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The growth of transportation networks and their increasing interconnections, although positive, has the
downside effect of an increasing complexity which make them difficult to use, to assess, and limits their
efficiency. On average in the UK, 23% of travel time is lost in connections for trips with more than one mode,
and the lack of synchronization decreases very slowly with population size. This lack of synchronization
between modes induces differences between the theoretical quickest trip and the ‘time-respecting’ path,
which takes into account waiting times at interconnection nodes. We analyse here the statistics of these
paths on the multilayer, temporal network of the entire, multimodal british public transportation system.
We propose a statistical decomposition - the ‘anatomy’ - of trips in urban areas, in terms of riding, waiting
and walking times, and which shows how the temporal structure of trips varies with distance and allows us to
compare different cities. Weaknesses in systems can be either insufficient transportation speed or service
frequency, but the key parameter controlling their global efficiency is the total number of stop events per
hour for all modes. This analysis suggests the need for better optimization strategies, adapted to short, long
unimodal or multimodal trips.

Ithough the coupling between different transportation networks is fundamental’, most of the studies on

Public Transport Networks have been performed considering only one single transportation mode:

private cars®, taxis’®, Subway’"?, Train'**, Bus and Trams'®*'"**, and at a worldwide scale, airline
networks (see** and references therein). However, most transportation systems are coupled to each other and
as it was recently shown in*®, interconnections can have dramatic consequences on the behavior of the whole
system. This finding triggered a wealth of studies** ' on multilayer networks — also coined multiplex networks —
providing a new paradigm for studying these coupled systems. Public Transport Networks belong to this class and
provides a paradigmatically example of spatial®, temporal®’, and multilayer Network™ where each layer corre-
sponds to a single transportation mode.

A few studies only considered many modes merged in an unique network®, but this aggregation might hide
important structural features due to the intrinsical multilayer nature of the network™. In particular, in the case of
urban transport, not considering the connection times can lead to unprecise estimates for the network’s nav-
igability®*. We note also that interchanges are not symmetrical: rail-to-bus and bus-to-rail waiting time are
different and are independent from the actual traffic volume® (at least as long as capacity limits are not taken
into account™). In addition, the existence of alternative trajectories on differerent transportation modes enhance
the system resilience.

Inter- and intra-modal connections can be intensively optimized just through modifications and offsetting of
the existing timetables, allowing to reduce waiting times at transfer points of a city like Washington D.C. of about
26%*. A better knowledge of the structure and layout of the Public Transport System would impact a wide range
of areas. Indeed, mode choice is one of the fundamental steps in transportation forecasting® and has represented
in the past a perfect experimental field for the study of individual choice behavior*. Developments in the
availability of urban public transport has the potential to improve significantly the air quality in metropolitan
areas*' and directly influences the social geography of a city*>. However, multi-modality not only means the
existence of more and better alternative options, but having to deal with all these alternatives at the same time.
From the users point of view, the difficulty of dealing with the enormous amount of information needed for
describing and taking advantage of the public transport of a city is such that it is no more managed by personal
experience and habits, but by services offered by major information technology companies. From the transport
agencies point of view, the managing task becomes significantly harder because: i) different modes are run by
separate agencies and both data handling and optimization tasks have to cross high organizational barriers; ii) it is
not trivial to identify aspects of the system that are relevant for service optimization.
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Therefore, in order to help decision makers, new quantitative
approaches are needed to highlight the limits of the system and to
assess the impact of new infrastructural development. Our capacity
to understand transfer behavior and to evaluate transfer improve-
ments are indeed limited by the lack of proper analytical tools, as we
have to take into account many important aspects simultaneously*.
If we want the public transit system to become a viable alternative to
automobile, it is crucial to design cost-competitive and reliable public
transportation systems that guarantees both short travel times and a
travel experience comparable to those of car trips*.

Another important difficulty in the study of transportation sys-
tems is the data availability. In particular, it is usually very difficult to
obtain traffic related data, and we take advantage here of the avail-
ability of another type of data which will enable us to assess the
structural efficiency of the system. This open-data information con-
sists in the set of timetables for all transportation modes in the United
Kingdom, except for Northern Ireland (see Methods and the
Supplementary Information for more details). We will focus on the
urban scale and identify key quantities characterizing the efficiency
of the system, providing directions to improve urban Public
Transport Systems. More precisely, our goal is to determine:

e how far is an urban, multimodal public transportation system
from optimum,
how the temporal aspects impact the structure of quickest paths,
how important are the multilayer aspects,
the key differences between transportation systems in different
cities.

Our study is based on the statistical analysis of the quickest paths
on the multimodal transportation networks. We assume that origins
and destinations are uniformly and independently distributed on the
location served by the transport system and we do not take into
account access time at the departure location. This uniform demand
does not take into account how flows are actually allocated over the
network (a piece of information that is usually not directly available)
but allows us to focus directly on the structural features of the net-
work, and not on its actual use and on the qualities perceived by the
average user. In this sense, the weaknesses and optimization that we
discuss here, concern an ideal optimum where all possible routes
with all possible origins and destinations would be improved. The
methodology developped here can however be very easily adapted to
the case where origin-destination matrices are known.

Results
We first define different types of paths in these systems. In particular,
in order to understand how far are urban transportation systems
from an ideal optimum, we compare the quickest time-respecting
paths with the minimal path. The minimal path is the quickest one,
computed by using the largest speed observed on each link and by
neglecting waiting times, and represents an unreachable condition,
equivalent to having all the existing transportation systems perfectly
synchronized for the specific trip under consideration. In contrast,
the time-respecting path is the quickest path but where we use the
real timetable and where walking and waiting times are taken into
account. The time-respecting path is by definition longer than the
minimal path and as we can see on an example shown in figure 1, they
can be extremely different from each other. In addition, real trips are
bound to the transportation system and do not follow a straight line
of euclidean distance d(a, b) from the origin a to the destination b.
The topographical and infrastructural constraints induce differences
of the transportation network topology between cities. A con-
sequence of this is that the length € (a, b) of the quickest (time-
respecting and minimal) trips on the network might be very different
from d(a, b), and this difference can be measured by the detour
r(a, b)= fa, b)

d(a, b)

— 1 that can be interpreted as a cost-benefit ratio*.
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Figure 1| Example of the difference between a time-respecting path
(solid line) and a minimal path (dashed line). Here, we show a trip from
Twickenham to Camden Town in London, and the minimal path would
use only buses (marked in Blue). The optimal time-respecting path in this
case is remarkably multi-modal: the bus layer is still used for the final
segment, which is the same as for the minimal path, while the Rail layer
(Red) and then the Metro layer (Green) are used for approaching the city
center. [Figure created with Basemap Matplotlib Toolkit for Python using
map tiles from openstreetmap.org (OpenStreetMap contributors*®,
licensed under Creative Commons BY-SA 2.0 licence. To view a copy of
this license, visit creativecommons.org/licenses/by-sa/2.0/).]

In order to compare the availability of routes in different networks,
we use the quantity R = maxy~; r(d) for a fixed d subset (see
Supplementary Information). The values of R in different cities are
strongly anti-correlated (—0.95) with the static network normalized
cyclomatic number* My = (E — N — 1)/N, reflecting the fact that
the more loops are present in the network and the less the detour. In
the following, we would like to exclude this topological influence and
in order to compare various cities, we will use as a spatial metric the
effective length € on the network.

Only large cities can afford significant rail-based elements (trains,
metro, tram) in their public transport systems and therefore can have
a high propensity to interchange*’. Other transportation modes such
as ferries and coaches, play a secondary role at an urban level (and air
transportation is naturally out of the game). Coaches emerge for
minimal paths in certain cities, but their low frequencies are com-
pletely excluding them from time-respecting paths. Other forms of
road transportation are usually more accessible and, for this reason,
bus is the dominant layer for short distances. If cities have enough
suitable street space dedicated to Bus and Bus Rapid Transit systems,
they are even able to outperform metro and rail systems*.

Each transportation mode is characterized by its cruise speed,
departure frequencies and accessibility. A consequence of these
peculiarities is that, depending on the length of the trip, the public
transport system offers different optimal time-respecting solu-
tions. At the national scale (Figure 2, Left), different strategies
emerge at different spatial scales. We will not consider very short
trips for which the origin and destination are closer than 1 km,
because distances so short could be easily covered by walking and
usually do not rely on transportation systems. Above this scale,
the vast majority of short trips are made within the bus layer, and
the rail system becomes dominant for inter-urban trips of length
larger than approximately 40 kms. Air transportation emerges
naturally for longer distances above 200 kms, and its importance
increases significantly for distances of order 400 kms (e.g.
Glasgow-Birmingham) and d =~ 500 kms (e.g. Glasgow-London
Luton), and becomes finally dominant for trips longer than
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Figure 2| (Left) Fraction of distance covered by the different modes for time-respecting paths through the whole Great Britain. Short trips are mostly
done by bus. Rail becomes then dominant at 40 kms and air travel is dominant for trips of distance of order 700 kms. Other transportation modes
play a secondary role, with peaks at 22 kms for the Metro, 40 kms for Ferries and 70 kms for Coaches (which are increasingly used for long distances as a
mean to connect to airports). (Right) The number of modes A, used in time-respecting paths through urban areas versus the trip length €. Larger cities
(London, Manchester, Birmingham) show a particularly marked trend towards multi-modality with an average of more than 2 modes for trips

longer than 20 kms.

700 kms, connecting for example the southern part of England
with the northern part of Scotland.

At the urban level, transportation modes that capture a significant
fraction of the time-respecting paths are Bus, Railways and, when
available, the Metro and Tramway layer (Figure 3). The bus stops
represent the vast majority of the possible origins and destinations
and are almost always used in our paths. This bus layer contains in
general the largest part of both minimal and time-respecting paths.
The use of the fast transportation modes emerges progressively with
increasing € (Figure 2, right), with a higher rate in larger cities such as
London, Manchester and Birmingham, where the Metro-Tramway
systems are present. As this transportation mode has a high fre-
quency and a fast speed, and is not affected by congestion, it is
naturally used as a quickest alternative to buses across city centres.
Nevertheless, due to its limited accessibility, the largest fraction of
short trips are done in the bus layer, also in cities where the system
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has an extended offer of metro lines (Figure 3). The metro layer is in
competition with the rail layer, which has higher speed but lower
departure frequencies. In cities with high multi-modality (i.e. high
average number of modes used per trip), the rail network attracts the
largest part of the mobility at distances much lower than at the
national level. Indeed, for London (Figure 3, left) and Manchester
(Figure 3, right), the length done by train overcomes the one by buses
at £ =~ 20 and € = 30 kms.

Comparing minimal with time-respecting paths. We first analyze
the multi-modal aspect of trips, quantified by the numbers A,
which represent the number of different modes for the minimal
(m) or time-respecting (t) paths. For some cities, the time-
respecting paths display a larger A, than for minimal paths, while
for others, it is the opposite (Fig. 4a-b). The relative loss in multi-
modality due to synchronization can be measured by
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Figure 3 | Fraction of distance covered with different modes for time-respecting paths through London (Left) and Manchester (Right). The bus
system is covering most of the short trips, whereas the advantage of using the Metro and Rail systems emerges progressively for longer distances. Metro
networks were naturally developed for answering urban transportation demand and we see that its use competes with the rail system for distances

shorter than 15 kms (for larger distances, rail prevails).
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The larger A and the larger the difference between minimal and time-
respecting paths. We see in Fig. 4c that A is positive when the average
speed of the alternative (ie. non-bus) layers V,,, is sensibly larger
(>2.5 times) than the average speed Vj, of the bus layer (see
Supplementary Information for more details). The quicker the rail
and metro layers are, the more multimodal the minimal path would
tend to be. Indeed, for minimal path, the use of fast non-bus layers is
only limited by their accessibility, i.e. by the extra-time needed for
reaching the inter-layer connection point. For time-respecting paths,
multi-modality also implies the importance of synchronization, and
it appears that in cities where metro or rail are sensibly faster, their
frequency is also lower (Fig. 4d). In other words, in cities where the
fast layers are extremely advantageous in term of speed, the system
suffers from synchronization problems. This empirical finding
suggests the existence of a structural limit to transportation
systems’ possibilities that policy makers should take into account
in the search of a efficient optimization strategy.

As a consequence, if the rail and metro layers are relatively quick,
they are used for minimal paths while additional waiting times due to
mode change can be too costly for the time-respecting paths.
On the other hand, in cities where the bus layer is fast but with a
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frequency as low as for faster layers (eg. London, Liverpool, Cardiff),
minimal paths tend to use buses only, while the time-respecting
paths face the synchronization limits of the bus layer itself (see for
example figure 1). More generally, the factors responsible for the
time difference between time-respecting and minimal paths are: (i)
waiting times (both intra- and inter-layer); (ii) the fact that the
optimal riding times used to compute minimal paths may differ from
the riding times at a particular hour; (iii) a long walking time for
connecting different modes in a wide stop area. In order to quantify
the differences between minimal and time-respecting paths, we
introduce the synchronization inefficiency d, computed as the ratio
of time-respecting travel time 7, and minimal travel time ,,,

T
o=——1
T

2)

For all cities, J reaches its maximum 6,,,, for short trips, where
waiting times are long compared to the travel time, and then
decreases with the distance £ according to the following function,
valid for all cities (see Fig. 5, left)

5mux - 6min

%

where v = 0.5. The collapse observed for 6 for all cities suggests that
there is an underlying process describing the accumulation of waiting
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Figure 4 | Time-respecting paths may be more multi-modal than minimal paths. As shown with the average number of modes A, it indeed is the case in
London (a), while in Birmingham (b) this happens only for extremely short trips. (c) The loss in multi-modality, due to synchronization in time-

respecting path, is related to this speed advantage V,,;/V}, from using non-bus layers instead of the bus layer: when the rail or metro layer is fast, it also
usually suffers from synchronization problems. (d) The speed advantage V,,,/ V} is limited by the frequency advantage f,,/f: even if the Rail layer has faster
cruise speeds, its lower frequency implies larger waiting times. We find that for average values computed for different cites, these two quantities are anti-
correlated. This relationship suggests that the competition between speed and frequencies is possibly structural and intrinsic to transportation networks.

In (¢) and (d) the circle’s areas are proportional to the city’s population.
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Figure 5| (Left) Dependance of the synchronization inefficiency 6 on the path length €. For all cities, we observe the same function Eq. (3), where the
specificity of each city is seen in the values of the peak 9,,,,, and minimal 6,,;,. (Right) Overlap g between minimal and time-respecting paths
versus path length €. The overlap decreases exponentially with € to an asymptotic non-zero value g, (eq. (4)). The values of g,,,;, and the characteristic

length €, encode the differences between the cities transportation networks.

and walking times along time-respecting paths. The specifics of the
different cities appear in the system efficiency in both the worst J,,,,
and best J,,;, limits. We note here that this Eq. 3 is consistent with
a simple argument based on the central limit theorem leading to
v =1/2.

Time-respecting paths are however not completely different from
the minimal ones and we can measure the similarity of two paths by
using their spatial overlap g, defined as the fraction of length of edges
they have in common. The overlap is g = 1 for extremely short trips
(if a single edge is used, waiting times are not playing any role), and
then decreases with € for all cities as (Fig. 5, right)

4= Qin+ (1= Guuin)e =/ (4)

where €, is the scale parameter for each city. The function g(€)
converges to a limiting value g,,;, in the range [0.15, 0.33]. This
minimal overlap is due to the limited number of good options avail-
able, especially close to the origin and the destination. The con-
straints due to the local connectivity and optimal cruise speeds
make the minimal path the best option also when time causality
starts playing a role. The exponential decay of the overlap with €
suggests that there is a typical ‘branching’ length €, for each city,
which sets the probability of having alternate routes. In other words,
the probability for the time-respecting path to deviate at each d¢
from the minimal path is proportional to £ - L

Anatomy of a trip. We have seen so far that the length ¢ governs the
behavior of most quantities characterizing a trip. In order to identify
the role of the temporal and multilayer aspects of the network in the
structure of the time-respecting paths, we detail how the total travel
time can be decomposed into different components: the riding time
(with any mode), and waiting and walking times at interchanges. In
addition, in order to take into account the multi-modal aspect of the
network, we discriminate riding times per layer and we separate
intra-layer from inter-layer waiting time. This wide spectrum of
temporal quantities forms what we call the ‘anatomy’ of a trip, and
is represented in Figure 6 a—c for different cities. This figure allows
for a quick understanding of how the temporal structure of trips
varies with distance.

We first note that the travel speed grows with € (see
Supplementary Information) which implies that travel time for
time-respecting paths grows sub-linearly with the distance covered.
Another important contribution in trips is due to walking between

modes in the multilayer network, which represents a fixed cost of
multi-modality (in addition to inter-layer waiting times). We nat-
urally expect walking times to grow with € as the number A, of layers
used in time-respecting paths (see Supplementary Information for
more details). Finally, waiting times are one of the two main con-
tributions to the synchronization inefficiency J, the other being the
difference between optimal and actual edges’ riding times. These
times will play a relatively minor role for long distances, as their
relative importance compared to riding times decreases.

The analysis of these anatomy plots shows the following. At short
distance, in all cities but London, most of the travel time is spent in
intra-layer waiting time. Most trips start at the bus layer, and the first
connections within this layer are those that make the system extre-
mely inefficient. We therefore define for each city a distance €,, such
that for trips shorter than €,, the waiting time represents more than
50% of the travel time. For 0 < ¢ < ¢,,, the lack of synchronization is
dominant and the temporal network is far from being optimal. This
distance interval corresponds to values of £ where the overlap g is
larger than 50% (Fig. 6d). For short trips, we have few alternative
paths and cannot avoid waiting times due to synchronization pro-
blems. Time-respecting paths are thus very similar to minimal paths,
and (large) waiting times are directly added to optimal riding times.

For long distances, we already saw that the multi-modal nature of
the systems becomes important. The use of fast transportation modes
becomes advantageous only when the difference in speed compen-
sates for the time necessary to reach the rail or metro network. In
order to measure this effect, we define the distance €,,;, such that for
€ > ¢, the largest part of the trip is done with a transportation mode
different from the bus. Trips with €,, < € < £,,;, are then essentially
made within the bus layer, and most of the travel time is due to actual
transfer (walking or riding). We observe for large cities like London,
Manchester, or Birmingham, a finite value of €,,, indicating that at a
certain point the bus layer loses its dominant role. This is in contrast
with smaller cities where €, is larger than the city radius, implying
that fast layers always play a marginal role in these cases.

If we take into account time respecting paths with at least one
inter-layer connections only, we find that on average for all cities
considered in this work, the time spent in connections (walking and
inter-layer waiting times) represents a significant fraction (23 * 6%,
see Supplementary Information) of the total travel time. The differ-
ent regimes identified in figure 6d suggest that different strategies
might have the better impact for each city for optimizing the
transport time of trips of specific distances. Short trips are indeed

| 4:6911 | DOI: 10.1038/srep06911

5



BBl Walking
[ Inter-Layer Wait
Intra-Layer Wait
[T Metro Ride

E=Rail Ride
I Bus Ride

120

100

80}

min)

601

Tt

(a) 40t

20}

BEE Walking

I Inter-Layer Wait|
Intra-Layer Wait
[[TTIMetro Ride
=] Rail Ride

I Bus Ride

120

100

801

60

7¢ (min

(c) 401

201

10 20
¢ (km)

BBl Walking
I nter-Layer Wait
Intra-Layer Wait
([T Metro Ride

E=JRail Ride
I Bus Ride

(d)

Birmingham
Manchester

Greater London

0 10
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times are mostly intra-layer waiting times due to bus-bus interchanges. If the city network is particularly multi-modal, inter-layer waiting times and
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that when the regime (i) occurs, the overlap is always large and waiting times are then directly added to the minimal paths riding times.

dominated by intra-layer waiting times, while long trips by riding
times. In the cases where the multimodality becomes dominant,
inter-layer waiting and walking times, together with the fast layers’
cruise speed, become instead the most relevant quantities for the
optimization task.

The role of the total number of stop events. An interesting question
concerns the characterization of a multilayer, temporal network such
as the transportation systems that we consider here. Obviously, the
number of modes and their frequency play important roles in their
efficiency. A simple, natural quantity is then given by the average
number of stop events per unit time

cha

Q==5

(5)

where C, is the number of stop events in the layer o and At the
duration of the time interval considered in the analysis of the tem-
poral network (see Methods). In this study, we considered a starting
time of 8:00 am (monday) and a duration At = 16 h which covers a
whole day of mobility. The quantity Q represents a global measure of
the transportation service offered in a city, of the infrastructural cost

of the transport network, and is indeed proportional to the cities
population (Fig. 7a). In order to improve the transportation system
and to serve more people, one may add new lines, new connections,
increase the frequency of a line, or even introduce a new transporta-
tion mode in the network, and the quantity Q integrates all these
modifications.

As we will see, it is actually remarkable and unexpected that a
single network indicator such as Q is enough to explain the behavior
of many key quantities characterizing the public transport network
of different cities. For example, the interplay between temporal and
multilayer aspect of the public transport network is highlighted in
Fig. 7b, showing that the fraction 4, of time-respecting paths using
more than one mode’ is larger for cities with a larger number of stop
events. If we assume that the average number of possible alternative
to bus layer path (which is always an available option) is a;€, the
expected fraction of unimodal trips is ®(Q)=(14a;Q)"". The
average interdependency of the time-respecting paths is then 1 — w

= a;Q
;»tz
144a;Q

(6)
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(R? = 0.88). (b) The time-respecting paths interdependency grows as Eq. 6 with a; =1.65107> % (R = 0.80), consistent with the hypothesis that the
stops

number of possible alternative to exclusive bus layer path is proportional to Q. (c) The average travel velocity is consistent with Eq. (7) characterized by the
parameter k = 0.80 (R> = 0.87). (d) The synchronization inefficiency ¢ decreases Q as a power law 6 o< Q %, where u = 0.3 = 0.1 (R* = 0.91): time-
respecting travel times in larger cities with larger Q are closer to the infrastructural limit of minimal travel times.

Using this form to fit the data shown in Fig. 7b, we obtain
a;=1.65 10> hour/stops.

Similarly, Q is related to the cruise speed V,yise = €/Tuise (Where
Teruise 1S the time spent in a moving vehicle) and therefore also to the
time respecting paths travel speed Vi,,,.; = €/7, (Fig. 7c). Indeed, we
can assume that the fraction @ of unimodal paths is traveled at the
average bus layer speed V,, while the fraction 1 —  of multi-modal
Ll* ﬁ/" where k = £,5/€
represents the ratio of lengths on the non-bus and bus layers (V,, is
the average speed for the fast layers — see Supplementary
Information). The average travel speed Vi 4,0 grows then with Q as

(7)

paths is traveled at a speed V1=

Tcruise

Vtmvel,th = (w(Q) Vb + (1 - w(Q)) Vmulti)

Using the value for a; obtained above, we minimize the variance
between the estimated and empirical values of Vi and we find
the optimal value: k = 0.8 (see Fig. 7c). This result shows that for all
cities considered here (and under uniform demand), approximately
45% of time-respecting paths are on non-bus transportation modes.

In addition, the quantity Q also characterizes the efficiency of a
public transportation network in terms of synchronization. Indeed,
we observe that the average synchronization inefficiency measure 6
decreases with Q as a power law (see Fig. 7d)

s=Q* (8)
where ¢ =~ 0.3 % 0.1. The expected decrease is naturally due to the
fact that larger values of Q implies larger frequency and thus a
better synchronization between modes. The small value of u is
however bad news in terms of efficiency: in order to divide 6 by a
factor 2 we need to multiply Q by a factor of almost 10. We can
however hope that when exact origin-destination matrices are
known, a better optimization of the system can be obtained
through targeted improvements. It is not unusual to observe
power law behavior in urban systems*»®, and although the fits
are not perfect (essentially due to the small number of available
decades), this result Eq. 8 could be useful for constructing coarse-
grained models of transportation in cities. Besides this, we note
here that the city of Edinburgh is an outlier in all figures 7(a-d)
and, for this reason, has been excluded from the best-fit of
figures 7b and 7c. Indeed, even if Q is relatively high for this city,
Edinburgh’s public transport system seems to use a significantly
different strategy in managing the mobility demand, characterized
by an extremely high bus-frequency. The network is therefore
extremely efficient in terms of synchronization but not perfor-
mant in terms of cruise speed (see fig. 4d), as can be seen with
time-respecting paths that are mostly composed of slow unimodal
bus trajectories (see figures 7b and 7c).
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Discussion

We identified the total number of stop events per hour Q as the key
quantity which characterizes the efficiency of a transportation sys-
tem and its efficiency in terms of speed, multimodality and syn-
chronization. Naturally, Q is not the only parameter at play: multi-
modality depends also on the different cruise speed and departure
frequencies in the different layer. In the UK transportation system,
these two quantities are anti-correlated, as if a city system might try
to optimize rail and metro systems, with respect of the bus system,
either making them faster or more frequent. This relationship has
important practical applications, as it constitute a limit that policy
makers need to take into account in their system optimization, and
can serve as a support for evaluating alternative Public Transport
Systems’ designs.

The temporal aspect of the Public Transport Networks appears to
be influential for trips covering all distances. Short time-respecting
paths tend to be mostly similar to the minimal ones, and waiting
times are directly added to the riding times of the associated minimal
paths. Waiting times then represent the largest fraction of the total
travel times, and at this scale an increase of bus departure frequency,
or methods like timetables offsetting>”** of the bus service may rep-
resent a good optimization strategy. Longer time-respecting paths
tend instead to diverge from minimal ones, and very large waiting
times can be avoided thanks to the availability of alternative routes,
and when it is possible, longer trips are progressively taking advant-
age of the multi-modality of the system. For cities with a large level of
multi-modality, as it is the case for London, Birmingham Man-
chester, it becomes hard to disentangle the temporal and multilayer
aspects of the system. Waiting time (together with walking time)
does not represent a simple cost to minimize, but a price to pay to
access to fast transportation.

The value of waiting and walking times are perceived as higher
than the time spent travelling®, in particular because walking
demands a greater physical effort™. Waiting time has an higher per-
ceived cost because of the frustration due to the sheer inconvenience
of waiting®. All these costs have to be integrated with those related to
the time needed for accessing the network®, the stress of the transfer
experience®, breaking personal habits®, scheduling costs and those
caused by the unreliability of arrival times®>. In order to optimize the
travel experience and to minimize the perceived mobility cost, it is
then necessary to consider the full anatomy of trips and to distinguish
between transportation modes and between the nature of time spent
(riding, waiting, walking). In this respect, we believe that the tools
and the methodology developed here will allow for an integrated view
of these systems and will be helpful for testing and finding specific
optimization strategies.

Methods

Data. The land transport timetables used in these papers are provided by the National
Public Transport Data Repository** under Open Government licence. A snapshot of
every public transport journey is recorded for all services running in Great Britain
(England, Scotland, Wales) during a full week in October 2010. The raw files contain
the information available in the travel-lines web sites and call-centres during the
selected week. For road transport, transportation agencies take into account the
average traffic conditions at different hours and days for the design of timetables, so
that they implicitely contain congestion effects.

The modes covered and identified are bus, coach, train (national rail), ferry and
metro (including Underground, tram, light rail and non-national rail trains). All
routes are referenced to stops coded using the NaPTAN scheme (National Public
Transport Access Nodes) data®. In the NaPTAN scheme, every UK rail or metro
station, coach terminus, airport, ferry terminal, bus stop or taxi rank is associated to at
least one Stop Point. Not all Stop Points are actually used, so only those that were
present in the timetables are considered active and have been taken into account. Stop
point are then organized in Stop Areas representing facilities (Airports, Bus/Metro/
Coach/Railway Stations) or possible interchange points. The definition of these Stop
areas has been taken as a basis for defining a multilayer network from the timetable
data. A further process of data cleaning and aggregation has been performed to have a
consistent definition of inter-modal exchange points (see Supplementary
Information). To complete the spectrum of transportation modes, we use detailed
schedules of all non-stop UK domestic flights, provided by Innovata LLC* for the

week of 18-24 October 2010. Each of these flights has been associated to the Stop
Points of the arrival and departure airport (and eventually to a specific terminal). The
multilayer temporal network dataset derived from these data is publicly available at
http://www.quanturb.com/data.html.

Multilayer temporal network. The inter-modal exchange points are identified by (i)
original NaPTAN Stop Areas, (i) new Stop Areas obtained by a spatial aggregation of
Stop Points (see Supplementary Information). To be an exchange point, journeys of
different transportation modes should stop in that Area and to correctly define a
Multilayer network™, we associate all Stop Points to a layer o, representing a specific
transportation mode. If a Stop Point belongs to a Stop Area, the point is not
represented in the network and all vehicle stops in that point are associated to the area.
Both Areas and Points are identified by an id i. As buses and coaches may stop in the
same location, a copy of the same Stop Point can be defined in two different layers,
and thus associated to two different vertices v;, and v;4 in the multilayer network.
Similarly, if an Area i has associated points belonging to a set of layers o, f3, 7, ..., a
vertex representing that Area is defined in each of those layers (vi, vig, vi;» ...). Inter-
layer edges connects all couples of vertices associated to the same Point or Area in
different layers in both directions (i, i3) and (i, i,). If the connection from a layer « to
alayer f3 is performed by walking, a walking distance is assigned to each of these edges
(i, ip) which is calculated as the average distance between all couples of active Stops
Points in i belonging to the two different layers & and f5. The travel time has been then
computed using a standard walking speed of 5 km/h*. In addition to the walking
times, additional 30 minutes are added to the inter-links from the air-flights layer to
all the others, in order to take into account the characteristic waiting times in airports.
Similarly, two hours of check-in and security control times are added to the inter-
links towards the airline layer (which corresponds to the time suggested by airlines to
be at the airport before departure time).

In each layer o, we thus have a set of N,, vertices, representing stops locations. The
timetables define a set of events occurring in these vertices. Each vehicle departure can
be associated to a directed connection between two vertices v;, and v, that occurs ata
certain time. These events can be represented as C, quadruplets (i, j, t, 0t), where i,j €
V.» t denotes the departure time and Jt the riding time for that specific trip”’. Besides
the temporal network, we can also study the static topology of the public transport
network by defining a set of E edges, where the edge (i,, ji,) exists if there is at any time
at least a connection between v;, and v;,. For each of these edges, we compute the
minimal riding time observed at any time Jt,,;,. We define the minimal path as the
shortest path on this static network, where the cost associated to each link is the
minimal riding times. We use these minimal paths as a benchmark which represents
the optimal mobility though the multi layer network. All the measures performed in
this paper are limited to the largest strongly connected component* of the static
network associated to the corresponding area.

Time-respecting paths. Paths performed through the network must respect the time-
ordered sequences of contacts. For this reason, a journey has to follow causal temporal
paths defined as a sequence of connections with non-decreasing times*. We define
the travel duration 7,(t) as the shortest time needed to reach b starting from a
connection from a departing at a time t' = t. The duration is not static but depends
upon t. In this paper, we focus on the morning rush hour, and thus we chose t, =
Monday, 8:00am. The temporal distance is measured starting from the actual
beginning of the trip, without taking into account the first waiting time ¢ — t.
Furthermore, to limit the contribution of a small number of location from where
connections are extremely rare, we introduce a waiting time cutoff A, = 2 h limiting
the maximum delay allowed for a single connection®’. Even while working on a static
connected component, this cutoff limits the number of allowed paths. At a national
scale, approximately 16% of the trips in the largest strongly connected component of
the static network have been excluded because unreachable with this choice of ¢, and
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