ̈ , (13)

σ̈ =
λ2

c
4 σ3 . (14)

Equations (10)–(14) constitute a system of coupled ordinary differential equations to be
satisfied for an arbitrary time dependence of the acceleration ζ̈ = ζ̈(s). Furthermore, note
that Equation (14) is a particular case of the well-known Ermakov–Pinney equation [27,28]
widely investigated in a number of problems concerning the time-dependent quantum
harmonic oscillator and the search for operator invariants (see, f.i., [29])

Some remarks are in order.

(i). Φ(z, s) satisfies the normalization condition, i.e.,∫
|Φ(z, s)|2 dz = 1 . (15)
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Therefore, Φ(z, s) represents the probability amplitude associated with the wave packet.
(ii). The average of the spatial coordinate z (i.e., 〈z〉, the wave packet centroid), with

respect to Φ(z, s), defined as

〈z〉 =
∫

z |Φ(z, s)|2 dz (16)

satisfies the property 〈z〉 = β(s).
(iii). The length of the wave packet, i.e., the rms of the probability density, defined as√〈

(z− 〈z〉)2
〉
=

√∫
( z− 〈z〉 )2 |Φ(z, s)|2 dz , (17)

satisfies the property
√〈

(z− 〈z〉)2
〉
= σ(s).

(iv). Note that Equation (14) can be easily integrated without assigning the explicit time
dependence of ζ̈. Furthermore, by multiplying Equation (14) by σ̇, one finds the
conserved quantity

E =
1
2

σ̇2 +
λ2

c
8σ2 (18)

(i.e., energy conservation, Ė = 0). Then, by expanding the quantity d2σ2/ds2 and by
combining the result with Equation (14), we obtain

d2σ2

ds2 = 4E , (19)

which can be immediately integrated providing

σ(s) =
√

2E s2 + 2σ0σ̇0s + σ2
0 , (20)

where we imposed the initial conditions, i.e., σ0 = σ(s = 0) and σ̇0 = σ̇(s = 0). It
is worth mentioning that the solution for σ(s) does not depend on the force term
appearing in Equation (8) and, therefore, it was integrated independently of the
remaining differential equations of the system (10)–(14). This is due to the fact that
the homogeneous force can act on the centroid of the wave packet but not on its rms.

(v). Moreover, we can formally integrate Equation (13) for β. Thus, imposing the initial
conditions, i.e., β0 = β(s = 0) and β̇0 = β̇(s = 0), we obtain the solution

β(s) = −
∫ s

0
ds′

∫ s′

0
ζ̈(s′′) ds′′ + β̇0s + β0 . (21)

The double integration of ζ̈ can readily give, viz.

β(s) = −ζ(s) + β̇0s + β0 . (22)

(vi). System of Equations (10)–(14) can be cast in such a way to express all the quantities
α1(s), α2(s), and α3(s) in terms of σ(s), σ̇(s), β(s), and β̇(s) only, i.e.,

α1 =
σ̇

2 σ
, (23)

α2 = β̇− β
σ̇

σ
, (24)

α3 =
∫ s

0

[
λ2

c β2 − 2 λ2
c σ2 − 4σ4 (β̇− β σ̇/σ

)2

8σ4

]
s=s′

ds′ + α30 , (25)
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where α30 ≡ α3(0). By substituting the solution σ(s) and the formal solutions β(s)
in Equation (11), we obtain the formal solutions α1(s), α2(s), and α3(s). In the next
section, we find solutions for the latter in the case of constant acceleration.

(vii). The quadratic phase term α1(s) z2/λc appearing in Equation (9) defines a parabolic
phase. It can be cast as z2/2λc ρ(s), where 1/ρ(s) = σ̇(s)/σ(s) is the related bending
radius; remarkably, it does not depend on the acceleration.

(viii). The linear phase term α2(s) z/λc represents a plane phase contribution and depends
on the acceleration.

(ix). The homogeneous phase term α3(s) does not contribute to bending of the phase but
depends on the acceleration.

3.1. Envelope Motion

In the previous section, we described the envelope motion. In particular, we found
the envelope equation (Equation (19)) and its solution (Equation (20)) for an arbitrary
acceleration. Since the energy constant of motion is positive, starting from the initial
conditions σ0 (which can be positive only), and σ̇0 = 0, in the configuration space, the wave
packet can spread out only, similar to the absence of forces.

Let us denote the conjugate momentum of z by p, i.e., p = ż. Then, we introduce the
momentum spread of the quantum wave packet, i.e.,

σ2
p(s) =

〈
(p− 〈p〉)2

〉
(26)

and note that 〈p〉 = 〈ż〉 = β̇. Therefore, Equation (26) can be expanded as

σ2
p(s) =

〈
p2
〉
− 〈p〉2 =

〈
p2
〉
− 〈β̇〉2 , (27)

where 〈p2〉 can be given according to the quantum formalism of Equation (8) by

〈 p̂2〉 =
∫ ∞

−∞
Φ?

(
−λ2

c
∂2

∂z2

)
Φ dz = λ2

c

∫ ∞

−∞

∣∣∣∣∂Φ
∂z

∣∣∣∣2 dz . (28)

Then, taking into account solution (9) and Equations (23) and (24), we easily obtain

〈 p̂2〉 = σ̇2 +
λ2

c
4σ2 + β̇2 , (29)

which combined with Equation (51) provides

σ2
p(s) = σ̇2 +

λ2
c

4σ2 . (30)

Consequently, by virtue of the conservation of energy, Equation (18) we finally obtain

σ2
p(s) = 2 E = const . (31)

Therefore, starting from the initial conditions σ(0) = σ0 and σ̇(0) = σ̇0 = 0 in the con-
figuration space, the wave packet spreads out (i.e., σ is a function of time), whilst in the
momentum space, it does not spread out (i.e., σp does not change in time).

3.2. Motion of Centroid

According to the Ehrenfest theorem, the wave packet centroid moves with arbitrary
acceleration and obeys the following Newton law for averaged quantities, according to
Equation (13). Such a motion equation has to be solved with respect to β(s), according to
Equation (22), once an arbitrary 1D time-dependent acceleration, i.e., −ζ̈, is assigned. This
aspect suggests the possibility to investigate the wave packet evolution by controlling a
specific acceleration of the centroid.
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4. Gaussian Solution for Constant Acceleration

In this section, we find the Gaussian solution by assuming that the wave packet
acceleration is constant, i.e.,

ζ̈ = a = const . (32)

Consequently, we have

〈 z 〉 = β(s) = −1
2

a s2 + β̇0s + β0 . (33)

According to Equations (23)–(25), the explicit solutions for α1(s), α2(s), and α3(s), respec-
tively, are straightforwardly determined, i.e.,

α1(s) =
2E s + σ0σ̇0

2
(
2E s2 + 2σ0σ̇0s + σ2

0
) , (34)

α2(s) =
(
−as + β̇0

)
+

(
1
2

a s2 − β̇0s− β0

)
2E s + σ0σ̇0

2E s2 + 2σ0σ̇0s + σ2
0

, (35)

α3(s) = − a2s3

24
− β0as

2
+

β2
0

2s
−

8a2λ2
c σ7

0 σ̇0(
λ2

c + 4σ2
0 σ̇2

0
)3 +

2aσ4
0
(
−2β̇0λ2

c + aσ3
0 σ̇0
)(

λ2
c + 4σ2

0 σ̇2
0
)2

+
2σ3

0
(
aβ̇0σ0 − aβ0σ̇0 + β̇2

0σ̇0
)

λ2
c + 4σ2

0 σ̇2
0

−
[
as2 − 2

(
β0 + β̇0s

)]2
σ3

0 (σ0 + σ̇0s)
2s
[
4σ4

0 + 8σ3
0 σ̇0s +

(
λ2

c + 4σ2
0 σ̇2

0
)
s2
] (36)

− λc

2
arctan

(
λ2

c s/σ2
0 + 4σ0σ̇0 + 4σ̇2

0 s
2λc

)
.

Note that

α30 = lim
s→0

α3(s) = −β0 β̇0 +
β2

0σ̇0

2σ0
−

8a2λ2
c σ7

0 σ̇0(
λ2

c + 4σ2
0 σ̇2

0
)3 +

2aσ4
0
(
−2λ2

c β̇0 + aσ3
0 σ̇0
)(

λ2
c + 4σ2

0 σ̇2
0
)2

+
2σ3

0
(
aβ̇0σ0 − aβ0σ̇0 + σ̇2

0
)

λ2
c + 4σ2

0 σ̇2
0

− λc

2
arctan

(
2σ0σ̇0

λc

)
.

5. Tomographic Representation of the Quantum Wave Packet
5.1. Density Matrix ρ (i.e., Density Operator ρ̂) and Wigner Function W

It is well known from quantum mechanics that the Wigner function [5] can be de-
fined as a sort of Fourier transform of the density matrix ρ(z, z′, s), where z and z′ are the
coordinates of two points of the configuration space. Therefore, ρ can be also regarded
as a two-point correlation function and its spatiotemporal evolution is governed by the
following equation [30]

iλc
∂ρ(z, z′, s)

∂s
=
(

Ĥ − Ĥ
′∗
)

ρ(z, z′, s) , (37)

where Ĥ is an arbitrary Hamiltonian operator that has been made dimensionless by di-
viding by the rest energy (i.e., mc2). Remarkably, ρ satisfies the following properties:
(i) ρ(z, z, s)) ≥ 0; (ii) ρ ∗ (z, z′, s) = ρ(z′, z, s); (iii) for a pure state, that is associated with the
wave function Ψ(z, s), ρ(z, z′, s) = Ψ(z, s)Ψ∗(z′, s); (iv)

∫
W(z, p, s) dz dp ≡ 1. The Wigner

function and its inverse are then defined respectively as follows:

W(z, p, s) =
1

2πλc

∫
ρ
(

z +
u
2

, z− u
2

, s
)

exp
[
− i

λc
p u
]

du , (38)
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and

ρ
(
z, z′, s

)
=
∫

W
(

z + z′

2
, p, s

)
exp

[
i

λc
p
(
z′ − z

)]
dp . (39)

5.2. Marginal Distribution w(Z)
For an arbitrary Hermitian operator Ô, we can introduce the characteristic function,

χ(k), given by χ(k) = 〈eikÔ〉 ≡ Tr

(
ρ̂ eikÔ

)
, where Tr stands for the trace operator. Note

that the inverse Fourier transform of χ(k), i.e.,

w(Z) =
1

2π

∫
χ(k)e+ikZdk, (40)

obeys to the following properties: (i) w(Z) = 〈Z|ρ̂|Z〉 ≥ 0; (ii)
∫

w(Z) dZ = 1, where we
took into account the properties of the diagonal element of ρ̂.

In other words, w(Z) has the features of a classical probability density. In particular, if
we define the characteristic function χ(k) to be the appropriate Fourier transform of the
Wigner function, we can write Equation (40) as

w(Z, µ, ν) =
1

2π

∫
W(z, p, s) exp{ik[Z− µ z− λc νp]} dk dz dp . (41)

In turn, Equation (41) can be cast as follows:

w(Z, µ, ν) =
∫

W(q, p)δ(Z− µ q− λcν p) dq dp. (42)

It is worth noting that this result shows that, according to the classical picture of tomogram,
the quantum tomography given in the form containing the δ-function represents still a
collection of projections and rotations based on the concept of probability density with
all of the features of a classical distribution. Furthermore, the physical meaning of such a
tomogram clearly shows that the above integration over dk is not trivial providing physical
meaning of the quantum-state in terms of Wigner function.

Then, the physical meaning of function (41) is as follows. Let the parameters µ = cos θ
and parameter ν = sin θ. This means that the parameter Z has the physical meaning of
the position measured in the reference frame in the phase space with rotated initial axes
of the position z and momentum p, i.e., Z = z cos θ + p sin θ. We take λc = 1 in (41) for
simplicity. If the parameters µ and ν are arbitrary real numbers, we can write them as
µ = S cos θ and ν = S−1 sin θ. This means that the parameter S is the scaling parameter
of position and momentum. In this picture, the parameter Z is the position measured
in the reference frame in the phase space, which was first rescaled (z became Sz and p
became S−1 p and then rotated by angle θ). It is important that the tomogram of Wigner
function, which takes negative values, is also only a nonnegative probability distribution
of the position measured in a scaled and rotated reference frame. Equation (41) defines
the Radon transform, which is essentially a one-to-one mapping between the Wigner
quasidistribution W and the marginal distribution w, in the literature usually referred
to as the tomogram. For practical purposes, it is convenient to use the tomogram w for
the description of the quantum wave packet in the space of the tomographic parameters
µ, ν, that are hereafter referred to as the tomographic space or the T -space. Obviously, all
information carried out by the Wigner function W are contained also in the tomogram w,
but the latter possesses the advantageous features of a classical probability density. Most
importantly, w is positive definite, which makes it accessible to direct measurements in a
realistic laboratory experiment.

For an arbitrary potential energy U(z, s), the tomogram w(Z, µ, ν, s) and the quasidis-
tribution W(z, p, s) are governed by transport equations that can be cast, respectively, as
follows [1–3]:
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{
∂

∂s
− µ

λc

∂

∂ν
− i

λc

[
U

((
∂

∂Z

)−1 ∂

∂µ
+ i

λ2
c ν

2
∂

∂Z
, s

)
− U

((
∂

∂Z

)−1 ∂

∂µ
− i

λ2
c ν

2
∂

∂Z
, s

)]}
w = 0 (43)

and {
∂

∂s
+ p

∂

∂z
+

i
λc

[
U
(

z + i
λc

2
∂

∂p
, s
)
− U

(
z− i

λc

2
∂

∂p
, s
)]}

W = 0 , (44)

where (∂/∂Z)−1 stands for the integral operator with respect to Z. Note that, since the
tomogram (or the marginal distribution), w is the function of the variables (Z, µ, ν, s), viz.
w = w(Z, µ.ν, s), the spatiotemporal tomographic evolution of the wave packet takes place
in the (Z, s)-space for any fixed pair of tomographic parameters (µ, ν). Furthermore, since
W = W(z, p, s), the spatiotemporal evolution of the Wigner quasidistribution takes place
in the (z, p)-space at any time s.

For the case of homogeneous force field, i.e., U(z, s) = −ζ̈(s) z (see Section 2),
Equations (43) and (44), respectively, take the particularly simple forms of the Boltzmann
transport equations for the tomogram w in the tomographic space of variables (s, ν, Z), and
for the Wigner function W in the phase space (s, z, p), respectively, viz.{

∂

∂s
− µ

λc

∂

∂ν
+ β̈(s) λc ν

∂

∂Z

}
w = 0 , (45)

where Equation (13) was used, and{
∂

∂s
+ p

∂

∂z
− β̈(s)

∂

∂p

}
W = 0 . (46)

It is easy to see that both Equations (45) and (46) possess, respectively, the following
Gaussian and bi-Gaussian solutions that can be cast:

w(Z, µ, ν, s) =
1√

2πσ2
Z(µ, ν, s)

exp

{
− (Z− Z̄)2

2 σ2
Z(µ, ν, s)

}
, (47)

W(z, p, s) = (48)
1

πλc
exp

{
− 2

λ2
c

[
σ2

p(s)(z− β(s))2 − 2σzp(s)(z− β(s))(p− β̇(s)) + σ2
z (s)(p− β̇(s))2

]}
,

where Z̄ = 〈Z〉 = µ〈z〉+ λcν〈p〉 = µβ + λcν〈β̇〉, z̄ = 〈z〉 = β(s), p̄ = 〈p〉 = β̇(s), and

σZ(µ, ν, s) =
√
〈(Z− Z̄)2〉 =

√
λ4

c ν2

4σ2(s)
+ [µσ(s) + λcνσ̇2(s)]2 , (49)

σz(s) =
√
〈(z− z̄)2〉 = σ(s) , (50)

σp(s) =
√
〈(p− p̄)2〉 =

√
σ̇2(s) +

λ2
c

4σ2(s)
, (51)

σzp(s) =
√
〈(z− z̄) (p− p̄)〉 = σ(s) σ̇(s) . (52)

Note the following:
(i) By combining Equations (50)–(52), we easily obtain the well-known Robertson–

Schrödinger uncertainty principle, i.e.,

σ2
z (s)σ

2
p(s)− σ2

zp(s) =
λ2

c
4

;
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(ii) By means of a phase-space rotation, Equation (48) can be easily cast in a “canonical”
form, in which the single Gaussian profiles in the configuration and momentum spaces do
not entangle, i.e.,

σzp = 0

(no correlation).
(iii) Equations (45) and (46) are sort of collisionless Boltzmann equations governing

the spatiotemporal evolution of the marginal distribution w(Z, µ, ν, s) and the Wigner
quasidistribution W(z, p, s), respectively. However, this analogy cannot be stressed much
more because the role played by the canonical variables (z and p) in the Boltzmann equation
differs from the one played by the tomographic parameters (µ and ν) in Equation (45). In
fact, the canonical variables are related to each other through the Hamilton equations. The
tomographic parameters, instead, are not, in principle, connected each other. Actually, each
particular connection or, eventually, each set of conditions to be satisfied fixes the type of
tomography; the related tomogram characterizes a particular tomographic description. In
the literature, several types of tomography have been introduced; among them, one is very
relevant for optical applications. It is called Fresnel tomography and can be obtained by
assuming that ν is an arbitrary variable and µ satisfies the conditions µ = 1. Alternatively,
if we adopt µ = cos ϕ and ν = sin ϕ, we adopt the so-called optical tomography.

It is worth noting that there is a connection that relates the tomogram directly to
the configuration space, namely, relates the wave function ψ to the tomogram w. Such a
mapping can be rewritten in the following form [31]:

w(Z, µ, ν, s) =
1

2πλ2
c |ν|

∣∣∣∣∫ ψ(z, s) exp
[

i
2λ2

c ν

(
µz2 − 2Zz

)]
dz
∣∣∣∣2 . (53)

The Fresnel tomogram is obtained by imposing µ = 1 in Equation (53), when it readily
reduces to

w(Z, 1, ν, s) =
1

2πλ2
c |ν|

∣∣∣∣∫ ψ(z, s) exp
[

i
2

(
z2

λ2
c ν
− 2Zz

λ2
c ν

)]
dz
∣∣∣∣2 . (54)

The evolution of the Fresnel tomographic map along the direction of propagation
of the wave packet is determined by the variation in the field along the longitudinal
coordinate z, i.e., by the evolution equation for the field.

Alternatively, by means of the transformation µ = µ(r, ϕ), ν = ν(r, ϕ) defined using

µ = r cos ϕ, ν = r sin ϕ , (55)

i.e., using cylindrical coordinates in the space of tomographic parameters (µ, ν), Equation (53)
can be cast in a more suitable form, i.e.,

w(Z, r, ϕ, s) =
1

2πλ2
c |r sin ϕ|

∣∣∣∣∫ ψ(z, s) exp
[

i
2λ2

c

(
z2

tan ϕ
− 2Zz

λ2
c r sin ϕ

)]
dz
∣∣∣∣2 . (56)

As we have discussed above, one of the tomographic parameters r, ϕ can be adopted
arbitrarily. When we conveniently set r = 1, we obtain the so-called optical tomogram, viz.,

w(Z, 1, ϕ, s) =
1

2πλ2
c | sin ϕ|

∣∣∣∣∫ ψ(z, s) exp
[

i
2λ2

c

(
z2

tan ϕ
− 2Zz

λ2
c sin ϕ

)]
dz
∣∣∣∣2 . (57)

6. Tomographic Characterization of the Wave Packet

In this section, we characterize the wave-packet spatiotemporal evolution in several
cases of time-dependent acceleration. This is performed by providing a comparison among
the probability density distributions that are described by the square modulus of the wave
function |Φ(z, s)|2, the tomogram w(Z, µ, ν, s), and the Wigner quasiprobability density
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W(z, p, s). As discussed in the preceding section, these distributions provide exactly the
same information about the physical system described by the quantum wave packet under
study although they are defined in different spaces of independent variables that also have
different physical meaning. Nevertheless, their diversity is shown to be useful to provide a
better tomographic characterization of the quantum wave packet. In particular, here, we
provide some numerical evaluations for the case of constant acceleration. Furthermore,
in Section 7, we consider two interesting cases of non-constant acceleration: the case
of a temporal burst of acceleration (Section 7.1) and the case of sinusoidal acceleration
(Section 7.2).

6.1. Configuration Space Analysis

In the Madelung representation of the wave function, the solution Φ(z, s) of Equation (8)
can be written in terms of the effective density ρ and the effective current velocity V, that are
given in terms of the modulus and the phase of the wave function Φ as ρ(z, s) ≡ |Φ(z, s)|2
and V(z, s) ≡ ∂ϕ(z, s)/∂z, respectively, where ϕ(z, s) = (λc/i) ln(Φ/|Φ|). Then, the
effective density and the velocity of the Madelung fluid associated with the wave function
of a quantum particle subjected to a time dependent, spatially uniform force, is readily
obtained using Equations (9)–(14), viz.

ρ(z, s) =
1√

2πσ2(s)
exp

{[
− [z− β(s)]2

2σ2(s)

]}
, (58)

V(z, s) =
σ̇(s)
σ(s)

[z− β(s)] + β̇(s). (59)

Figures 1 and 2 display ρ and V as functions of z and s, respectively, for the case of
constant acceleration (i.e., ζ̈ = const ≡ a). From Equation (58), we readily find that the
spatiotemporal variation of the probability density ρ(z, s) can be fully described by the
temporal evolution of its profile (i.e., σ(s) ) located at its centroid (i.e., β(s) ) that moves
according to the classical equation of motion (22). Furthermore, according to Equation (59),
the average of V(z, s) in the configuration space coincides with β̇(s), i.e., 〈V(z, s)〉 = β̇(s).
Therefore, it represents the velocity field in which the average corresponds to the most
probable trajectory of the quantum particle in the configuration space (z, s). A simple quan-
tum interpretation of the Madelung fluid asserts that, due to the quantum diffraction, the
profiles ρ(z, s) and V(z, s) disperse around the most probable spatiotemporal trajectories
or spatiotemporal lines of current of the corresponding quantum wave packet. Therefore, the
envelope of such lines generate the spatiotemporal profiles of the quantum state (ρ, V) in
the Madelung representation.
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Figure 1. The Madelung fluid effective density ρ (a) and the effective current velocity V (b), as the
functions of z and s, respectively, in the case of constant acceleration. The parameters are adopted as
a = 1.0, β0 = 0, β̇0 = 0.5, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1.
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Figure 2. The Madelung fluid effective density ρ (a) and the effective current velocity V (b), as the
functions of z and s, respectively, in the case of constant acceleration, where a = 5.0, β0 = 0, β̇0 = 0.5,
σ0 = 1.0, σ̇0 = 0, and λc ≡ 1.

6.2. Phase Space Analysis

One can represent in the phase space the quantum state of the wave packet in terms of
the Wigner quasidistribution given by Equation (48), which is the solution to Equation (46).
The spatiotemporal evolution of the latter is illustrated by Figure 3 for a constant acceleration.
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Figure 3. Wigner description of the spatiotemporal evolution of the quantum wave packet. Here,
a = 2, β0 = 0, β̇0 = 5.0, σ0 = 0.5, σ̇0 = 0, and λc ≡ 1. A sample of Wigner quasidistribution is
displayed at different positions of the (z, p)-phase space. Note that, according to Ehrenfest theorem,
the Wigner function centroid describes a phase-space parabola.

6.3. Tomographic Space

Finally, using the tomographic mapping given by Equation (53), we transform the spa-
tiotemporal evolution of the quantum wave packet described in terms of the wave function
(or, equivalently, in terms of the Wigner quasidistribution) into a suitable representation
via its tomogram. As an example, our Figures 4–6 display the tomographic spatiotemporal
evolution of the quantum wave packet subjected to a constant acceleration, represented in
the space of tomographic variables (Z, ϕ, s).

Figure 4. Wigner description of the spatiotemporal evolution of the quantum wave packet. Here,
a = 2, β0 = 0, β̇0 = 5.0, σ0 = 0.5, σ̇0 = 0, and λc ≡ 1. A sample of the phase-space density
plot associated with the Wigner quasidistribution is displayed at different positions of the (z, p)-
phase space. Note that, according to the Ehrenfest theorem, the wave packet centroid describes a
phase-space parabola.
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Figure 5. Density plot representation of tomogram as a function of Z and s for different angles of
ϕ. Here, a = 0.5, β0 = 0, β̇0 = 2.0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. A sample of parabolas at different
angles is displayed, except for ϕ = π/2 and ϕ = 3π/2 when they reduce to straight lines. Each
tomogram undergoes a progressive quantum spreading, except for ϕ = π/2 and ϕ = 3π/2, when it
remains fixed. According to Figure 7, the Z-axis coincides with λż and the tomogram’s spreading
reduces to the one of momentum space, i.e., of σp. Consequently, this quantity is conserved during
the evolution of the wavepacket.
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Figure 6. Density plot representation of tomogram as a function of Z and s for different angles ϕ.
Here, a = 2.0, β0 = 0, β̇0 = 2.0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. A sample of parabolas at different
angles is displayed, except for the cases ϕ = π/2 and ϕ = 3π/2 when they reduce to straight lines.
Each tomogram undergoes a progressive quantum spreading, except for ϕ = π/2 and ϕ = 3π/2,
where it remains fixed. According to Figure 7, the Z-axis coincides with λż and the tomogram’s
spreading reduces to the one of momentum space, i.e., of σp. Consequently, this quantity is conserved
during the evolution of the wavepacket.

The geometric construction of a symplectic tomogram for the case of constant acceler-
ation is shown in Figure 7. The arrowed blue line is the trajectory of the centroid in the
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phase space (z, λc ż) calculated for constant a = 0.5. Obviously, in the presence of a constant
acceleration, the centroid of the wavepacket (〈z〉, 〈λc ż〉) = (β, λc β̇) executes a parabolic
motion. According to the Ehrenfest theorem, the latter represents the Newtonian aspect of
such a motion, i.e., it coincides with the most probable trajectory of the quantum particle.
Starting with the initial velocity ż0 = 4.0, the centroid reaches the vertex of the parabola
with a zero velocity and subsequently reverses its motion, propagating in the negative
direction of the z-axis. The quantum aspect of such a process lies in the possibility that the
particle might also follow (albeit, with smaller probabilities) all other possible orbits that
are dispersed around the centroid trajectory.

Figure 7. Geometric construction of the tomographic map.

Let us consider the generic particle position P, at time s, along its trajectory in the
phase space. Let us also denote by

−→
OP the position vector of the particle (with O being the

origin of the phase-space reference frame). The particle motion can be projected along the
direction of the tomographic Z-axis, which is inclined at the angle ϕ relative to the z-axis.
The tomographic projection Zp can be expressed in terms of the tomographic angle ϕ and
the current position of the particle in the phase space, employing the optical tomography
transformation µ = cos ϕ, ν = sin ϕ and setting Zp = zµ + λcνp, viz.

Zp = zp cos ϕ + λc żp sin ϕ, (60)

yielding the tomographic map of the particle at position P (Figures 8–11), Equation (41), in
the form:

wp(Z, ϕ, s) =
1√

2πσ2
Z(ϕ, s)

exp

{
−
(
Z− Zp

)2

2 σ2
Z(ϕ, s)

}
. (61)
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Figure 8. Density plot representation of tomogram as a function of Z and s for different angles ϕ.
Here, we chose a temporal acceleration burst with Gaussian profile, i.e., a(s) = a0 exp

(
−s2/τ2)

(impulsive acceleration), with a0 = 5 and τ = 5. β0 = 0, β̇0 = 2.0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. Note
that the tomograms exhibit a bending due to a non-constant acceleration. As in the case of constant
acceleration, the tomograms corresponding to ϕ = π/2 and ϕ = 3π/2 exhibit fixed spreading
whilst the ones corresponding to all the other values of ϕ spread out with a progressive increasing of
the rms.
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Figure 9. Density plot representation of tomogram as a function of Z and s for different angles ϕ.
Here, we chose a non-constant acceleration with Gaussian profile, i.e., a(s) = a0 exp

(
−s2/τ2), with

a0 = 10 and τ = 5. β0 = 0, β̇0 = 2.0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. Note that the tomograms exhibit
bending due to non-constant acceleration. As in the case of constant acceleration, the tomograms
corresponding to ϕ = π/2 and ϕ = 3π/2 exhibit fixed spreading whilst the ones corresponding to
all the other values of ϕ spread out with a progressive increasing of the rms.
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Figure 10. Density plot representation of tomogram as a function of Z and s for different angles
ϕ. Here, we chose a non-constant acceleration with sinusoidal profile, i.e., a(t) = a0 sin(ωs), with
a0 = 1 and ω = 1. β0 = 0, β̇0 = 0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. Note that the tomogram shapes
exhibit periodic bending that is related to the temporal periodic character of the acceleration Similar
to the other cases previously discussed, all of the tomograms exhibit a progressively increasing
quantum spreading except the ones related to the angles ϕ = π/2 and ϕ = 3π/2, which exhibit
fixed spreading.
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Figure 11. Density plot representation of tomogram as a function of Z and s for different angles
ϕ. Here, we chose a non-constant acceleration with sinusoidal profile, i.e., a(t) = a0 sin(ωs), with
a0 = 2 and ω = 1. β0 = 0, β̇0 = 0, σ0 = 1.0, σ̇0 = 0, and λc ≡ 1. Note that the tomogram
shapes exhibit periodic bending that is related to the temporal periodic character of the acceleration.
Similar to the other cases previously discussed, all of the tomograms exhibit progressively increasing
quantum spreading except the ones related to the angles ϕ = π/2 and ϕ = 3π/2, which exhibit
fixed spreading.
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In order to obtain a full tomographic representation of the wave packet at the instant
s, we have, in principle, to scan all of the orientations of the tomographic axis with respect
to the z-axis, i.e., we have to continuously change the tomographic angle ϕ. In this regard,
two special cases are noteworthy: ϕ = 0 and ϕ = π/2. The former is associated with
the tomographic map that becomes the spatial distribution of the probability of the wave
packet. Therefore, we have

w(Z, r = 1, ϕ = 0, s) =
1√

2πσZ(ϕ = 0, s)
exp

{
− [Z− β(s)]2

2σZ(ϕ = 0, s)2

}
, (62)

where σZ(ϕ = 0, s) = σ(s) is the width of the wave packet at time s. For ϕ = π/2, the
tomographic map becomes the distribution of the probability of the wave packet in the
momentum space, namely:

w(Z, r = 1, ϕ = π/2, s) =
1√

2πσZ(ϕ = π/2, s)
exp

{
− [Z− β(s)]2

2σZ(ϕ = π/2, s)2

}
, (63)

where σZ(ϕ = 1/2, s) = σp(s) = const. is the corresponding width.

7. Gaussian Tomographic Description for Non-Constant Acceleration

In this section, we consider the case of non-constant acceleration. In such a case, the
spatiotemporal plots of the centroid motion in (z, s) configuration space and the related
plots in both phase space (z, p) and tomographic space (Z, s) no longer have a parabolic
shape because the non-constancy of the acceleration affects the bending of these plots.
Below, in Sections 7.1 and 7.2, we discuss two informative examples of Gaussian temporal
burst and harmonic temporal oscillations of acceleration.

7.1. Gaussian Temporal Burst of Acceleration

As the first example, we consider a time-dependent acceleration with a Gaussian
impulsive character (Gaussian temporal burst), i.e.,:

a(s) = a0 exp
(
− s2

τ2

)
, (64)

where a0 is a constant. According to Section 3, in particular Equation (22), and Section 5, it
is easy to determine the quantity β(s), i.e.,

β0 −
a0τ2

2
+ β̇0s +

1
2

a0 exp
(
− s2

τ2

)
τ2 +

1
2
√

πa0τsEr f
( s

τ

)
, (65)

and the quantity σ(s):

σ(s) = σ0

√
1 +

2σ̇0s
σ0

+
(
σ̇2

0 + λ2
c /4σ2

o
) s2

σ2
0

. (66)

Then, the tomogram is straightforwardly obtained:

w(Z, s, ϕ) =
1

2πσZ(s, ϕ)2 exp

{
−
[
Z−

(
cos ϕβ(s) + sin ϕβ̇(t)

)]2
2σZ(s, ϕ)2

}
, (67)

where

σZ(s, ϕ) =

√
λ4

c sin ϕ2

4σ(s)2 + [cos ϕ σ(s) + λc sin ϕ σ̇(s)]2 . (68)
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7.2. Sinusoidal Acceleration

The second example is given by the periodic time-variation of the acceleration of
sinusoidal type:

a(s) = a0 sin ωs (69)

The function β(s) is determined in a way similar to that used in the preceding section, viz.

β(s) = β0 +
(

β̇0 +
a0

ω

)
s− a0

ω2 sin ωs, (70)

while the expression for σ(s), σZ(s, ϕ), and the tomogram, i.e., w(Z, s, ϕ), are formally
identical to those in the previous case (see Equations (66) and (67), respectively). How-
ever, the different explicit time-dependencies of β make the tomograms in the two cases
very different.

Before ending this section, it would be instructive to display for the readers how
the quantum particle spot size (i.e., the density plot of the Wigner quasidistribution in
phase space) looks similar to that in the presence of acceleration, as given by Equation (69).
Figure 12 illustrates how both the particle spot size and the centroid move in phase space.

Figure 12. Density plot representation of the Wigner quasidistribution of the accelerating wavepacket
experiencing a sinusoidal acceleration with parameters ω = 0.2 and a = 2. The Wigner quasidis-
tribution is calculated at time interval ∆s = 0.125. The centroid of the distribution executes an
elliptical trajectory in phase plane (see the red arrowed curve). The centroid of the Wigner qua-
sidistribution at the initial time s = 0 is located at z = p = 0 of the phase plane. The modification
underwent by Wigner quasidistribution with increasing time which results in significant spreading
of the distribution in the configuration space (z-direction) is noticeable.

8. Conclusions and Remarks

In this paper, we reviewed different representations of a quantum wave packet in
an accelerated frame. We used the model equivalent to the one of the quantum particle
moving under the action of a time-dependent force. Examples of such motion are the ones
of a charge in the time-varying uniform electric field or the motion of a mass in a uniform
time-varying gravitational field.

The representations we used correspond to symplectic tomographic probability dis-
tributions identified with the quantum particle states as well as Fresnel and optical tomo-
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graphic probability distributions related to the Wigner–Weyl phase-space representation
by integral Radon transform.

We also discussed the Madelung representation of the pure state with the wave
function considering the Gaussian form of wave functions for all of the representations
under consideration. The explicit form of the Gaussian solutions of the Schrödinger
equation rewritten in the tomographic form was obtained for a particular time dependence
of the acceleration, namely, the case of constant acceleration, sinusoidal time dependence
of acceleration, and the temporal burst form of acceleration.

The plots of quantum tomograms showing the centroid motion and details of packet
extensions along the centroid motion were constructed for the representations of Gaussian
quantum states used.

An important lesson demonstrated in this study is the fact that the quantum state can
be identified with fair probability distributions containing complete information on the
state, which is sufficient for obtaining all other functions identified with the state similar to,
e.g., the Wigner function or the density matrix in the position representation.

New information available, in view of this probability representation of quantum
states, is specific entropic-information relations for quantum tomograms characterizing
the properties of quantum correlations in the system states, which are easy to write for
probability distributions but which are not obvious in other representations, employing,
e.g., the Wigner function. The study of this problem is already under way and it will be
discussed in a future work.

Remarkably, the approach presented provides a very fruitful representation of both
the quantum and quantum-like states in terms of a probability distribution with classical
features, i.e., the marginal distribution. The latter differs substancially from the one pro-
vided by the Wigner quasidistribution, which is non-positive definite or from the quantum
representation in terms of the probability amplitude (wave function for pure states, or
density matrix, for mixed states). In particular, in quantum-like domain, within the context
of EM radiation beams or charged-particle beams, both in paraxial approximation, the
tomographic approach to beam transport and dynamics would be very helpful.

One of the principal aspects presented in this manuscript is the possibility to describe
quantum phenomena in terms of a probability description with classical probability fea-
tures, as provided by the tomogram. This way, the quantum states are not represented in
terms of the wave function (i.e., the probability amplitude). Since the Radon transform is
related to the wave function by means of a one-to-one mapping, the tomogram contains the
same information provided by the wave function. This suggests another way to formulate
quantum mechanics, based on a classical-like probability distribution, where the phase
plays the role of hidden variable. Another important aspect is to provide a tomographic
description in an accelerated system. We extensively presented examples to illustrate the
tomograms embedded in a gravitational field that is originated in an accelerated frame.

Due to the richness of the material already presented in this manuscript, we decided
not to include some other materials in progress concerning the entanglement studies and
tomographic entropy. In a forthcoming investigation, we will dedicate a complete study to
these subjects.
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