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Geniposide, an iridoid glycoside purified from the fruit of Gardenia jasminoides J.Ellis, has
been reported to possess pleiotropic activity against different diseases. In particular,
geniposide possesses a variety of biological activities and exerts good therapeutic effects
in the treatment of several strains of the influenza virus. However, themolecular mechanism
for the therapeutic effect has not been well defined. This study aimed to investigate the
mechanism of geniposide on influenza A virus (IAV). The potential targets and signaling
pathways of geniposide in the IAV infection were predicted using network pharmacology
analysis. According to the result of network pharmacology analysis, we validated the
calcium signaling pathway induced by IAV and investigated the effect of geniposide
extracted from Gardenia jasminoides J.Ellis on this pathway. The primary Gene
Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways KEGG enrichment analysis indicated that geniposide has a multi-target
and multi-pathway inhibitory effect against influenza, and one of the mechanisms involves
calcium signaling pathway. In the current study, geniposide treatment greatly decreased
the levels of RNA polymerase in HEK-293T cells infected with IAV. Knocking down CAMKII
in IAV-infected HEK-293T cells enhanced virus RNA (vRNA) production. Geniposide
treatment increased CAMKII expression after IAV infection. Meanwhile, the CREB and
c-Fos expressions were inhibited by geniposide after IAV infection. The experimental
validation data showed that the geniposide was able to alleviate extracellular Ca2+ influx,
dramatically decreased neuraminidase activity, and suppressed IAV replication in vitro via
regulating the calcium signaling pathway. These anti-IAV effects might be related to the
disrupted interplay between IAV RNA polymerase and CAMKII and the regulation of the
downstream calcium signaling pathway essential for IAV replication. Taken together, the
findings reveal a new facet of the mechanism by which geniposide fights IAV in a way that
depends on CAMKII replication.
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INTRODUCTION

Influenza A virus (IAV) is common in all age group populations.
It has been regarded as a severe public health concern. It is one of
the most common infectious diseases with a high incidence rate
and high mortality rate (Tregoning et al., 2018). Although there
are 26 licensed inactivated vaccines that are available for the
prevention of influenza, the number of the death caused by
epidemics worldwide is still estimated as 300,000–650,000
every year (Palache et al., 2014; Behzadi and Leyva-Grado,
2019). As IAV rapidly evolves through antigenic drift and
shift, new subtype strains continuously emerge (Zhang et al.,
2019b; Jia et al., 2019). For example, the most recent influenza
pandemic caused by the H1N1 pdm09 influenza virus originated
from swine spread rapidly to nearly all countries and territories
(Jain et al., 2009; Smith et al., 2009). Compared to seasonal
influenza viruses, the H1N1 pdm09 influenza virus causes
more severe disease and deaths among adults aged 18–64 years
(Writing Committee of the WHO Consultation on Clinical
Aspects of Pandemic Influenza, 2010; Chiu et al., 2011).
Human infection with H7N9 influenza viruses of avian origin
emerged in March 2013 in China, and these viruses have
continued to spread into populations with unprecedented
mortality and morbidity (Zhu et al., 2016; Su et al., 2017).
Obviously, influenza has the potential for mortality, high
mutation rates, and pandemic risk; thus, it is crucial to learn
more about the virulence and pathogenicity of influenza and
identify the targets for the development of new drugs (Generous
et al., 2014).

Antiviral drugs play a critical role in preventing influenza
epidemics and pandemics, especially for antigenically different
strains or new subtypes (Enkirch et al., 2019). Currently, the anti-
influenza drugs approved by the Federal Drug Administration
(FDA) can be divided into two classes: adamantane-basedM2 ion
channel blockers, which inhibit viral replication by preventing
endosome acidification and viral ribonucleoprotein delivery into
the cytoplasm, and neuraminidase (NA) inhibitors, which inhibit
the release of newly formed virus particles from infected cells
(Doll et al., 2017; Ison, 2017). However, surveillance research
reported almost all circulating human IAVs are adamantine-
resistant, and the virus’ resistance to NA inhibitors emerged
rapidly after the widespread application (Deyde et al., 2007;
Gubareva et al., 2017). Given the inherent limitations of drugs
targeting viral proteins, repurposed novel drugs targeting cellular
may be a promising complement (de Chassey et al., 2014).

Host cellular proteins and pathways are involved in the
influenza virus life cycle (Karlas et al., 2010; Ackerman et al.,
2018). The outcomes of influenza pathogenesis are dependent on
the interaction between the virus and the host cellular protein and
the activation of signal transduction pathways (Dai et al., 2011;
Zhao et al., 2017). The host cellular proteins and signaling
pathways may facilitate virus replication by the hijacking of
host molecular machinery required for the viral life cycle or
trigger host innate immune defense to inhibit the virus (Zhao
et al., 2017). Ca2+ influx may play a crucial role in the regulation
of influenza A entry and infection. It has been demonstrated that
influenza A infection induces Ca2+ oscillations of host cells, and

the infection is obviously attenuated by Ca2+ chelation (Fujioka
et al., 2013). As current examples showed that in the early stage of
infection, viral glycoprotein hemagglutinin (HA) binds to
voltage-dependent Ca2+ channel on the host cell surface to
induce intracellular Ca2+ oscillations and mediate IAV entry,
and subsequently evoke host cell calcium signaling pathway and
facilitate infection (Fujioka et al., 2018).

Gardenia jasminoides J.Ellis (Rubiaceae), called Zhi-Zi in the
Chinese pharmacopoeias, is an important heat-clearing and
detoxifying Chinese herb (Wang et al., 2018). It has been used
for the treatment of inflammation, acute febrile disease, ischemia/
reperfusion injury, and hepatic disorders for a long history in East
Asia (Lee et al., 2014; Oliveira et al., 2017; Rong et al., 2017; Li
et al., 2019a). Geniposide, a type of iridoid glycoside, is the main
bio-active component isolated from Gardenia jasminoides J.Ellis
(Zhou et al., 2019). Geniposide has diverse pharmacological
activities, including antioxidant, anti-inflammatory,
neuroprotective, and antithrombotic actions (Zhang et al.,
2013; Zhang et al., 2019a; Li et al., 2019b; Zhang et al., 2019c).
Moreover, accumulated pieces of evidence have verified the
antiviral properties of Geniposide, which inhibited the
infection of influenza A (H1N1) pdm09 virus, enterovirus 71
virus, and Epstein–Barr virus in vitro and in vivo (Lin et al., 2013;
Son et al., 2015; Zhang et al., 2017). Indeed, our previous study
showed that iridoid glycoside extracted from Fructus Gardeniae
inhibited extracellular Ca2+ influx induced by IAV, but the
precise mechanisms need to be disclosed (Guo et al., 2014).

In the current study, in order to better understand the
intervention mechanism of geniposide for influenza virus, we
first constructed the PPI network between influenza virus-related
molecules, and geniposide-related genes were mapped to the
network to discover the correlation between them. Then, after
module identification, the primary GO biological processes and
KEGG pathways were identified by enrichment analysis.
According to the results of the network, we validate the
calcium signaling pathway induced by the IAV and investigate
the effect of geniposide extracted from Gardenia jasminoides
J.Ellis on it. The NA activity of IAV and extracellular Ca2+ influx
were detected in MDCK cells, protein expressions in calcium
signaling (CAMK II, CREB, and c-fos) were evaluated in A549
cells, and the RNA polymerase activity of influenza virus was
determined in HEK-293T cells transfected with CAMK II siRNA.

MATERIALS AND METHODS

Biosafety Statement
All experiments involved with live IAV were carried out in the
Animal Biosafety Level 2 Laboratory (ABSL-2) in the Institute of
Chinese Materia Medica, China Academy of Chinese Medical
Sciences.

Cells and Virus Stock
MDCK, A549, and HEK-293T cells were provided by Cell
Center, Institute of Basic Medical Sciences, Peking Union
Medical College (Beijing, China) and cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco) containing 10%
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heat-inactivated FBS (Gibco). For the validation studies, A FM/
1/47 (H1N1) influenza virus (ATCC-VR-1754-ATC) was used.
The virus was propagated in 10-day-old embryonated chicken
eggs (Merial Vital Laboratory Animal Technology Co., Ltd.,
Beijing, China) according to the method previously described
(Spackman and Killian, 2014). Virus was titrated in MDCK cells
and titers (median tissue culture infective dose, TCID50)
calculated to be 10−4.5 by the Reed–Muench method
(Spackman et al., 2019).

Sample of Geniposide Extracted From
Gardenia jasminoides J.Ellis
Geniposide was extracted from Gardenia jasminoides J.Ellis with
70% ethanol, and the purity was 39.4% with the purity of iridoid
glycosides >90% detected by UV spectrophotometry.

Acquisition of Related Gene of Influenza
Virus and Geniposide
Genes related to the influenza virus were searched in the OMIM
(https://www.ncbi.nlm.nih.gov/omim/) database. Enter
geniposide into STITCH (http://stitch.embl.de/), GeneCards
(https://www.genecards.org/), and CTD (http://ctdbase.org/)
database to search for related genes.

Network Construction and Module
Identification
Influenza virus-related molecules were based on the STRING
(Version 9.05) database, and the virus-related molecules and
first-order neighbor protein interaction network were
constructed with Homo sapiens as the background.
Geniposide-related genes were mapped to this network to
understand the correlation between them. We used MCODE
(http://baderlab.org/Software/MCODE), a clustering
algorithm-based software, to identify gene network modules
and modularity of each network (Parameters: Degree Cutoff � 2,
Node Score Cutoff � 0.2, Max Depth � 100, K-core
threshold � 2).

Functional Enrichment Analysis
In this study, DAVID 6.7 (http://david.abcc.ncifcrf.gov/)
software was used for functional enrichment analysis of each
module, with species restricted toHomo sapiens. As primary GO
(Gene Ontology) biological process and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway can describe
the biological features of modules. Modified Fisher’s exact test
and Benjamini were utilized for calculating and correcting
p-value (p < 0.05).

Neuraminidase Activity of Influenza A Virus
The antiviral activity against IAV of geniposide was elevated by
NA activity assay. MDCK cells were seeded in 96-well plates at a
density of 1 × 105 cells/ml and infected with the FM/1/47 strain of
H1N1 influenza virus (100TCID50, 100 μl/well) for 1 h. Then, the
infected cells were treated with serially diluted geniposide

solutions with 320, 160, 80, and 40 μg/ml, respectively.
Ribavirin served as a reference drug, at a final concentration
of 3.13 mg/ml. After incubation at 37°C for 48 h, the cells were
harvested and NA activity was determined by NA assay kit
(Beyotime, Shanghai, China) according to the manufacturer’s
protocol.

Confocal Microscopy
MDCK cells were cultured on 35-mm glass-bottom culture
dishes (NEST, China) at a concentration of 5 × 105 cells/ml.
When the cells grew to 80%–90% confluence, influenza virus
A/FM1/47 solution (100TCID50) was added to the cultures.
After incubation at 37°C for 30 min, MDCK cells were loaded
with 10 mg/ml of fluo-3/AM probe (Invitrogen) for 30 min to
detect the intracellular calcium concentration, and then
photographed by a laser confocal microscope (Olympus,
FV1000, Japan). For the measurement of Ca2+ influx, the
samples were excited by an argon laser at 488 nm, and the
fluorescence intensity of emission was detected at the 530-nm
wavelength.

Western Blotting Assay
Post-infection of influenza virus A/FM1/47 at 12, 24, 36, and 48 h,
A549 cells were lysed in RIPA lysate buffer that was
supplemented with PMSF and protease inhibitor cocktail
(Sigma). The determination of total protein concentrations
was performed by Bicinchoninic Acid (BCA) kit to ensure
equal sample loading. Proteins were separated on 10% SDS-
PAGE gel and then transferred onto a 0.45-μm NC
membrane. After blocking with non-fat milk, the blots were
incubated with the primary antibodies: CAMKII and GAPDH
(1:2,000, Abcam, United States) and CREB and c-fos (1:1,500,
CST, United States), overnight at 4°C. Subsequently, the
secondary antibody incubation was conducted with goat anti-
rabbit IgG antibody (1:20,000) for 3 h at room temperature. Blots
were visualized by ECL and the density of bands was determined
by ImageJ software.

Dual-Luciferase Reporter Gene Assay
HEK-293T cells were transfected with CAMKII siRNA
(forward primer 5′-CACCACCAUUGAGGAGGAATT-3′
and reverse primer 5′-UUCCUCCUCAAUGGUGGUGTT-
3′) at 37°C, 5% CO2. After 12 h, the cells were co-transfected
with four plasmids containing the cDNA of RdRP (RNA-
dependent RNA polymerase) of influenza virus A/WSN/
33(H1N1) (pHW181-PB2, pHW182-PB1, pHW183-PA,
pHW185-NP) or negative control (pFlu-luc) using
Lipofectamine 3000 transfection kit (Invitrogen, United
States) according to the previous study (Wang et al., 2012).
After 12 h of transfection, the supernatant was discarded and
cells were treated with different concentrations of geniposide
(320 and 160 μg/ml) for 24 h at 37°C, 5% CO2. Luciferase
activity was finally detected by a dual-luciferase reporter
assay system (Promega, United States) according to the
manufacturer’s instructions. The relative luciferase activities
were determined by the ratio of Renilla luciferase value to firefly
luciferase value.
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Statistical Analysis
Experimental data were presented as mean ± standard error of the
mean. Differences were analyzed by GraphPad Prism 7.0 software
system with one-way analysis of variance (ANOVA), and
significant differences were determined by the Bonferroni test.
Differences were considered to be significant if p values < 0.05.

RESULTS

Related Gene of Influenza Virus and
Geniposide
Based on the OMIM database, a total of 77 genes related to
influenza viruses were obtained. A total of 35 genes related to

FIGURE1 | In the figure, the red node represents the influenza virus-relatedmolecule, the gray node represents the first-order neighbor of the influenza virus-related
molecule, and the green represents the geniposide-related molecule.

TABLE 1 | The modules from network.

Module Score Node Edge Name of nodes

1 2.973 223 663 TAS2R60, CCR7, CCL4, CXCL8, CXCR5, CXCL10, CCR1, CCR3, CXCL9, PF4, CCR2, CXCL1, CXCL12, CXCR3, CXCR4,
CXCL11, CXCL2, CCL4L1, CCL13, CCL20, CCL27, CXCL5, CX3CL1, PPBP, CCL25, CCR4, CXCR2, CXCL3, CCL1,
CXCR1, CXCL6, CX3CR1, CCR10, CXCL16, CXCR6, C3AR1, CCR9, CCR8, CCL16, GNAI2, APLN, ANXA1, APP,
GPR183, AGT, AGTR2, ACKR3, S1PR1, C5AR1, GNAI1, GNAI3, CCL28, FPR3, ADORA3, SAA1, FPR2, C3, S1PR3,
CASR, FPR1, S1PR2, GNAT3, OPRM1, PTGDR2, S1PR4, KNG1, P2RY12, GNGT2, CNR1, S1PR5, SST, C5, OPRL1,
POMC, P2RY13, APLNR, CNR2, NPY, GNB3, CORT, NPY1R, NPY2R, DRD2, DRD3, OPRK1, HCAR2, PTGER3, HRH4,
GPR18, ADORA1, OPRD1, GABBR1, GRM8, GNB4, GNG11, GNB2, GNB5, GNG4, GNG2, TAS1R3, GNB1, GRM2,
GNG7, P2RY14, PNOC, GNG10, GPR31, GNG5, HCAR3, CHRM2, GNG12, GNGT1, GNG8, GNG13, GNG3, PMCH,
GRM6, GPSM3, GRM3, ADCY4, SUCNR1, LPAR5, LPAR2, GRM4, GPR55, HCAR1, PENK, HTR1B, ADCY7, ADRA2A,
LPAR3, DRD4, OXER1, GRM7, GABBR2, PYY, LPAR1, BDKRB1, TAS2R7, ADRA2C, GAL, ADRA2B, GPER1, PDYN,
ADCY8, ADCY3, SSTR3, HRH3, ADCY5, ADCY1, ADCY6, ADCY2, NMUR1, OXGR1, GPR17, ADCY9, HTR1D, PSAP,
NPBWR1, BDKRB2, MCHR1, MCHR2, HTR1A, CHRM4, TAS2R39, TAS1R1, TAS2R41, TAS2R38, GPR37, TAS2R46,
NPY5R, NPY4R, NPBWR2, NMUR2, P2RY4, PCP2, SSTR5, SSTR2, SSTR4, HTR1F, MTNR1A, GALR2, TAS2R31,
TAS2R1, TAS1R2, TAS2R16, HTR5A, TAS2R14, HTR1E, GPSM2, NMS, NMU, TAS2R42, TAS2R19, TAS2R10,
TAS2R30, RXFP4, TAS2R40, INSL5, MTNR1B, TAS2R50, RXFP3, TAS2R4, TAS2R3, SSTR1, TAS2R5, GALR3,
TAS2R20, TAS2R13, TAS2R9, NPB, GPR37L1, PPY, HEBP1, TAS2R8, GALR1, GPSM1, TAS2R43, CCR5, NPW, CCL5,
RLN3, CCL19

2 2.923 26 76 IKBKE, OASL, ISG15, IFIT1, OAS1, RSAD2, STAT1, TRIM25, IFIT3, MX2, IFIT2, LY96, TRAF6, TRAF3, TBK1, IKBKG,
PTPN11, UBE2N, TICAM2, TLR4, TANK, DDX58, CHUK, IRF7, UBE2V1, CD14

3 1.5 6 9 CFTR, PSMB9, NFKBIB, ITCH, NFKBIA, PSME3
4 1.429 7 10 LCK, B2M, PTAFR, FCGR1A, PIK3R2, PLCG1, HLA-DPA1
5 1.4 5 7 PYCARD, NLRC4, NLRP3, IL1B, CASP1
6 1.2 5 6 JAK3, IL7, IL2RG, IL2, MAPK1
7 1 3 3 IL17RC, IL17RA, IL17F
8 1 4 4 CSF1, IL10, TIMP1, DNAJC3
9 1 3 3 NCR2, NCR1, NCR3
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geniposide were searched from databases such as STITCH,
GeneCards, and CTD.

Network and Module Identification
The PPI network constructed from virus-related molecules and
first-order neighbor consists of 2,395 nodes and 5,574 edges
(score ≥0.9). These geniposide-related genes were mapped to
PPI networks, and 17 were found to be associated with influenza
virus networks (Figure 1A). After the MCODE method, there
were nine modules that consist of more than three nodes from the
PPI network, sorted according to the score (Figure 1B; Table 1).

Functional Enrichment Analysis of Modules
Based on DAVID 6.7 (http://david.abcc.ncifcrf.gov/) software, there
were 14 pathways (p < 0.05) in Module 1: Chemokine signaling
pathway, Neuroactive ligand–receptor interaction, Taste
transduction, Cytokine–cytokine receptor interaction, Gap
junction, Melanogenesis, Progesterone-mediated oocyte
maturation, Intestinal immune network for IgA production,
Dilated cardiomyopathy, GnRH signaling pathway, Complement
and coagulation cascades, Oocyte meiosis, Vascular smooth muscle
contraction, and Calcium signaling pathway (Table 2). There were

11 pathways (p < 0.05) in Module 2: Toll-like receptor signaling
pathway, RIG-I-like receptor signaling pathway, Cytosolic DNA-
sensing pathway, Small cell lung cancer, Pathogenic Escherichia coli
infection, NOD-like receptor signaling pathway, Adipocytokine
signaling pathway, Pathways in cancer, Epithelial cell signaling
in Helicobacter pylori infection, Pancreatic cancer, and Chronic
myeloid leukemia (Table 3). There was 1 pathway (p < 0.05) in
Module 3: Proteasome (Table 4).

Module 1 is enriched with 326 GO biological processes, with 21
biological functional annotations, including 52 for cell
communication; 48 for metabolism; 40 for transport; 34 for
signal transduction; 29 for nucleobase, nucleoside, nucleotide,
and nucleic acid metabolism; 19 for biosynthesis; 19 for
behavior; 19 for ion transport; 18 for response to external
stimulus; 15 for response to stress; 12 for cell–cell signaling; 11
for response to endogenous stimulus; and 10 for protein
modification (p < 0.05). Module 2 is enriched with 113 GO
biological processes (p < 0.05). Module 3 is enriched with 64
GO biological processes (p < 0.05) (Figure 2).

Furthermore, to verify the results from GO analysis, the genes
of the Calcium signaling pathway in module 2 were enriched by
KEGG pathway analysis (Figure 3).

TABLE 2 | The pathway of module 1.

Pathway Gene p-value

Chemokine signaling pathway ADCY3, ADCY4, ADCY1, ADCY2, ADCY7, ADCY8, ADCY5, ADCY6, CXCR1, CXCR2, CXCR3,
CXCL11, CXCL12, CXCL10, GNG8, CXCR5, CXCR4, CCR10, CXCR6, GNG2, GNG3, GNG4,
GNG5, GNG7, CCL4L1, CCR9, CCR8, CCR7, PPBP, CCR5, GNB2, CCR4, GNB1, CCR3, CCR2,
CX3CR1, GNB5, GNB4, GNB3, CXCL1, CCL1, GNAI3, CXCL5, GNAI2, GNAI1, CCR1, CXCL3,
CXCL2, CXCL9, GNG13, GNG11, PF4, CXCL6, CX3CL1, GNG12, CCL5, CCL28, CCL4, CCL27,
CCL25, CCL20, CCL19, CCL16, GNGT1, GNGT2, CCL13, ADCY9, CXCL16, GNG10

1.657958766912765E-55

Neuroactive ligand–receptor interaction OPRM1, MCHR1, MCHR2, ADORA3, GABBR1, LPAR3, LPAR2, GABBR2, LPAR1, ADORA1,
S1PR2, S1PR3, AGTR2, HTR1B, HTR1A, S1PR1, GALR1, NMUR1, NMUR2, GALR3, S1PR4,
GALR2, S1PR5, HTR1D, HTR1F, HTR5A, HTR1E, PTGER3, C5AR1, NPBWR1, NPBWR2,
SSTR4, SSTR5, GRM4, GRM3, SSTR2, GRM2, SSTR3, CHRM4, SSTR1, GRM8, CHRM2, GRM7,
GRM6, C3AR1, DRD3, DRD2, OPRK1, NPY2R, DRD4, FPR1, FPR3, BDKRB1, FPR2, BDKRB2,
APLNR, HRH3, P2RY4, CNR1, CNR2, HRH4, ADRA2A, ADRA2C, ADRA2B, OPRL1, NPY1R,
NPY5R, P2RY13, P2RY14, MTNR1B, MTNR1A, OPRD1

9.657764704734148E-49

Taste transduction ADCY4, TAS2R1, TAS2R4, ADCY8, TAS2R5, ADCY6, TAS2R3, GNG13, TAS1R3, TAS1R1,
TAS1R2, TAS2R60, TAS2R46, TAS2R9, TAS2R42, TAS2R43, TAS2R8, TAS2R7, GNG3,
TAS2R20, TAS2R40, TAS2R41, GNAT3, TAS2R16, GRM4, TAS2R13, TAS2R39, TAS2R50,
TAS2R14, TAS2R19, GNB1, TAS2R38, TAS2R31, GNB3, TAS2R10

2.0267715150108459E-
38

Cytokine–cytokine receptor interaction CXCL1, CCL1, CXCL5, CXCL3, CCR1, CXCL2, CXCL9, CXCR1, PF4, CXCR2, CXCL6, CXCR3,
CX3CL1, CCL5, CXCL11, CCL4, CXCL12, CCL28, CCL27, CXCL10, CCL25, CXCR5, CCL20,
CXCR4, CXCR6, CCR10, CCL4L1, CCL19, CCL16, CCR9, CCR8, CCL13, CCR7, PPBP, CCR5,
CCR4, CCR3, CXCL16, CCR2, CX3CR1

1.4758873776336994E-
15

Gap junction ADCY3, ADCY4, ADCY1, ADCY2, GNAI3, ADCY7, GNAI2, DRD2, ADCY8, GNAI1, ADCY5,
ADCY6, LPAR1, ADCY9

9.270005860103292E-6

Melanogenesis ADCY3, ADCY4, ADCY1, ADCY2, GNAI3, GNAI2, ADCY7, ADCY8, GNAI1, ADCY5, ADCY6,
POMC, ADCY9

1.356035255661388E-4

Progesterone-mediated oocyte
maturation

ADCY3, ADCY4, ADCY1, ADCY2, GNAI3, ADCY7, GNAI2, ADCY9, GNAI1, ADCY8, ADCY5,
ADCY6

1.5948731269833238E-4

Intestinal immune network for IgA
production

CCR9, CCL25, CXCR4, CCR10, CCL28, CXCL12, CCL27 0.006412361067992899

Dilated cardiomyopathy ADCY3, ADCY4, ADCY1, ADCY2, ADCY7, ADCY9, ADCY8, ADCY5, ADCY6 0.013743836429085802
GnRH signaling pathway ADCY3, ADCY4, ADCY1, ADCY2, ADCY7, ADCY9, ADCY8, ADCY5, ADCY6 0.019520336471638235
Complement and coagulation cascades KNG1, C3AR1, C5AR1, C3, C5, BDKRB1, BDKRB2 0.031244059596336946
Oocyte meiosis ADCY3, ADCY4, ADCY1, ADCY2, ADCY7, ADCY9, ADCY8, ADCY5, ADCY6 0.03592138311782549
Vascular smooth muscle contraction ADCY3, ADCY4, ADCY1, ADCY2, ADCY7, ADCY9, ADCY8, ADCY5, ADCY6 0.039354698598733834
Calcium signaling pathway ADCY3, ADCY4, ADCY1, ADCY2, PTGER3, ADCY7, ADCY9, ADCY8, CHRM2, BDKRB1,

BDKRB2, HTR5A
0.040643127061523385
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Geniposide Inhibits Neuraminidase Activity
of Influenza A Virus
NA plays a pivotal role during the final stages of influenza virus
infection; it facilitates the release of progeny virus and the spread
from infected cells to neighboring ones. To explore the inhibitory
effect of geniposide on the IAV, the NA activity inMDCK cells was
analyzed at 48 h post infection. In the virus control group, NA
activity dramatically increased compared to the cell control group.
Geniposide dramatically decreased the NA activity at
concentrations of 320, 160, and 80 μg/ml, respectively
(Figure 4A). The results demonstrated that geniposide
significantly suppressed the IAV in MDCK cells.

Geniposide Inhibited Polymerase Activity of
IAV in HEK-293T Cells
Above, we have demonstrated the inhibitory effect of geniposide
on IAV. CAMKII is one of the crucial proteins in the calcium

signaling network. To clarify whether geniposide inhibited virus
replication in a calcium-dependent manner, IAV polymerase
activity was determined in HEK-293T cells in which CAMKII
protein expression was depleted by siRNA. When CAMKII was
knocked down, RNA polymerase activity was more attenuated.
Therefore, the activity of RNA polymerase, which is responsible
for replication and transcription, was inhibited by the knockdown
of CAMKII. It was indicated that in the viral life cycle, CAMKII
may promote viral proliferation. Geniposide treatment
remarkably decreased IAV polymerase activity at doses of 320
and 160 μg/ml; however, IAV polymerase activity was remarkably
more robust in CAMKⅡ-deficient 293T cells (Figure 4B). The
results suggested that the inhibition effect of geniposide on IAV
replication might be related to the calcium signaling pathway.

Inhibitory Effect of Geniposide on the
Influenza-Induced-Ca2+ Influx
Extracellular Ca2+ influx plays a pivotal role in IAV entry and,
subsequently, mediates calcium signaling pathway activation and
facilitates IAV infection in a host cell. To explore the effect of
geniposide on Ca2+ influx in the early stage of infection, MDCK
cells were stained with fluo-3 AM dye and fluorescence intensity
was determined by laser scanning confocal microscopy. The
results indicated that MDCK infected with IAV showed a

TABLE 3 | The pathway of module 2.

Pathway Gene p-value

Toll-like receptor signaling pathway IKBKE, TBK1, LY96, IRF7, IKBKG, TICAM2, TLR4, TRAF6, STAT1, CHUK, CD14,
TRAF3

1.2128632952757494E-
15

RIG-I-like receptor signaling pathway DDX58, IKBKE, ISG15, TBK1, IRF7, IKBKG, TRIM25, TRAF6, CHUK, TANK, TRAF3 2.6132796236858782E-
15

Cytosolic DNA-sensing pathway DDX58, IKBKE, TBK1, IRF7, IKBKG, CHUK 6.896843891896822E-7
Small cell lung cancer IKBKG, TRAF6, CHUK, TRAF3 0.0025018429161348032
Pathogenic Escherichia coli infection LY96, TLR4, CD14 0.015072927052996406
NOD-like receptor signaling pathway IKBKG, TRAF6, CHUK 0.017685026048156277
Adipocytokine signaling pathway IKBKG, CHUK, PTPN11 0.020476455840164474
Pathways in cancer IKBKG, TRAF6, STAT1, CHUK, TRAF3 0.020691625131975113
Epithelial cell signaling in Helicobacter pylori
infection

IKBKG, CHUK, PTPN11 0.021055736236424673

Pancreatic cancer IKBKG, STAT1, CHUK 0.023441273355369472
Chronic myeloid leukemia IKBKG, CHUK, PTPN11 0.02530096564417107

TABLE 4 | The pathway of module 3.

Pathway Gene p-value

Proteasome PSME3, PSMB9 0.045385433295782915

FIGURE 2 | The GO-BP classification chart of three modules.
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significant increase in [Ca2+]i at 30 min post infection. At 30 min
post infection, geniposide treatment inhibited the elevation of
[Ca2+]i significantly at the concentration of 320, 160, and 80 μg/
ml, which demonstrated that Ca2+ influx can be prevented by
geniposide in the early entry step of the replication cycle of IAV
(Figures 5A,B).

Effect of Geniposide on Calcium Signaling
Pathway in A549 Cells Infected by Influenza
A Virus
Through network construction and functional enrichment
analysis, it is shown that geniposide against influenza with the
multi-target and multi-pathway mode, and calcium is one of the
mechanisms. To verify the effect of geniposide on the calcium
signaling pathway, the protein expression of CAMKII, CREB, and
c-fos in A549 cells was determined at 24, 36, and 48 h post IAV
infection.

CAMKII expression was markedly decreased at 12, 24, 36, and
48 h post IAV infection. On the contrary, CREB and c-fos
expressions were significantly boosted at 12, 24, 36, and 48 h
post IAV infection. Geniposide treatment increased CAMKⅡ
expression in a dose-dependent manner at 12, 24, 36, and 48 h
post IAV infection. Furthermore, CREB and c-fos expressions
were inhibited by geniposide at 12, 24, and 36 h and in all time

points, respectively (Figures 6A–D). The results demonstrated
that the changes in the calcium signaling pathway induced by
IAV were reversed by geniposide treatment.

DISCUSSION

Current anti-influenza therapeutics and drugs in development
are all directly targeted proteins encoded by the virus; for
instance, oseltamivir inhibits NA, adamantanes block M2 ion
channel, and the nucleoside analog favipiravir aims at RNA-
dependent RNA polymerase (RdRP) (Goldhill et al., 2018).
Alternative antiviral approaches targeting essential host
proteins and pathways in the viral life cycle have great appeal
because they are effective against different strains of virus and less
prone to resistance. Therefore small-molecule inhibitors aiming
at host factors may temporarily block the virus cycle without
compromising its cellular functions.

Unique host genes have been validated as critical for influenza
virus replication. For example, host genes ADAMTS7, CPE,
DPP3, MST1, and PRSS12 govern inflammation (NF-κB),
cAMP/calcium signaling (CRE/CREB), and apoptosis
(Meliopoulos et al., 2012). Host factors BUB3, CCDC56,
CLTC, CYC1, NIBP, ZC3H15, C14orf173, CTNNB1, and
ANP32B showed specific inhibition effect on viral replication

FIGURE 3 | Overview of the Calcium signaling pathway. The red stars in the figure are the molecules in the module that hit the signaling pathway.
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and transcription because they decreased the relative viral RNA
polymerase activity without affecting host protein synthesis
(Watanabe et al., 2014). A genome-wide CRISPR/Cas9 screen
has discovered that host factors SLC35A1, C2CD4C, TRIM23,
PIGN, CIC, JAK2, and PIAS3 were critical for the replication of
intracellular pathogens (Han et al., 2018).

The NA of the influenza virus is a viral surface glycoprotein.
As one of the most of plays pivotal role antigens of influenza
virus, NA promotes the release of virions by cleaving sialic acid,
and viral release and spread in the respiratory tract are facilitated
(Jin et al., 2017). To explore the inhibitory effect of geniposide on
IAV, the NA activity in MDCK cells was analyzed at 48 h post
infection. The results demonstrated that geniposide at
concentrations of different doses dramatically decreased the
activity of NA that increased after virus infection, and appear
in a dose-dependent manner. The results demonstrated that
geniposide significantly reduced the increase of NA level after
virus infection, which provides evidence that geniposide exert
anti-IAV activity.

The viral RNA-dependent RNA polymerase (vRNPs) consists
of vRNA, the RNA polymerase complex (RdRp), and the nuclear

protein (NP), which are the smallest units of viral replication.
Therefore, RNA polymerase is the key to viral replication (Li
et al., 2019c). CAMKII has been identified as an antiviral host

FIGURE 4 | (A) Effect of geniposide on neuraminidase activity levels in
MDCK cells infected with IAV. Values are expressed as the mean ± SEM (n �
4), **p < 0.01 compared to the normal control group, and ##p < 0.01
compared to the virus control group. (B) Relative luciferase activity of IAV
polymerase in HEK-293T cells. Relative luciferase activity was detected using
a dual-luciferase reporter assay system. Values are expressed as the mean ±
SEM (n � 4), **p < 0.01 compared to the negative control group (NC), and
##p < 0.01 compared to the positive control group (PC).

FIGURE 5 | Effect of geniposide on [Ca2+]i levels in MDCK cells infected
with influenza virus. Values were expressed as themean fluorescence intensity
of fluo-3 with four samples in each group. In each sample, 8 randomly selected
fields were analyzed. (A) Confocal images of MDCK cells stained with
fluo-3 probe at 1 h post-infection. Green images represent fluorescence
images taken at emission of 530 nm. Grayscale images represent control
images of MDCK cells without fluo-3 staining. (B) The concentration of [Ca2+]i
was represented by mean fluorescence intensity (n � 4). **p < 0.01 compared
to cell control group, ##p < 0.01 compared to infection control group (A color
version of this figure is available in the online journal).
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FIGURE 6 | Effect of geniposide on CAMKII, CREB, and c-fos expression activated by IAV in A549 cells. Values are expressed as themean ±SEM (n � 4), **p < 0.01
and *p < 0.05 compared to the normal control group, ##p < 0.01 and #p < 0.05 compared to virus control group. (A)CAMKII, CREB, and c-fos expression were detected
by Western blotting in A549 cells at 12, 24, 36, and 48 h post infection. (B–D) The relative fold expression of CAMKII, CREB, and c-fos was calculated by the ratio of
CAMKII, CREB, and c-fos to GAPDH.
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factor that interacts with IAV polymerase. The interaction
between CAMKII and IAV polymerase plays a pivotal role in
the outcome of virus infection and antiviral immune response.
In the current study, RNA polymerase levels were remarkably
decreased in the HEK-293T cells infected with IAV by
geniposides that intervened. In an RNP reconstitution assay,
knocking down CAMKII in IAV-infected HEK-293T cells
enhanced vRNA production. The results demonstrated that
the inhibition effect of geniposide on IAV replication might
be related to the calcium signaling pathway after virus infection,
which provides evidence that geniposide exerts anti-IAV
activity.

From PPI network analysis, it is shown that 17 genes
associated with geniposide hit the PPI network against the
influenza virus, namely, CTLA4, AKT1, IL6, JUN, RAF1,
MAPK14, CASP3, PIK3CG, FOXO1, NGF, MAPK8, BCL2,
FASLG, KITLG, PTPN22, AQR, and GCG. At present, it has
been reported that the host genes of geniposide that may be
related to influenza virus include cytokines TNF-α, IFN-γ, IL-6,
IL-4, and IL-10. Geniposide can reduce tissue damage by
reducing the inflammatory cascade initiated by cytokines
TNF-α and INF-γ and IL-6 (Zhang et al., 2017). Moreover, it
has been reported that geniposide can enhance the protective
mechanism of anti-inflammation and immune regulation by
enhancing the expression of IL-4 and IL-10, so as to play an
anti-influenza role (Dai et al., 2014; Chen et al., 2015a). The
possible mechanism of geniposide’s inhibition on viral
propagation is proved to be the downregulation of the
expression of cleaved caspase 3 and reduction of caspase 3
activation. Reduce exporting ribonucleoprotein complexes
(RNPs) from the nucleus, which reduces the RNPs to be
packaged into infectious progeny virions at the cell membrane.
This achieves the purpose of inhibiting the influenza virus
(J.Wurzer et al., 2003; Chen et al., 2015b; Jiang et al., 2016).

The following genes are related to the influenza virus: CTLA4,
AKT1, JUN, RAF1, PIK3CG, FOXO1, BCL2, FASLG (FASL),
MAPK8, MAPK14, PTPN22, GCG, NGF, and KITLG.

According to the different functions of each gene, it can be
divided into positive feedback and negative feedback to inhibit
influenza virus.

Among the positive feedback genes, IAV infection affects
apoptosis in early and late infection. Bcl-2 can act as an
antagonist to cell death, and in late infection, it is pro-
apoptotic by decreasing Bcl-2 (Mehrbod et al., 2019). Studies
have shown that AKT3 induced by IAV can inhibit FoxO1, and
the FoxO pathway can inhibit IAVs infection by mediating anti-
apoptosis and anti-inflammatory reaction (Wu et al., 2020).
MAPK8 and MAPK14 are important members of the MAPKs
family, andMAP kinase controls a series of cell activities in innate
immune response and participates in the regulation of cytokine
gene expression and programmed cell death, which is closely
related to the prevention and treatment of influenza virus (Dong
et al., 2002). H1N1 infection induces an early and significant NGF
upregulation. The over-expression of NGF is likely to play a
neuroimmunomodulatory role in H1N1 infection. NGF acts on
the nociceptive fibers innervating the lower respiratory tract,
leading to enhanced neurogenic inflammation in infected

lungs (Chiaretti et al., 2013). The differential genes such as
KITLG, FOXP3, miR-451, IL-2, IL-10, IL-6, and TNF-α are
mainly involved in viral infection and the immune-
inflammatory responses. These differential genes might play a
role in preventing the host from being infected by viruses and
exerting immune regulatory effects in the cytoplasm (Lu et al.,
2019). NA is one of the two glycoproteins on the surface of
influenza virus, which cleaves terminal sialic acid residues and
promotes virus release from infected cells. Studies have shown
that gallic catechin gallic acid (GCG) has the best inhibitory effect
on NA and affects the spread of influenza virus (Nguyen et al.,
2014).

Among the negative feedback genes, the genes related to the
immune system are CTLA-4, PTPN22, and FASL. CTLA-4 is a
receptor on T cells, which not only plays a key role in the
downregulation of the antigen-activated immune response, but
also takes charge of the steady state of the immune system
through regulatory T cells (Wang et al., 2001). Thus, it plays a
key role in the pathogenesis of influenza virus and the defense
against virus infection (Ayukawa et al., 2004). Studies have shown
that PTPN22 has the function of inhibiting immune-induced
T-cell expansion/activation and immune amplification of mouse
T cells into peptides. PTPN22 encodes lymphoid phosphatase
(Lyp), which may predispose individuals to have a diminished
capacity to generate protective immunity against the influenza
virus. T-cell activation contributes to the protective immunity
after influenza (Hasegawa et al., 2004; Crabtree et al., 2016).
Therefore, the increase of this gene is not conducive to the
prevention and treatment of the influenza virus. The
upregulation of Fas expression in virus-infected cells leads to
the enhancement of apoptosis mediated by FasL, and Fas-FasL
was involved in the apoptosis of lymphocytes induced by human
influenza virus H1N1-infected monocytes through direct contact
between cells (Nichols et al., 2001).

Genes with negative feedback caused by other reasons are
AKT1, JUN, RAF1, and PIK3CG. IAV virus can activate Akt,
trigger intracellular PI3K/Akt signaling pathway, and promote
cell entry, virus protein synthesis, and virus replication (Ehrhardt
et al., 2007; Shin et al., 2007). C-jun can be activated
(phosphorylated) in the early stage of IAV infection (Ludwig
et al., 2001); downregulation of C-jun not only significantly
suppressed viral replication but also mitigated the subsequent
expression of inflammatory cytokines. Therefore, C-jun plays an
important role in virus infections and replications (J.Wurzer
et al., 2003). By using the RNA synthesis analysis system
in vitro, RAF-1 (RNA polymerase activator 1) and RAF-2 have
been identified as host factors that can stimulate RNA synthesis of
the influenza virus (Momose et al., 2001). Therefore, reducing
RAF-1 can inhibit the influenza virus from the early stage.

Gene research has gradually matured, and the above genes
have some functions in the anti-influenza virus. By increasing
positive feedback genes and reducing negative feedback genes, the
influenza virus can be prevented and treated.

However, there is no evidence that AQR is related to the
influenza virus after a keyword search.

From module enrichment analysis, the primary GO
biological processes and KEGG pathways were identified.
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The primary GO biological processes identified were involved
in cell communication (14.53%), metabolism (13.41%),
transport (11.17%), signal transduction (9.5%), response
external stimulus (5.03%), and viral life cycle (0.84%), which
might be the main mechanisms of geniposide against influenza
virus. Furthermore, nine GO biological processes were related
to the function of calcium ion and signaling pathway, namely,
cellular calcium ion homeostasis, calcium ion homeostasis,
cytosolic calcium ion homeostasis, the elevation of cytosolic
calcium ion concentration, regulation of calcium ion transport,
elevation of cytosolic calcium ion concentration during
G-protein signaling, negative regulation of calcium ion
transport via voltage-gated calcium channel activity,
regulation of calcium ion transport via voltage-gated calcium
channel activity, and negative regulation of calcium ion
transport 3, which belong to cell homeostasis, cell
communication, transport, ion transport, and signal
transduction. The results indicated that calcium ions might
play a pivotal role in geniposide inhibiting the influenza virus.

Calcium/calmodulin-dependent protein kinase (CaM kinase)
II (CAMKII) is one of the crucial proteins in the calcium signaling
network. Calcium signaling which is activated by Ca2+ is a key
regulator of IAV internalization and infection, IAV is shown to
cause Ca2+ influx. Calcium signaling is a key regulator of IAV
internalization and is a ubiquitously expressed calcium sensor
that regulates diverse cellular functions. CAMK II was confirmed
to be involved in post-entry steps of influenza virus replication by
genome-wide RNAi screens. A recent study highlighted that
diltiazem, a calcium channel blocker, significantly inhibited
viral production in human lung epithelial A549 cells (in vitro)
and (ex vivo) reconstituted the human airway epithelium (HAE)
model. Moreover, diltiazem treatment remarkably prevented
mortality and reduced weight loss in mice infected with
influenza A (H1N1) pdm09, as a promising candidate for the
treatment of influenza infections (Pizzorno et al., 2019).
Repurposing of drugs as novel influenza inhibitors from
clinical gene expression infection signatures.

From functional enrichment analysis, calcium signaling
pathway was identified in module 1, and geniposide may play
an anti-influenza virus role by inhibiting calcium influx.

To clarify whether geniposide inhibited virus replication in a
calcium-dependent manner, the activity of RNA polymerase,
which is responsible for replication and transcription, was
inhibited by knockdown of CAMKII. It was indicated that in
the viral life cycle, CAMKII may promote viral proliferation.
Geniposide treatment remarkably decreased IAV polymerase
activity. However, IAV polymerase activity was remarkably
more robust in CAMKII-deficient 293T cells. The results
suggested that the inhibition effect of geniposide on IAV
replication might be related to the calcium signaling pathway.

Extracellular Ca2+ influx plays a key role in the invasion of
IAV, which, in turn, mediates the activation of the calcium
signaling pathway and promotes host cell IAV infection. To
further investigate whether geniposide suppresses IAV
replication by decreasing extracellular Ca2+ influx, MDCK
cells were stained with fluo-3 AM dye and fluorescence
intensity was determined by laser scanning confocal

microscopy. According to the results of the fluorescence
intensity assay, geniposide significantly inhibited the
increase of [Ca2+]i in MDCK infected with IAV 30 min
after infection, indicating that geniposide prevented Ca2+

influx at the early stage of the IAV replication cycle to exert
an antiviral effect.

CAMK cascade is important for many normal physiological
processes that when misregulated can lead to a variety of disease
states of cell proliferation and apoptosis (Colomer and Means,
2007). Numerous studies have linked the transcription factor CREB
to modulation of various inflammatory mediators. CREB signaling
is an important cellular process that serves a variety of functions.
Most notably with respect to influenza infection, CREB signaling
has been shown to activate protein kinase A (PKA) and thus have a
role in protein synthesis (Meliopoulos et al., 2012; Andrews et al.,
2015). c-fos, as a CREB downstream expression factor, also plays an
important role in the virus infection. Studies have shown that c-fos
expression was significantly increased after virus infections. Upon
investigation of the underlying mechanisms, c-fos transcriptional
activating protein was demonstrated to activate the IL-6 and IL-8
promoters (Moreno et al., 2011; Peng et al., 2016). CAMKII induced
the expression of downstream factor CREB, and c-fos plays a crucial
role in Ca2+ influx post-IAV infection. CaMKII activation leads to
the inhibition of the downstream factor CREB and c-fos activity,
which results in the arrest of virus replication. It was catalyzed by
repressed IAV polymerase, which is an efficient way to suppress
virus replication. Geniposide on Ca2+ signal transduction pathway
may be related to the inhibition of the CaMKII downstream factor
CREB and c-fos activity.

To verify the inhibition of CaMKII and the activation of CREB
and c-fos induced by IAV infection, we measured CAMKII,
CREB, and c-fos expression in infected A549 cells 12, 24, 36,
and 48 h post-infection. Geniposide treatment markedly
increased CAMKII expression at the four measurement time
points post-infection. Furthermore, CREB and c-fos
expressions were inhibited by geniposide in all time points,
respectively. These results indicated that the suppression of
CAMKII and over-activation of CREB and c-fos by IAV were
changed by geniposide treatment, which provides evidence that
geniposide exerts anti-IAV activity via the changes of calcium
signaling pathway induced by IAV, and relevant results of module
enrichment analysis were verified.

Collectively, the data from the current study were consistent
with the PPI network analysis results. In conclusion, our
research indicated that geniposide sufficiently suppressed
IAV replication in vitro. These anti-IAV effects may be
directly related to the inhibition of viral proliferation by host
factors, which inhibited virus replication in a CAMKII-
dependent replication manner, preventing the over-activation
of IAV polymerase response induced by IAV infection. Taken
together, our findings reveal a new facet of the mechanism of
geniposide action against the IAV, for which it inhibited IAV
replication in disrupted interplay between IAV RNA
polymerase and CAMKII and the regulation on changes of
calcium signaling pathway essential for IAV replication. The
current study might pave the way for the development of new
antiviral agents against the influenza virus.
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