Check for updates

G OPEN ACCESS

Citation: Lu Y, Zhang L, Zhang Q, Zhang Y, Chen D, Lou J, et al. (2019) The association of D-dimer with clinicopathological features of breast cancer and its usefulness in differential diagnosis: A systematic review and meta-analysis. PLoS ONE 14(9): e0221374. https://doi.org/10.1371/journal. pone.0221374

Editor: Elda Tagliabue, Fondazione IRCCS Istituto Nazionale dei Tumori, ITALY

Received: May 25, 2019

Accepted: August 5, 2019

Published: September 5, 2019

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0221374

Copyright: © 2019 Lu et al. This is an open access article distributed under the terms of the <u>Creative</u> Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

RESEARCH ARTICLE

The association of D-dimer with clinicopathological features of breast cancer and its usefulness in differential diagnosis: A systematic review and meta-analysis

Yan Lu, LongYi Zhang *, QiaoHong Zhang, YongJun Zhang, DeBao Chen, JianJie Lou, JinWen Jiang, ChaoXiang Ren

Clinical Laboratory, Dongyang People's Hospital, Dongyang, Zhejiang, China

* happy_zhang1y@163.com

Abstract

Background

Studies have shown that D-dimer levels are significantly correlated with the differential diagnosis and clinicopathological features of breast cancer. However, the results are currently limited and controversial. Therefore, we performed this meta-analysis to evaluate the relationship between D-dimer levels and breast cancer.

Materials and methods

The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Chinese Biomedical Literature, and Wanfang databases were searched to find studies that assessed the association of D-dimer with clinicopathological features of breast cancer and its usefulness in aiding with differential diagnosis. The standardized mean difference (SMD) was applied as the correlation measure.

Results

A total of 1244 patients with breast cancer from 15 eligible studies were included in the meta-analysis. D-dimer levels were higher in the breast cancer group than in the benign (SMD = 1.02; 95% confidence interval [CI] = 0.53-1.52) and healthy (SMD = 1.27; 95% CI = 0.85-1.68) control groups. In addition, elevated D-dimer levels were associated with progesterone receptor-negative tumors (SMD = -0.25; 95% CI = -0.44--0.05). Similarly, there was a significant correlation between D-dimer levels and tumor node metastasis staging (n = 11, SMD = 0.82; 95% CI = 0.57-1.06) and lymph node involvement (n = 8, SMD = 0.79; 95% CI = 0.50-1.09). In contrast, other clinicopathological factors, including estrogen receptor expression and human epidermal growth factor receptor 2 expression, were not associated with D-dimer levels.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Conclusion

The results of this meta-analysis indicate that plasma D-dimer levels can be used as an important reference for the early identification and staging of breast cancer.

Introduction

Breast cancer is the leading cause of death in women aged between 20 and 59 years and is estimated to account for 30% of all new cancer diagnoses in women in 2019[1]. Breast cancer has multiple levels of tumor heterogeneity. Clinical pathological conditions such as tumor node metastasis (TNM) stage, hormone receptor expression, human epidermal growth factor 2 (HER2) expression, and metastasis lead to different prognoses of breast cancer[2]. From 1990 to 2016, the mortality rate of female breast cancer decreased by 40% [1], but it still threatens women's health. Early diagnosis and treatment are key to improving the survival rates of breast cancer[3]. In addition to clinically and widely used tumor markers, such as carcinoembryonic antigen[4] and cancer antigen 15–3[5], other clinical laboratory indicators are urgently needed to assist in differential diagnosis and predict prognosis.

Tumor-induced coagulation is closely related to tumorigenesis and tumor development. Malignant disease can show signs of venous thromboembolism years before the patient has any obvious clinical symptoms[6]. By promoting neovascularization and metastasis, a vicious cycle is formed between procoagulant proteins and malignant tumor cells[7]. There is evidence that activated fibrinogens prevent NK cell-mediated tumor cell elimination, improve circulating tumor cell survival, increase tumor metastasis potential, and lead to poor prognosis[8]. Therefore, D-dimer, which is the end product of fibrinogen hydrolysis, has certain clinical value for the differential screening of benign and malignant tumors[9] and prediction of the prognosis of tumors[10–12]. Studies have shown that D-dimer has a significant correlation with the diagnosis and prognosis of a variety of malignant tumors (e.g., colorectal cancer and ovarian cancer), and D-dimer levels can be used as a diagnostic marker to design more individualized and effective treatment strategies [13].

However, Research on evaluating the association of D-dimer levels with breast cancer are currently limited, and the results have been controversial. Therefore, this meta-analysis was performed to assess the association between D-dimer levels and breast cancer-associated differential diagnosis and clinicopathological features.

Materials and methods

Literature search

The literature search was performed using the PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure, Chinese Biomedical Literature, and Wanfang databases. We included articles published from the establishment of the database to March 19, 2019. We included only studies published in English or Chinese. The keywords used for the search can be found in <u>S1 Table</u>. We also performed a supplementary search for references included in the studies identified in the original search.

Inclusion and exclusion criteria

The inclusion criteria were as follows: 1) the study group consisted of patients with breast cancer with a definite diagnosis; 2) the control group consisted of healthy women or patients with benign breast tumors; 3) the D-dimer test method in the study was clear; 4) the study results contained or had sufficient data to calculate the mean and standard deviation, defined here as more than 20 patients; and 5) the study showed a correlation between D-dimer levels and diagnostic and/or clinicopathological features of breast cancer. The exclusion criteria were as follows: 1) case reports or reviews; 2) studies describing animal experiments; 3) repeated publications; and 4) articles with a low Newcastle-Ottawa scale (NOS) score (\leq 4).

Data extraction and quality assessment

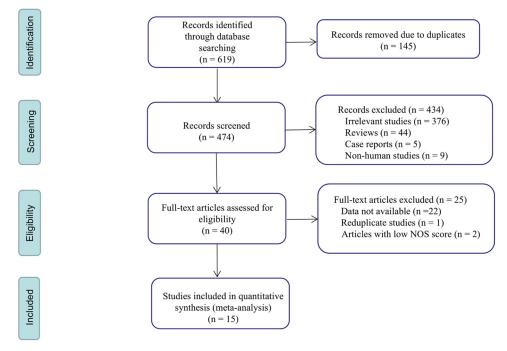
Data extraction and quality evaluation of the literature were performed independently by two authors. We extracted the following information: first author's last name, year of publication, country, method used to assess D-dimer levels, type of anticoagulant used, number of experimental groups included in the study, number of healthy controls and benign tumor controls, and number of patients with TNM stage I-II and III-IV disease. The NOS standard[14] was used as a research quality assessment standard. Studies with a score ≤ 4 were considered low quality. When there was a difference in opinion on a document, the two authors resolved the problem through mutual discussion and requested help from a third author if necessary.

Statistical analysis

All data analyses were performed using the Review Manager software version 5.3 (Cochrane Collaboration, London, UK) and STATA software version 14.0 (Stata Corporation, College Station, TX, USA). The standardized mean difference (SMD) was used as a measure of the association between D-dimer levels and breast cancer, and the results are presented in the form of forest plots. Inter-study heterogeneity was assessed using the Q test and I² statistic. When P > 0.10 or I² < 50% indicated that there was no obvious heterogeneity[15], a fixed effects model was used; otherwise, a random effects model was used[16]. In addition, when the heterogeneity was significant, we performed subgroup analyses, followed by a sensitivity analysis. We used a funnel plot and an Egger test to assess publication bias[17]. P < 0.05 was considered statistically significant.

Results

Study search


Through our database search, we found 619 studies, of which 474 remained after duplicates were excluded. Based on the title and abstract, we excluded 434 articles that were not related to the research content and evaluated the remaining 40 articles in full. After full-text articles were assessed for eligibility, we included 15 studies that could be used for meta-analysis. A flow chart of the screening process is shown in Fig 1.

Characteristics of eligible studies

Table 1 summarizes the basic information of the 15 eligible studies. The included studies were published between 2000 and 2018. D-dimer detection methods included enzyme-linked immunosorbent assay, immunoturbidimetry, and enzyme-linked immunofluorescence.

Outcomes

We first compared the breast and benign control groups. The benign control groups from 8 studies were stratified using the D-dimer test. The total effect rate showed that the D-dimer level was higher in the breast cancer group (SMD = 1.02; 95% confidence interval [CI] = 0.53-1.52; P < 0.0001)(Fig 2A).

https://doi.org/10.1371/journal.pone.0221374.g001

Table 1. Characteristics of included studies.

Author	Year	Country	Detection Method/Anticoagulant	Breast cancer patients	Benign controls	Healthy controls	TNM stage I-II	TNM stage III-IV	NOS score
Blackwell[18]	2000	USA	ELISA/sodium citrate	95	NR	NR	69	26	7
Hua[<u>19]</u>	2004	China	ELISA/ethylenediamine tetra- acetic acid	51	10	42	40	11	7
Kim[<u>20]</u>	2004	Korea	ITM/sodium citrate	93	27	29	77	10	8
Khangarot [21]	2010	India	ELISA/NR	50	NR	NR	20	30	6
Zhao[22]	2011	China	ITM/NR	43	43	43	32	11	7
Xie[23]	2011	China	ITM/sodium citrate	95	80	NR	58	37	7
Huang[24]	2012	China	ITM/sodium citrate	149	89	82	87	62	8
Zhou[25]	2012	China	ELISA/NR	48	40	40	36	12	7
Liu[26]	2013	China	ITM/sodium citrate	142	NR	150	NR	NR	7
Chaari[27]	2014	France	ELFA/sodium citrate	62	NR	30	NR	NR	6
Yang[28]	2014	China	ITM/sodium citrate	59	NR	50	29	31	7
Feng[29]	2014	China	ELFA/NR	189	NR	NR	95	94	7
Chai[<u>30</u>]	2015	China	ITM/sodium citrate	73	36	50	NR	NR	7
Bai[<u>31</u>]	2017	China	ITM/sodium citrate	35	37	NR	NR	NR	5
S.H.[<u>32</u>]	2018	India	ITM/sodium citrate	60	NR	NR	40	20	7

ITM: immunoturbidimetry; ELISA: enzyme-linked immunosorbentassay; ELFA: enzyme-linked immunofluorescence assay; NOS: Newcastle-Ottawa Scale; NR: not reported

https://doi.org/10.1371/journal.pone.0221374.t001

(A)

	Breast	Cancer Pa	tient	Benig	n Cont	rol		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV, Random, 95% Cl
1.2.1 ITM									
Bai 2017	120	140	35	98	56	37	12.6%	0.21 [-0.26, 0.67]	
Chai 2015	430	410	73	190	40	36	12.9%	0.71 [0.30, 1.12]	
Huang 2012	490.62	747.07	149	182.57	82.91	89	13.6%	0.52 [0.25, 0.78]	
Kim 2004	404.1	568.7	93	226.3	65.4	27	12.8%	0.35 [-0.08, 0.78]	
Xie 2011	352.61	56.27	95	253.28	38.37	80	13.1%	2.02 [1.66, 2.39]	
Zhao 2011	460	280	23	180	120	43	11.9%	1.45 [0.88, 2.02]	
Subtotal (95% CI)			468			312	76.8%	0.87 [0.30, 1.45]	
Heterogeneity: Tau ² =	0.47; Chi2	= 62.54, df	= 5 (P -	< 0.00001	1); I ² = 9	2%			
Test for overall effect:	Z = 2.98 (F	P = 0.003)							
1.2.2 ELISA									
Hua 2004	460	150	51	250	110	10	10.8%	1.43 [0.71, 2.16]	
Zhou 2012	440	210	48	170	90	40	12.4%	1.61 [1.12, 2.09]	
Subtotal (95% CI)			99			50	23.2%	1.55 [1.15, 1.96]	
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.15, df =	= 1 (P =	0.70); l ² :	= 0%				
Test for overall effect:	Z = 7.55 (F	<pre>> < 0.0000</pre>	1)						
Total (95% CI)			567			362	100.0%	1.02 [0.53, 1.52]	
Heterogeneity: Tau ² =	0 44 · Chi2	= 73.27. df	= 7 (P	< 0.00001	1): $l^2 = 9$	0%			
Test for overall effect:					,,				-2 -1 0 1 2
Test for subaroup diffe									Favours [Breast Cancer Patient] Favours [Benign control]

(B)

	Breast (Cancer Pat	tient	Healt	hy Con			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
2.2.1 ITM									
Chai 2015	430	410	73	100	110	50	11.3%	1.01 [0.63, 1.39]	
Huang 2012	490.62	747.07	149	154.35	76.83	82	11.9%	0.56 [0.28, 0.83]	
Kim 2004	404.1	568.7	93	224.8	60.3	29	11.1%	0.36 [-0.06, 0.78]	
Liu 2013	2,140	1,280	142	570	120	150	11.9%	1.75 [1.48, 2.02]	
Yang 2014	580	150	59	350	120	50	11.0%	1.67 [1.23, 2.11]	
Zhao 2011	460	280	43	120	20	43	10.6%	1.70 [1.20, 2.19]	
Subtotal (95% CI)			559			404	67.9%	1.17 [0.65, 1.68]	
Heterogeneity: Tau ² = 0	0.38; Chi ²	= 60.92, df	f = 5 (P <	0.0000	1); l ² = 9	2%			
Test for overall effect: 2	Z = 4.44 (F	P < 0.00001	1)						
2.2.2 ELISA									
Hua 2004	460	150	51	220	90	42	10.7%	1.88 [1.39, 2.37]	
Zhou 2012	440	210	48	140	30	40	10.6%	1.90 [1.39, 2.41]	
Subtotal (95% CI)			99			82	21.2%	1.89 [1.54, 2.24]	•
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 0.00, df =	= 1 (P =	0.96); l ² :	= 0%				
Test for overall effect: 2	Z = 10.47	P < 0.0000	01)						
2.2.3 ELFA									
Chaari 2014	1.250	1.773	62	230	50	30	10.9%	0.69 [0.25, 1.14]	
Subtotal (95% CI)	1,200	.,	62	200	00	30	10.9%	0.69 [0.25, 1.14]	
Heterogeneity: Not app	olicable								
Test for overall effect: 2		P = 0.002							
	L 0.00 (,	0.002)							
Total (95% CI)			720			516	100.0%	1.27 [0.85, 1.68]	-
Heterogeneity: Tau ² = 0	0.36; Chi ²	= 81.01, df	f = 8 (P <	0.0000	1); l ² = 9	0%			
Test for overall effect: 2	Z = 5.98 (F	< 0.00001	1)						-2 -1 0 1 2 Favours [Breast Cancer Patient] Favours [Healthy Control]
Test for subaroup differ	rences: Ch	ni² = 17.67.	df = 2 (F	= 0.000	01). I ² =	88.7%			Favours [breast Cancer Patient] Favours [Healthy Control]

Fig 2. Relationship between D-dimer levels and breast cancer diagnosis. Forest plots depicting comparisons between breast cancer patients and (A) benign controls and (B) healthy controls. SD: standard deviation; CI: confidence interval; ELISA: enzyme-linked immunosorbent assay; ITM: immunoturbidimetry; ELFA: enzyme-linked immunofluorescence assay.

https://doi.org/10.1371/journal.pone.0221374.g002

We next compared the breast and healthy control groups. After stratification using the Ddimer test, nine articles evaluating a healthy control group were divided into three subgroups. Using a random effects model, the total effect rate showed that the D-dimer level was significantly higher in the breast cancer group (SMD = 1.27; 95% CI = 0.85–1.68; P < 0.00001) (Fig 2B).

We also examined the correlation between D-dimer levels and clinical pathological parameters of breast cancer. Four studies examined the relationship between D-dimer levels and progesterone receptor (PR) expression, and there was no significant heterogeneity (P = 0.38, $I^2 = 3\%$) (Fig 3A). Using a fixed effects model, we observed that elevated D-dimer levels were associated with PR-negative tumors (SMD = -0.25; 95% CI = -0.44--0.05; P = 0.01). There was also a significant correlation between D-dimer levels and TNM stage (n = 11, SMD = 0.82; 95% CI = 0.57-1.06; P < 0.00001) and lymph node involvement(n = 8, SMD = 0.79; 95% CI = 0.50-1.09, P < 0.00001) (Fig 3B and 3C). Here, we used a random effects model and

(A)

PR(+)					PR(-)			Std. Mean Difference	Std. Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI		IV, Fix	ed. 95	5% CI		_
Feng 2014	451.26	185.57	102	487.84	169.35	87	46.0%	-0.20 [-0.49, 0.08]		-	+			
Hua 2004	357.2	136.89	18	496.36	205.06	33	10.7%	-0.74 [-1.34, -0.15]						
Huang 2012	470.88	368.92	98	549.23	455.61	51	32.9%	-0.19 [-0.53, 0.14]		_	+			
Khangarot 2010	526.6	393.63	15	585.7	633.91	35	10.3%	-0.10 [-0.71, 0.50]			+	_		
Total (95% CI)			233			206	100.0%	-0.25 [-0.44, -0.05]		•	•			
Heterogeneity: Chi ² =	3.09, df =	3 (P = 0	.38); 12	= 3%					-2		+		+	2
Test for overall effect:	Z = 2.50	(P = 0.01)						-2	Favours [PR(+)] Far	vours (F	'R(-)]	2

(B)

	St	age III-IV		S	tage I-II		5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random. 95% CI
3.2.1 ITM									
Huang 2012	896.95	695.36	62	353.98	219.85	87	12.3%	1.13 [0.78, 1.48]	
Kim 2004	1,055	1,091.7	10	333.62	166.36	77	6.9%	1.84 [1.12, 2.56]	
S.H. 2017	2,870	2,330	20	1,630	1,500	40	9.0%	0.67 [0.12, 1.23]	
Xie 2011	370.38	45.46	37	341.27	59.85	58	11.1%	0.53 [0.11, 0.95]	
Yang 2014	620	170	31	540	110	29	9.5%	0.55 (0.03, 1.06)	
Zhao 2011	520	310	11	310	170	32	6.9%	0.97 (0.25, 1.69)	
Subtotal (95% CI)			171			323	55.7%	0.91 [0.56, 1.26]	•
Heterogeneity: Tau ² =	0.12: Chi	² = 13.74.	df = 5	(P = 0.0)	2); I ² = 64	36			
Test for overall effect:	Z = 5.08	P < 0.000	001)						
3.2.2 ELISA									
Blackwell 2000	152.13	80.72	12	72.85	80.72	83	8.0%	0.97 [0.35, 1.60]	
Hua 2004	540	180	11	400	180	40	7.2%	0.77 (0.08, 1.45)	
Khangarot 2010	706.5	666.42	30	359.85	285.35	20	8.6%	0.62 [0.04, 1.20]	
Zhou 2012	500	270	12	285	150	36	7.1%	1.14 [0.44, 1.83]	
Subtotal (95% CI)			65			179	31.0%	0.86 [0.54, 1.18]	•
Heterogeneity: Tau ² =	0.00: Chi	2 = 1.46. 0	if = 3 (P = 0.69	: 1 ² = 0%				
Test for overall effect:									
3.2.3 ELFA									
Feng 2014	493.03	184.54	94	438.14	130.28	95	13.4%	0.34 [0.06, 0.63]	
Subtotal (95% CI)			94			95	13.4%	0.34 [0.06, 0.63]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:		(P = 0.02)							
Total (95% CI)			330			597	100.0%	0.82 [0.57, 1.06]	•
Heterogeneity: Tau ² =	0.10: Chi	² = 25.09.	df = 1	(P = 0.0)	005); l² =	60%			
Test for overall effect:									-2 -1 0 1 2
Test for subgroup diffe				P(P = 0.0)	(2) I ² = 7	16.26			Favours [Stage III-IV] Favours [Stage I-II]

(C)

	Lym	ph node	+)	Lym	ph node	(-)	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random, 95% Cl
1.2.1 ITM									
Chai 2015	530	490	44	270	180	29	11.9%	0.65 [0.17, 1.13]	
luang 2012	928.54	680.31	71	254.48	174.35	78	13.8%	1.38 [1.02, 1.74]	
Gim 2004	529.1	802.6	44	268.6	111.5	76	13.5%	0.53 [0.15, 0.90]	
iu 2013	2,410	1,420	104	1,760	890	38	13.6%	0.50 [0.12, 0.87]	
Ge 2011	362.83	50.166	72	313.72	57.46	23	11.8%	0.94 [0.45, 1.43]	
rang 2014	630	160	34	510	110	26	11.1%	0.84 [0.31, 1.38]	
Subtotal (95% CI)			369			270	75.7%	0.81 [0.50, 1.11]	•
feterogeneity: Tau ² =	0.10; Chi	2 = 15.25	, df = 5	(P = 0.0	(09); I ² =	67%			
Fest for overall effect:	Z = 5.18	(P < 0.00	001)						
.2.2 ELISA									
fua 2004	521.76	180.31	34	300	80	17	9.4%	1.41 (0.76, 2.06)	
Subtotal (95% CI)			34			17	9.4%	1.41 [0.76, 2.06]	
feterogeneity: Not ap	olicable								
est for overall effect:	Z = 4.26	(P < 0.00	01)						
2.3 ELFA									
eng 2014	487.35	183.21	81	432.16	136.73	108	14.9%	0.35 (0.06, 0.64)	
ubtotal (95% CI)			81			108	14.9%	0.35 [0.06, 0.64]	-
feterogeneity: Not ap	olicable								
lest for overall effect:	Z = 2.34	(P = 0.02)						
otal (95% CI)			484			395	100.0%	0.79 [0.50, 1.09]	-
feterogeneity: Tau ² =	0.13: Chi	² = 27.09	df = 7	(P = 0.0)	003): P	74%			+ + + + + + + + + + + + + + + + + + + +
est for overall effect:									-2 -1 0 1
Test for subgroup diffe									Favours [Lymph node(+)] Favours [Lymph node(-)]

(D)

	ER(+)			ER(-)			Std. Mean Difference	Std. Mean Difference
Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% Cl	IV. Random, 95% CI
503.91	398.45		468.64	532.76	74	31.1%	0.07 [-0.25, 0.40]	
		75			74	31.1%	0.07 [-0.25, 0.40]	•
licable								
2 = 0.46	(P = 0.65)						
352.5	107.89	20	508.4	213.9	31	19.1%	-0.85 [-1.44, -0.26]	
383.3	255.24	12	626.3	628.46	38	16.8%	-0.42 [-1.08, 0.23]	
		32			69	35.9%	-0.66 [-1.10, -0.22]	•
J.00; Chi	² = 0.91, ·	df = 1 (P = 0.34); I ² = 0%				
2 = 2.96	(P = 0.00	3)						
438.47	195.35	99	473.36	148.28	90	33.0%	-0.20 [-0.49, 0.09]	
		99			90	33.0%	-0.20 [-0.49, 0.09]	-
licable								
2 = 1.36	(P = 0.17)						
		206			233	100.0%	-0.28 [-0.62, 0.07]	•
0.07: Chi	² = 7.96.	df = 3 (P = 0.05	i): l ² = 62	%			
	(P = 0.12)							-2 -1 0 1 2
				03) I ² = 1	14 0.01			Favours [ER(+)] Favours [ER(-)]
	Mean 503.91 licable 2 = 0.46 (352.5 383.3 0.00; Chi 2 = 2.96 (438.47 licable 2 = 1.36 (0.07; Chi	Mean SD 503.91 398.45 ficable 2 2 0.46 352.5 107.89 383.3 255.24 0.00: Chi ² = 0.91, 2 2.96 438.47 195.35 ficable 2 2 1.36 2 1.36 2 1.36 2 7.96,	Mean SD Total 503.51 398.45 75 filcable 0.46 0.655 352.5 107.89 20 383.3 255.24 12 20.00; Chi ² = 0.91, df = 1 2 26 25.2 107.89 20 383.3 255.24 12 20.00; Chi ² = 0.91, df = 1 2 cebh 99 cebh 2 26 0.07; Chi ² = 7.96, df = 3.1	Mean SD Total Mean 503.51 398.45 75 488.64 503.81 398.45 75 488.64 352.5 107.89 20 503.4 383.3 255.24 12 663.3 0.00; Chill 0.91; df = 1 (P = 0.34 26.33.3 99 438.45 195.35 99 473.36 21.43.64 195.35 99 473.36 21.53.65 P.0.07; Chill = 2.96; df = 1 (P = 0.64 206 21.53.65 P.0.17) 206 207	Mean SD Total Mean SD 50.3 398.46 75 468.64 532.76 ficable c=0.46 (P=0.65) 352.5 107.88 20 508.4 213.9 352.5 107.88 20 508.4 213.9 383.3 255.24 12 628.3 628.64 50.9 43.84 196.53 90 473.36 148.28 99 438.47 196.53 99 473.36 148.28 99 126.26 626.07 126.06 <t< td=""><td>Mean SD Total Mean SD Total 503.91 398.45 75 468.64 532.76 74 ficable c 74 74 74 352.5 107.88 20 508.4 213.9 31 383.3 255.24 12 628.3 38 32 0.00; Chi^a = 0.91; df = 1 (P = 0.34); P = 0.06 22 2.9 60 90 138.47 196.35 99 473.36 148.28 90 90 celable 2 26 0.7 2.06 233 20 20 2.007; Chi^a = 7.68, df = 3 (P = 0.05); F = 623, 0.07; Chi^a = 7.68, df = 3 (P = 0.05); F = 625, 0.07; F = 625, 0.07 26 233 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 28 26 26 26 27 26 27 26 27 26 27 26 27</td><td>Mean SD Total Mean SD Total Weight 503.51 398.45 75 468.64 532.76 74 31.1% iicable 20.46 75 468.64 532.76 74 31.1% 352.5 107.89 20 508.4 213.9 31 19.1% 383.3 255.24 12 626.3 628.46 38 16.8% 000; Chill 0.91, df 16 0.43, lf 90 33.0% 69 35.3% 22.86.19 9.03.30% 90 473.36 148.28 90 33.0% 21.86 9.01.71 206 203.3 00.0% 0.07 Chill 72.62% 233 100.0%</td><td>Mean SD Total Mean SD Total Weight V. Random. 35% CI 503.91 398.46 75 468.64 532.76 74 31.1% 0.07 (-0.25, 0.40) Sizable c= 0.46 (P=0.65) 333.3 255.24 12 626.3 624.4 -0.42 (+1.06, 0.23) 352.5 107.89 20 506.4 213.0 31 19.1% -0.85 (+1.44, -0.26) 353.3 255.24 12 626.3 624.4 38 16.6.5% -0.42 (+1.06, 0.23) 20 0.07, Ch²⁺ = 0.01; d= 1 (P=0.34); P=0.% = -0.46 (+1.10, -0.22) -0.46 (+1.10, -0.22) 21.2 22 90 33.0% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 22 30 30.3% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 23.6 90 33.30% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 20.6 71 72 23 100.0% -0.28 (-0.62, 0.07) 20.7 7.</td></t<>	Mean SD Total Mean SD Total 503.91 398.45 75 468.64 532.76 74 ficable c 74 74 74 352.5 107.88 20 508.4 213.9 31 383.3 255.24 12 628.3 38 32 0.00; Chi ^a = 0.91; df = 1 (P = 0.34); P = 0.06 22 2.9 60 90 138.47 196.35 99 473.36 148.28 90 90 celable 2 26 0.7 2.06 233 20 20 2.007; Chi ^a = 7.68, df = 3 (P = 0.05); F = 623, 0.07; Chi ^a = 7.68, df = 3 (P = 0.05); F = 625, 0.07; F = 625, 0.07 26 233 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 28 26 26 26 27 26 27 26 27 26 27 26 27	Mean SD Total Mean SD Total Weight 503.51 398.45 75 468.64 532.76 74 31.1% iicable 20.46 75 468.64 532.76 74 31.1% 352.5 107.89 20 508.4 213.9 31 19.1% 383.3 255.24 12 626.3 628.46 38 16.8% 000; Chill 0.91, df 16 0.43, lf 90 33.0% 69 35.3% 22.86.19 9.03.30% 90 473.36 148.28 90 33.0% 21.86 9.01.71 206 203.3 00.0% 0.07 Chill 72.62% 233 100.0%	Mean SD Total Mean SD Total Weight V. Random. 35% CI 503.91 398.46 75 468.64 532.76 74 31.1% 0.07 (-0.25, 0.40) Sizable c= 0.46 (P=0.65) 333.3 255.24 12 626.3 624.4 -0.42 (+1.06, 0.23) 352.5 107.89 20 506.4 213.0 31 19.1% -0.85 (+1.44, -0.26) 353.3 255.24 12 626.3 624.4 38 16.6.5% -0.42 (+1.06, 0.23) 20 0.07, Ch ²⁺ = 0.01; d= 1 (P=0.34); P=0.% = -0.46 (+1.10, -0.22) -0.46 (+1.10, -0.22) 21.2 22 90 33.0% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 22 30 30.3% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 23.6 90 33.30% -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) -0.20 (-0.49, 0.09) 20.6 71 72 23 100.0% -0.28 (-0.62, 0.07) 20.7 7.

HER2		ER2(+)		F	ER2(-)			Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI	IV. Fixed, 95% CI	
Feng 2014	448.36	197.46	85	483.25	164.36	104	52.5%	-0.19 [-0.48, 0.09]		
Huang 2012	446.72	359.84	89	571.35	503.28	60	40.0%	-0.29 [-0.62, 0.04]		
Khangarot 2010	578	599.4	42	512	397.98	8	7.6%	0.11 [-0.64, 0.87]		
Total (95% CI)			216			172	100.0%	-0.21 [-0.42, -0.00]	•	
Heterogeneity: Chi2 =	0.96, df =	2 (P = 0	.62); 12	= 0%						-
Test for overall effect:	Z = 1.98	(P = 0.05	9						-2 -1 0 1 Favours [HER2(+)] Favours [HER2(-)]	

Fig 3. Relationship between D-dimer levels and clinicopathological characteristics of breast cancer. Forest plots of SMDs for the association between D-dimer and (A) progesterone receptor (PR) status (positive vs. negative), (B) tumor node metastasis (TNM) stage (stage III-IV vs. stage I-II), (C) lymph node status (positive vs. negative),(D) estrogen receptor (ER) status (positive vs. negative), and (E) human epidermal growth factor receptor (HER2) status (positive vs. negative). SMD: standardized mean difference; SD: standard deviation; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0221374.g003

combined subgroup analyses due to significant heterogeneity (TNM stage: P = 0.005, $I^2 = 60\%$; lymph node involvement: P = 0.0003, $I^2 = 74\%$). In contrast, other clinicopathological factors were not associated with D-dimer levels, including estrogen receptor (ER) expression (n = 4, SMD = -0.28; 95% CI = -0.62-0.07; P = 0.12) and HER2 expression (n = 3, SMD = -0.21; 95% CI = -0.42-0.00; P = 0.05) (Fig 3D and 3E). Due to the heterogeneity, the correlation between D-dimer levels and ER (P = 0.05, $I^2 = 62\%$) was based on a random effects model, and the correlation between D-dimer levels and HER2 (P = 0.62, $I^2 = 0\%$) used a fixed effects model.

Heterogeneity

As shown in Fig 3, the subgroup analysis based on the differences in D-dimer detection methods found significant differences between the subgroups (benign controls, $I^2 = 72.3\%$; healthy controls, $I^2 = 88.7\%$; TNM, $I^2 = 75.2\%$; lymph node status, $I^2 = 80.9\%$; ER, $I^2 = 71.6\%$).

Additionally, most of the literature was obtained from China, and the sample sizes were smaller in other countries. The subgroup analysis was also used to examine the source of heterogeneity based on region. In addition to the benign control group ($I^2 = 79.2\%$) (Fig 4A), the results showed that there were no significant differences between the subgroups of the other groups with significant heterogeneity. (Fig 4B, 4C, 4D and 4E).

Publication bias and sensitivity analysis

The symmetry of the funnel plot and results of the Egger's test (benign controls, P = 0.470; healthy controls, P = 0.545; TNM, P = 0.093; lymph node status, P = 0.204; PR, P = 0.495; ER, P = 0.272; HER2, P = 0.408) indicated that there was no publication bias. Sensitivity analysis was used to test the effect of a single study on the results. No significant differences were found when we removed any of the studies included in the analysis, indicating that the conclusions were stable.

Discussion

To the best of our knowledge, this is the first meta-analysis on the role of D-dimer in the differential diagnosis and clinicopathological characteristics of breast cancer. As early as 1991, Mitter[33] found that D-dimer levels were elevated in patients with breast cancer. With the deepening of research in recent years, more links between D-dimer and the clinical pathology of breast cancer have been proposed.

The role of D-dimer in the differential diagnosis of breast cancer

The results showed that the D-dimer level in the breast cancer group was significantly higher than those in the benign and healthy control groups. Increased plasma D-dimer levels reflect increased activation of the coagulation system in patients with breast cancer, suggesting that the plasma D-dimer level could have an auxiliary value for the differential diagnosis of breast cancer. Studies have shown that the sensitivity and specificity of D-dimer is higher than that of the existing tumor markers cancer antigen 15–3 and carcinoembryonic antigen [34]. Unfortunately, most of the research data did not allow to calculate the sensitivity and specificity of the effect indicator of D-dimer level for the diagnosis of breast cancer.

The relationship between D-dimer and clinical pathology of breast cancer

Despite advances in breast cancer treatment, patients with metastatic breast cancer have a poor prognosis, with a low median survival of at most 2 to 3 years [2]. Plasma D-dimer levels in patients with TNM stage III-IV disease were significantly different from those in patients

(A)						
Study or Subgroup	Breast Cancer Pat Mean SD		l Fotal Weight	Std. Mean Difference IV. Random. 95% CI	Std. Mean Differe IV. Random, 95	
1.1.1 group 1 Bai 2017 Chai 2015 Hua 2004	120 140 430 410 460 150 490.62 747.07	35 98 56 73 190 40 51 250 110 149 182.57 82.91	37 12.6% 36 12.9% 10 10.8% 89 13.6%	0.21 [-0.26, 0.67] 0.71 [0.30, 1.12] 1.43 [0.71, 2.16] 0.52 [0.25, 0.78]		
Huang 2012 Xie 2011 Zhao 2011 Zhou 2012 Subtotal (95% CI) Heterogeneity: Tau ^e =	352.61 56.27 460 280 440 210 0.47; Chi ² = 65.46, df	95 253.28 38.37 23 180 120 48 170 90 474 = 6 (P < 0.00001); P = 91	80 13.1% 43 11.9% 40 12.4% 335 87.2% %	2.02 [1.66, 2.39] 1.45 [0.88, 2.02] 1.61 [1.12, 2.09] 1.12 [0.58, 1.66]		
Test for overall effect: 1.1.2 group 2 Kim 2004 Subtotal (95% CI)	Z = 4.09 (P < 0.0001) 404.1 568.7	93 226.3 65.4 93	27 12.8% 27 12.8%	0.35 [-0.08, 0.78] 0.35 [-0.08, 0.78]		
Heterogeneity: Not ap Test for overall effect: Total (95% CI) Heterogeneity: Tau ² =	Z = 1.60 (P = 0.11)	567 = 7 (P < 0.00001); I ² = 90	362 100.0% %	1.02 [0.53, 1.52]		
	Z = 4.08 (P < 0.0001) erences: Chi ² = 4.81. d	= 7 (P < 0.00001); I ² = 90 = 1 (P = 0.03). I ² = 79.25	6		-2 -1 0 Favours [Breast Cancer Patient] Favou	rs [Begin control]
(B)	Breast Cancer Pa	tient healthy contr	ol	Std. Mean Difference	Std. Mean Differ	
Study or Subgroup 2.1.1 group 1 Chai 2015 Hua 2004	430 410 460 150	Total Mean SD 73 100 110 51 220 90	Total Weight 50 10.2% 42 9.6%	IV. Random. 95% Cl 1.01 [0.63, 1.39] 1.88 [1.39, 2.37]	IV. Random. 95'	
Huang 2012 Jin 2018 Liu 2013	490.62 747.07 404.1 568.7 580 150	149 154.35 76.83 93 224.8 60.3 59 350 120	82 10.7% 29 10.1% 50 9.9%	0.56 [0.28, 0.83] 0.36 [-0.06, 0.78] 1.67 [1.23, 2.11]		=
Yang 2014 Zhao 2011 Zhou 2012	460 280 440 210 440 210	43 120 20 48 140 30 48 140 30	43 9.6% 40 9.5% 40 9.5%	1.70 [1.20, 2.19] 1.90 [1.39, 2.41] 1.90 [1.39, 2.41]		
	= 0.40; Chi ^p = 67.33, d ct: Z = 5.72 (P < 0.0000	564 != 7 (P < 0.00001); I ² = 9 1)	376 79.3% 0%	1.35 [0.89, 1.82]		•
2.1.2 group 2 Chaari 2014 Kim 2004 Subtotal (95% CI) Heterogeneity: Tau ³ Test for overall effer	1,250 1,773 2,140 1,280 = 0.52; Chi ² = 15.59, d ct: Z = 2.35 (P = 0.02)	62 230 50 142 570 120 204 != 1 (P < 0.0001); I ² = 94 ⁴	30 9.9% 150 10.8% 180 20.7%	0.69 [0.25, 1.14] 1.75 [1.48, 2.02] 1.24 [0.20, 2.27]	-	
Total (95% CI) Heterogeneity: Tau ³ Test for overall effer Test for suborouo d	= 0.36; Chi ² = 87.77, d ct: Z = 6.59 (P < 0.0000 ifferences: Chi ² = 0.04.	768 != 9 (P < 0.00001); I ² = 9 1) If = 1 (P = 0.84), I ² = 0%	556 100.0% D%	1.33 [0.93, 1.72]		1 2 urs [healthy control]
(C)						
<u>Study or Subgro</u> 3.1.1 group 1	Stage III up Mean 5	-IV Stage SD Total Mean	e I-II SD Total	Std. Mean Di Weight IV. Rando		om. 95% Cl
Feng 2014 Hua 2004	493.03 184. 540 1 896.95 695.	80 11 400	0.28 95 180 40 9.85 87	7.2% 0.77 [0	.06, 0.63] .08, 1.45] .78, 1.48]	
Huang 2012 Xie 2011 Yang 2014	370.38 45. 620 1	46 37 341.27 5 70 31 540	9.85 58 110 29	11.1% 0.53 [0 9.5% 0.55 [0	.11, 0.95] .03, 1.06]	—
Zhao 2011 Zhou 2012 Subtotal (95% C Heterogeneity: Ta Test for overall el	500 2	10 11 310 70 12 285 258 70, df = 6 (P = 0.02); F 00001)	170 32 150 36 377 = 59%	7.1% 1.14 (0	.25, 1.69] .44, 1.83] .45, 1.02]	•
3.1.2 group 2 Blackwell 2000 Khangarot 2010	152.13 80. 706.5 666.		0.72 83 5.35 20		.35, 1.60] .04, 1.20]	
Kim 2004 S.H. 2017 Subtotal (95% C Heterogeneity: Ta	1,055 1,091 2,870 2,3	.7 10 333.62 16 30 20 1,630 1 72 3, df = 3 (P = 0.04); I ²	6.36 77 ,500 40 220	6.9% 1.84 [1 9.0% 0.67 [0	.12, 2.56 .12, 1.23 .49, 1.50]	
Total (95% CI) Heterogeneity: Ta Test for overall el	au ² = 0.10; Chi ² = 25. fect: Z = 6.48 (P < 0.	330 09, df = 10 (P = 0.005)	; I² = 60%	100.0% 0.82 [0	.57, 1.06] -2 -1 Favours [Stage III-IV	0 1 2 Favours [Stage I-II]
	vanerences. crii - v		1 - 076			
(D)	Lymph node(+ Mean SD		(-) Total Weigh	Std. Mean Differen		ifference
Study or Subgroup 4.1.1 group 1 Chai 2015	530 490	44 270 180	29 11.9	% 0.65 [0.17, 1.	13]	
Feng 2014 Hua 2004 Huang 2012	487.35 183.21 521.76 180.31 928.54 680.31	81 432.16 136.73 34 300 80 71 254.48 174.35	108 14.9 17 9.4 78 13.8	% 1.41 [0.76, 2.0 % 1.38 [1.02, 1.7	06] 74]	
Liu 2013 Xie 2011 Yang 2014	2,410 1,420 362.83 50.166 630 160	104 1,760 890 72 313.72 57.46 34 510 110	38 13.6 23 11.8 26 11.1	% 0.94 [0.45, 1.4 % 0.84 [0.31, 1.3	43] 38]	<u> </u>
Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect	= 0.15; Chi ² = 25.78, ct: Z = 4.89 (P < 0.000	440 df = 6 (P = 0.0002); l ² = 01)	319 86.5 77%	% 0.84 (0.50, 1.1	[8]	-
4.1.2 group 2 Kim 2004 Subtotal (95% CI) Heterogeneity: Not a Test for overall effect	529.1 802.6 applicable t: Z = 2.73 (P = 0.006	44 268.6 111.5 44	76 13.5 [°] 76 13.5	% 0.53 [0.15, 0.9 % 0.53 [0.15, 0.9	90] 90]	•
Total (95% CI) Heterogeneity: Tau ² Test for overall effer	= 0.13; Chi ² = 27.09, t: Z = 5.31 (P < 0.00)	484 df = 7 (P = 0.0003); l ² =		% 0.79 [0.50, 1.0	19] -2 -1 0 Favours [Lymph node(+)] F	1 2 avours [Lymph node(-)]
(E)						
Study or Subgr 5.1.1 group 1	ER(+ oup Mean) EF SD Total Mean	R(-) SD Total	Std. Mean D Weight IV. Rande	hifference Std. Mean om. 95% Cl IV. Rando	
Feng 2014 Hua 2004 Huang 2012 Subtotal (95% 6	438.47 195 352.5 107 503.91 398 CI)	89 20 508.4 3	213.9 31	19.1% -0.85 [-1 31.1% 0.07 [-	0.49, 0.09] 1.44, -0.26] 0.25, 0.40] 0.68, 0.16]	-
Heterogeneity: 7		43, df = 2 (P = 0.02); I				
5.1.2 group 2 Khangarot 2010 Subtotal (95% d Heterogeneity: N		12	28.46 38 38	16.8% -0.42 [- 16.8% -0.42 [-	1.08, 0.23]	-
Total (95% CI)		206	233	100.0% -0.28 [-	0.62, 0.07]	
Test for overall of	effect: Z = 1.57 (P = 1	96, df = 3 (P = 0.05); I 0.12) 0.18. df = 1 (P = 0.68			-2 -1 0 Favours [ER(+)]	

Fig 4. Subgroup analysis of D-dimer levels and breast cancer-associated differential diagnosis and clinicopathological features according to region. Plots depicting comparisons between breast cancer patients and (A) benign controls, (B) healthy controls, (C) tumor node metastasis (TNM) stage (stage III-IV vs. stage I-II), (D) lymph node status (positive vs. negative), and (E)estrogen receptor (ER) status (positive vs. negative). Group1: China; Group2: Regions outside China.

https://doi.org/10.1371/journal.pone.0221374.g004

with stage I-II disease. Plasma D-dimer levels were also significantly higher in patients with lymph node metastasis than in patients without metastasis. Elevated D-dimer levels suggest a worsening of the disease, a later clinical stage, and a greater likelihood of tumor metastasis. The plasma D-dimer levels can be used as an auxiliary index for the diagnosis and staging of breast cancer. Furthermore, in this study, the D-dimer level was not related to the ER or HER2 status of patients with breast cancer, and it was increased in patients with PR-negative tumors. Due to the limitations of the literature, the role of D-dimer in the clinical pathology and prediction of prognosis of breast cancer still needs to be studied in a large number of patients.

Limitations

The existence of heterogeneity is a potential problem when interpreting the results of this meta-analysis. To this end, we performed a subgroup analysis based on the differences in D-dimer detection methods. The results indicated that the difference in D-dimer detection methods is one of the main sources of heterogeneity. Because our meta-analysis is based on published research, the fact that most of the data coming from China may lead to regional bias. Therefore, the subgroup analysis was also used to examine the source of heterogeneity based on region with only significant differences in the benign control group. However, after excluding the study by Kim et al.[20] of Korea from the benign control group, the heterogeneity between the eight studies from China did not reduce, indicating that the regional differences cannot explain the heterogeneity between benign control groups. In addition, there may be other sources of heterogeneity. For example, this meta-analysis only included English and Chinese literature, which leads to language bias. Fortunately, although heterogeneity existed, the sensitivity analysis was stable, and no publication bias was found.

At present, there is no uniform standard for the methods and units used to detect D-dimer levels, and the consistency between the results of the same test items in each laboratory is not strong. In this paper, the unified D-dimer unit was ng/mL, and the standardized mean difference was used as the effect combination index. However, inconsistent detection methods, reagents and type of anticoagulant may cause the absolute D-dimer value to differ greatly, leading to high heterogeneity among the literature results. Therefore, a uniform methodological standard should be established for D-dimer detection so that the data between different laboratories can be interoperable or comparable.

Conclusion

In this meta-analysis, plasma D-dimer levels were elevated in patients with breast cancer and correlated with PR expression, TNM stage, and metastasis in breast cancer. This evidence suggests that D-dimer has potential in the differential diagnosis and staging of breast cancer. However, the current results are somewhat restrictive, and we recommend further big data research and development of unified D-dimer detection methods in multiple regions.

Supporting information

S1 Table. Search strategy. (DOCX)
S2 Table. Data of the present study. (XLSX)
S1 Checklist. PRISMA checklist. (DOC)

Author Contributions

Conceptualization: DeBao Chen, JinWen Jiang.

Data curation: Yan Lu, QiaoHong Zhang, YongJun Zhang.

Methodology: QiaoHong Zhang, JianJie Lou.

Resources: DeBao Chen, JianJie Lou.

Software: YongJun Zhang.

Supervision: ChaoXiang Ren.

Validation: JinWen Jiang, ChaoXiang Ren.

Writing – original draft: Yan Lu.

Writing - review & editing: LongYi Zhang.

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer Journal for Clinicians. 2019; 69(1): 7–34. https://doi.org/10.3322/caac.21551 PMID: 30620402
- Cabuk D, Basaran G, Teomete M, Dane F, Korkmaz T, Seber S, et al. Clinical outcome of Turkish metastatic breast cancer patients with currently available treatment modalities—single center experience. Asian Pacific journal of cancer prevention: APJCP. 2014; 15(1): 117–22. https://doi.org/10.7314/apjcp. 2014.15.1.117 PMID: 24528011.
- Wu TY, Lee J. Promoting Breast Cancer Awareness and Screening Practices for Early Detection in Low-Resource Settings. 2019; 15(1): 18–25. https://doi.org/10.5152/ejbh.2018.4305 PMID: 30816360.
- Kosaka Y, Minatani N, Tanaka Y, Shida A, Kikuchi M, Nishimiya H, et al. Lymph node metastasis and high serum CEA are important prognostic factors in hormone receptor positive and HER2 negative breast cancer. Molecular and clinical oncology. 2018; 9(5): 566–74. https://doi.org/10.3892/mco.2018. 1716 PMID: 30402236.
- Shering SG, Sherry F, McDermott EW, O'Higgins NJ, Duffy MJ. Preoperative CA 15–3 concentrations predict outcome of patients with breast carcinoma. Cancer. 1998; 83(12): 2521–7. PMID: 9874458.
- Prandoni P, Falanga A, Piccioli A. Cancer and venous thromboembolism. The Lancet Oncology. 2005; 6(6): 401–10. https://doi.org/10.1016/S1470-2045(05)70207-2 PMID: 15925818.
- Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best practice & research Clinical haematology. 2009; 22(1): 49–60. <u>https://doi.org/10.1016/j.beha.2008.12.009</u> PMID: <u>19285272</u>.
- Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005; 105(1): 178–85. https://doi.org/10.1182/blood-2004-06-2272 PMID: 15367435.
- 9. Ryu SH, Min SW, Kim JH, Jeong HJ, Kim GC, Kim DK, et al. Diagnostic Significance of Fibrin Degradation Products and D-Dimer in Patients With Breast Cancer-Related Lymphedema. Annals of rehabilitation medicine. 2019; 43(1): 81–6. https://doi.org/10.5535/arm.2019.43.1.81 PMID: 30852874.
- Oya M, Akiyama Y, Okuyama T, Ishikawa H. High preoperative plasma D-dimer level is associated with advanced tumor stage and short survival after curative resection in patients with colorectal cancer. Japanese journal of clinical oncology. 2001; 31(8): 388–94. https://doi.org/10.1093/jjco/hye075 PMID: 11574632.
- 11. Inal T, Anar C, Polat G, Unsal I, Halilcolar H. The prognostic value of D-dimer in lung cancer. The clinical respiratory journal. 2015; 9(3): 305–13. https://doi.org/10.1111/crj.12144 PMID: 24720709.
- Stender MT, Larsen AC, Sall M, Thorlacius-Ussing O. D-Dimer predicts prognosis and non-resectability in patients with pancreatic cancer: a prospective cohort study. Blood Coagul Fibrinolysis. 2016; 27(5): 597–601. https://doi.org/10.1097/MBC.0000000000559 PMID: 27182687.
- 13. Zsuzsanna N. Biomarkers in solid tumors. Magyar Onkologia. 2013; 57(1): 56–62. PMID: 23573523
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology. 2010; 25(9): 603–5. https://doi. org/10.1007/s10654-010-9491-z PMID: 20652370.

- **15.** Higgins JP. Cochrane handbook for systematic reviews of interventions version 5.0. 1. The Cochrane Collaboration. http://www.cochrane-handbook.org. 2008.
- DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemporary clinical trials. 2015; 45 (Pt A): 139–45. https://doi.org/10.1016/j.cct.2015.09.002 PMID: 26343745.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997; 315(7109): 629–34. <u>https://doi.org/10.1136/bmj.315.7109.629</u> PMID: 9310563.
- Blackwell K, Haroon Z, Broadwater G, Berry D, Harris L, Iglehart JD, et al. Plasma D-dimer levels in operable breast cancer patients correlate with clinical stage and axillary lymph node status. J Clin Oncol. 2000; 18(3): 600–8. https://doi.org/10.1200/JCO.2000.18.3.600 PMID: 10653875
- Hua D. Clinical Value of Determining of plasma D-dimer in patients with breast cancer. Chinese Modern Medicine. 2004; 2(7).
- Kim HK, Song KS, Lee KR, Kang YH, Lee YJ, Lee ES. Comparison of plasma D-dimer and thrombus precursor protein in patients with operable breast cancer as a potential predictor of lymph node metastasis. Blood Coagul Fibrinolysis. 2004; 15(1): 9–13. PMID: 15166937
- Khangarot SS, Gupta N, Goswami B, Hadke NS, Lal P, Gupta N, et al. Correlation of D dimer and factor VIII levels with histopathology in patients with breast carcinoma. Cancer Biomark. 2010; 7(6): 305–14. https://doi.org/10.3233/CBM-2010-0196 PMID: 21694469
- 22. Zhao R. Correlation between plasma D-dimer levels and breast cancer. Journal of Modern laboratory medicine. 2011; 3(26).
- XIE B, Xian W, Yidi H. The Level of Plasma D-dimer Pre-and Post-Treatment in Patients with Breast Cancer and its Clinical Significance. Journal of Chinese Oncology. 2011; 17(06): 469–70.
- 24. Huang Y, Chen J, Yu N, Song S. Clinical significance of plasma D-dimeride detection in patients with breast cancer. Clinical Misdiagnosis And Mistherapy. 2012; 25(09): 79–81.
- Zhou Z. Clinical significance of plasma D-dimer level in diagnosis and prognosis of breast cancer. Pharmaceutical Biotechnology. 2012; 19(02): 162–4.
- Liu Y, Liu H. Determination and clinical significance of CA153 and D-dimer in patients with primary breast cancer. China Health Industry. 2013; 10(23): 161+3.
- Chaari M, Ayadi I, Rousseau A, Lefkou E, Van Dreden P, Sidibe F, et al. Impact of breast cancer stage, time from diagnosis and chemotherapy on plasma and cellular biomarkers of hypercoagulability. BMC Cancer. 2014; 14: 991. https://doi.org/10.1186/1471-2407-14-991 PMID: 25535397
- Yang P. Clinical significance of fibrinogen, D-dimer and antithrombin-III in patients with breast cancer. J Clin Hematol (China). 2014; 27(01): 106–7+9.
- Feng H, Cui I, Li z, Han y, Zhang p. Relationship between plasma D-D level and clinical pathologic characterstics in breast cancer. Shandong Medical Journal. 2014; 54(42): 8–10.
- CHAI Y, WANG J, LIU B. Plasma D-dimer levels in breast cancer patients correlate with axillary lymph node status. J Clin Pathol Res. 2015; 35(07): 1323–8.
- Bai Y, Shuai S, Li X. Relationship between coagulation parameters and clinicopathological features in patients with breast cancer. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine. 2017; 17(10): 110–1.
- S H, Sringeri RR, Chandra PS. Role of Plasma D-Dimer Levels in Breast Cancer Patients and Its Correlation with Clinical and Histopathological Stage. Indian J Surg Oncol. 2018; 9(3): 307–11. <u>https://doi.org/10.1007/s13193-017-0682-x PMID</u>: 30287988
- Mitter CG, Zielinski CC. Plasma levels of D-dimer: a crosslinked fibrin-degradation product in female breast cancer. Journal of cancer research and clinical oncology. 1991; 117(3): 259–62. PMID: 2033094.
- Neises M, Schafer T, Strittmatter HJ, Wischnik A, Dettmar P, Melchert F. [D-dimer and plasminogen activator of the urokinase type: personal experiences with breast cancer]. Geburtshilfe und Frauenheilkunde. 1993; 53(7): 455–60. https://doi.org/10.1055/s-2007-1022913 PMID: 8370485.