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Abstract

Objectives—Neuro-inflammation is common in α-Synucleinopathies and Tauopathies; and 

evidence suggests a link between the tyrosine kinase Abl and neurodegeneration. Abl upregulates 

α-Synuclein and promotes Tau hyper-phosphorylation (p-Tau), while Abl inhibitors facilitate 

autophagic clearance.

Methods—A model of α-Synucleinopathy harboring human mutant A53T α-Synuclein and 

exhibits concomitant increase in murine p-Tau was used to determine the immunological response 

to Abl inhibition.

Results—Age-dependent alterations of brain immunity, including loss of IL-10 and decreased 

levels of IL-2 and IL-3 were observed in old A53T mice. Brain CCL2 and CCL5 were decreased, 

but CX3CL1 remained constantly elevated. Young A53T mice exhibited differential systemic and 

central immune profiles in parallel with increased blood markers of adaptive immunity, suggesting 

an early systemic immune response. Tyrosine kinase inhibitors (TKIs), including nilotinib and 
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bosutinib reduced brain and peripheral α-Synuclein and p-Tau and modulated blood 

immunological responses. TKIs did not affect brain IL-10, but they changed the levels of all 

measured blood immune markers, except CX3CL1. TKIs altered microglia morphology and 

reduced the number of astrocyte and dendritic cells, suggesting beneficial regulation of microglia.

Conclusions—These data indicate that tyrosine kinase inhibition affects neuro-inflammation via 

early changes of the peripheral immune profile, leading to modulation of the neuro-immune 

response to α-Synuclein and p-Tau.
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Background

Inflammation is reported in several neurodegenerative diseases, including Parkinson (PD), 

Alzheimer (AD) and the Tauopathies [1]. The inflammatory response is thought to generally 

localize to areas of central nervous system (CNS) injury via communication between 

immune cells and stressed neurons. It was initially thought that α-Synuclein-related 

pathology was confined to within neurons, but recent work suggests that microglia are 

activated following the release of α-Synuclein into the extracellular space [2]. Aggregated 

forms of α-Synuclein induce microglia activation [3,4], suggesting that this may be one of 

the mechanisms of neurodegeneration [5,6]. Activated microglia are present in postmortem 

brains of patients with primary Tauopathies, including fronto-temporal dementia with 

parkinsonism linked to chromosome-17 (FTDP), progressive supranuclear palsy (PSP) and 

corticobasal degeneration (CBD) [7–9]. We demonstrated microglia activity and p-Tau 

accumulation in α-Synuclein gene transfer models [10] and conversely, α-Synuclein 

phosphorylation and accumulation together with p-Tau in lentiviral Tau models [10,11]. Cell 

culture models also demonstrate that pro-inflammatory cytokines can induce p-Tau [12–14]; 

and the endotoxin lipopolysaccharide (LPS) promotes inflammation and p-Tau accumulation 

[15], while suppression of microglia activity prolongs survival in Tau mutant P301L 

transgenic mice [16]. These findings suggest that microglia activity is associated with p-Tau 

and α-Synuclein through an underlying mechanism moderating communication between 

microglia and neurons.

The non-receptor tyrosine kinase Abelson (Abl) has been linked to inflammation in 

neurodegenerative diseases and animal models of neurodegeneration [17–19]. We 

demonstrated that Abl activation increases α-Synuclein levels in mutant A53T mice and α-

Synuclein gene transfer models [20,21]. Recent findings in rat models showed that Abl 

activation is also associated with α-Synuclein phosphorylation [22], which may be linked to 

protein aggregation [10]. In AD, Abl is also associated with neurofibrillary tangles (NFTs) 

[23–26], and it is activated in the hippocampus and entorhinal cortex in post-mortem brains 

[23,24]. Src tyrosine kinase is also recognized in AD via interaction with Tau [27–29]. We 

demonstrated that tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib 

penetrate the brain and inhibit Abl, resulting in a decrease of α-Synuclein [20–22,30] and p-

Tau levels [20,21,30–33]. Nilotinib (AMN107) is a second generation selective Bcr-Abl 

inhibitor, which is clinically effective in adult chronic myeloid leukemia (CML) [34]. 
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Because Src and Abl are structurally homologous, the dual Src/Abl TKI bosutinib (SKI-606) 

can also inhibit Abl [35].

Microglia activation has been extensively studied in the pathogenesis of neurodegenerative 

disorders; and the role of adaptive and innate CNS immunity is a growing area of interest. 

However, determining the temporal interaction between systemic and CNS immunity in 

response to protein accumulation is critical to understanding the beneficial or detrimental 

role of microglia activity at different stages of disease. These studies investigated the 

temporal changes of peripheral and CNS innate and adaptive immune response in mutant 

A53T α-Synuclein mice that exhibit murine p-Tau accumulation [21,36] with and without 

TKI-induced reduction of α-Synuclein and p-Tau. We followed the same treatment 

paradigm that we previously published using 10 mg/kg nilotinib or 5 mg/kg bosutinib every 

other day for 6 weeks [20–22,30]. We found that peripheral systemic inflammatory markers, 

reflecting the interplay between innate and adaptive immunity, change in parallel with CNS 

immunity; and these changes are reversed by nilotinib and bosutinib. The current studies 

suggest communication between peripheral and CNS immunity to modulate the 

inflammatory brain response to α-Synuclein and p-Tau.

Methods

Nilotinib and bosutinib treatment

Transgenic mice harboring the A53T mutation of α-Synuclein [36] and age-matched 

C57BL/6 mice (WT) were treated with intraperotineal (I.P) injection of either 10 mg/kg 

nilotinib or 5 mg/kg bosutinib or 3 μL dimethylsulfoxide (DMSO) every other day for 6 

weeks. All animal experiments were conducted in full compliance with the 

recommendations of Georgetown University Animal Care and Use Committee (GUAUC). 

n=20 animals were used for immunohistochemistry, n=15 for longitudinal studies, n=12 

were used for brain and blood extraction, n=20 were used for organ extraction and n=40 

were used for drug treatment. All graphs and statistical analyses were performed in Graph 

Pad Prism Software (Graph Pad Prism Software, Inc. CA. USA). All statistics were 

performed using ANOVA with Newman–Keuls multiple comparison test and data were 

expressed as Mean ± SD.

Tissue collection and Milliplex enzyme-linked immunosorbent assay (ELISA)

Animals were deeply anesthetized with a mixture of Xylazine and Ketamine (1:8), and 50–

150 μl of whole blood was collected via cardiac puncture, centrifuged at 15000×g to 

precipitate blood cells and the supernatant was examined by ELISA. To wash out the 

remaining blood from vessels and reduce contamination, animals were perfused with 10 ml 

of 1X saline for 4 min and the brain, spleen, heart, gastrocnemius muscle and small intestine 

were collected and immediately homogenized in 0.5 ml ELISA buffer. We customized a 

highly sensitive and unbiased Milliplex® MAP Kit (Cat # MPXMCYTO-70K, Millipore) 

with color-coded microspheres (beads) and fluorescent dyes, which through precise 

concentrations, the beads can simultaneously and specifically capture mouse cytokines, 

including IL6, IL-1α, IL-1β, TNF-α, IL-2, IL-3, IL-4, IL-10, VEGF, IFN-γ, CCL2, and 

CCL5. A total of 25 μL of sample was introduced into a plate containing the microspheres 
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and the reaction mixture was incubated with Streptavidin-PE conjugate and the reporter 

molecule as described in the manufacturer’s protocol. Using a Luminex® machine, 

microspheres are first passed through a laser which excites the internal dyes making the 

microspheres; and a second laser that excites the PE, which is the fluorescent dye on the 

reporter molecule, and then a high speed digital-signal processor identifies each individual 

microsphere and quantifies the bioassay.

Immunohistochemistry of brain sections

Animals were deeply anesthetized with a mixture of Xylazine and Ketamine (1:8), washed 

with 1X saline for 1 min and then perfused with 4% paraformaldehyde (PFA) for 15–20 

min. Brains were quickly dissected out and immediately stored in 4% PFA for 24 h at 4°C, 

and then transferred to 30% sucrose at 4°C for 48 h. Brains were cut using a cryostat at 4°C 

into 20-micron-thick coronal sections and stored at -20°C. Immunohistochemistry was 

performed on 20 μm-thick sections. Astrocytes were probed (1:200) with monoclonal anti-

GFAP antibody (Millipore Corporation, USA), and microglia were probed (1:200) with 

IBA-1 polyclonal antibody (Wako, USA). Dendritic cells and/or microglia were probed 

(1:200) with CD11b polyclonal antibodies (Thermo Fisher, USA). Nuclear staining with 4′,

6-Diamidino-2-Phenylindole (DAPI) was performed according to manufacturer’s protocols 

(Life Technologies, USA).

Stereological methods

Stereological methods were applied by a blinded investigator using unbiased stereology 

analysis (Stereologer, Systems Planning and Analysis, Chester, MD) to determine the total 

positive cell counts in 20 striatal fields on at least 10 brain sections (~400 positive cells per 

animal) from each animal. These areas were selected across different regions on either side 

from the point of injection and all values were averaged to account for the gradient of 

staining across 1 mm radius from the point of injection. An optical fractionator sampling 

method was used to estimate the total number of positive cells with multi-level sampling 

design. Cells were counted within the sampling frame determined optically by the 

fractionator and cells that fell within the counting frame were counted as the nuclei came 

into view while focusing through the z-axis.

Caspase-3 fluorometric activity assay

To measure caspase-3 activity in the animal models, we used EnzChek® caspase-3 assay kit 

#1 Invitrogen) on cortical extracts and Z-DEVD-AMC substrate and the absorbance was 

read according to manufacturer’s protocol.

CX3CL1 ELISA

Mouse CX3CL1 (Cayman) ELISA was performed using 50 μl (1 μg/μl) total brain or blood 

lysates, which was detected with CX3CL1 primary antibody (3 h) and 100 μl anti-rabbit 

antibody (30 min) at RT. Extracts were incubated with stabilized Chromogen for 30 min at 

RT and solution was stopped and read according to manufacturer’s protocol.
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Human α-Synuclein and p-Tau ELISA

Human α-Synuclein and p-Tau ELISA were performed using 50 μl (1 μg/μl) of brain lysates 

detected with 50 μl primary antibody (3 h) and 100 μl anti-rabbit secondary antibody (30 

min) at RT. α-Synuclein levels were measured using human specific ELISA (Invitrogen) 

according to manufacturers’ protocols. p-Tau was measured using specific p-Tau at serine 

396 according to manufacturer’s protocol.

Results

Age-dependent alterations of brain immunity in A53T mice

Age-dependent studies (Figure 1A) showed that A53T mice accumulate a significant level 

of α-Synuclein (n=5, p<0.01) and serine 396 p-Tau (n=5, p<0.05) as early as 2–3 months of 

age (Figure 1) compared to wild type (WT) C57BL/6 mice; and these levels increase further 

at 10 months (n=5, p<0.001), suggesting α-Synuclein and p-Tau accumulation in total brain 

extracts. It is important to mention that no α-Synuclein or p-Tau is expressed in the 

substantia nigra in A53T mice [21,36]. Caspase-3 activation was also significantly increased 

in young (2–3 months) and older (10 months old) A53T mice (Figure 1B, n=5, p<0.05).

Age-dependent loss of modulators of the immunological memory

We used a highly sensitive unbiased milliplex ELISA to simultaneously measure changes in 

inflammatory markers in the whole blood and total brain lysates of A53T mice. Significant 

increases in brain pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β (n=5, 

p<0.05), and a decrease in IL-1α (p<0.01) were detected in 2–3 months A53T old mice 

compared to WT (Figure 1C). No differences were observed in inflammatory profiles 

between young and older WT mice in these experiments, so WT mice were presented as one 

age group. No changes in tumor necrosis factor-α (TNF-α) were observed in young A53T 

(2–3 months) mice, but TNF-α significantly dropped at 10 months (p<0.01). Pro-

inflammatory cytokines, including IL-1α and 1β returned to WT level (Figure 1C) and IL-6 

significantly decreased below WT levels (n=5, p<0.001). IL-10 in A53T mice was 

significantly increased (Figure 1D, n=5, p<0.01) at 2–3 months, while both IL-4 and IL-10 

were significantly decreased at 10 months (p<0.001), suggesting loss of immunosuppression 

after prolonged periods of α-Synuclein and p-Tau accumulation. IL-2, which is implicated 

in T-cell (CD4+ and CD8+) proliferation, was also significantly decreased at 2–3 months 

(Figure 1E, n=5, p<0.001) and both IL-2 (p<0.001) and IL-3 (p<0.0001), which may 

stimulate proliferation of myeloid lineage cells [37], were significantly decreased at 10 

months in A53T mice (Figure 1E) compared to WT. Furthermore, interferon (IFN)-γ which 

is also critical for innate and adaptive immunity [38,39], was significantly decreased at 10 

months (Figure 1F, n=5, p<0.01), while Vascular Endothelial Growth Factor (VEGF), which 

is secreted by endothelial cells and stimulates vasculogenesis and angiogenesis in response 

to brain injury [40–44] was significantly increased (p<0.001) at 2–3 months in A53T mice 

and returned to WT level at 10 months (Figure 1F).

Chemokine (C-C motif) ligand 2 (CCL2) or the monocyte chemotactic protein-1 (MCP-1) 

recruits monocytes, memory T cells, and dendritic cells to the sites of injury [45,46]. CCL5 

is another chemotactic for T cells, eosinophils, and basophils, and plays an active role in 
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recruiting leukocytes into inflammatory sites [47,48]. CCL5 was significantly decreased in 

the brain of 2–3 months old A53T mice (Figure 1G, n=5, p<0.01), and further decrease was 

observed at 10 months in both CCL2 (n=5, p<0.05) and CCL5 (p<0.001) compared to WT. 

Soluble fractalkine (CX3CL1) attracts T cells and monocytes, while the cell-bound 

chemokine promotes adhesion of leukocytes to activated endothelial cells [49]. Importantly, 

several reports indicated a relationship between CX3CL1, which is expressed on neurons, 

and microglia activity in neurodegeneration [50,51], particularly in relation to Tau pathology 

[52,53]. Interestingly, CX3CL1 was significantly increased in the brain of 2–3 months old 

A53T mice (Figure 1G, n=5, p<0.05) and remained high at 10 months of age compared to 

WT.

Differential profiles of systemic and central immunity in A53T mice

Because we observed increased levels of inflammatory cytokines in 2–3 months old A53T 

mice inflammatory markers were measured in as early as 1–2 month old mice in total blood 

and brain lysates. Only IL-1α was significantly increased in A53T brains (Figure 2A, n=4, 

p<0.05) compared to WT, while IL-1α was decreased (p<0.05) and IL-1β was increased in 

A53T blood (Figure 2A, p<0.05) compared to WT. IL-10 was also significantly increased in 

the brain (Figure 1B, n=4, p<0.001) and the blood (p<0.05), but IL-4 did not change. A53T 

brain levels of VEGF were significantly increased compared to WT (Figure 2C, n=4, 

p<0.01) and IFN-γ was decreased (p<0.05) compared to WT. VEGF levels in total blood of 

A53T mice were increased (p<0.05) compared to WT. These data suggest changes in the 

blood immune profile simultaneously with alterations of CNS immune markers. However, 

while IL-3 was decreased in the A53T brain (Figure 2D, n=4, p<0.05) compared to WT, 

IL-2 was significantly increased in the blood (p<0.05) compared to WT, suggesting 

enhanced adaptive immunity in the blood. Additionally, CCL2 was significantly decreased 

in A53T brains (Figure 2E, n=4, p<0.05) compared to WT, but significant increases in 

CCL5 (p<0.05) and CX3CL1 (p<0.01) were observed in the A53T blood compared to WT, 

suggesting altered systemic chemotactic activities.

Nilotinib and bosutinib decrease CNS and peripheral levels of α-Synuclein and p-Tau. 

Transgenic A53T mice were intraperotineally (I.P) injected with either 10 mg/kg nilotinib or 

5 mg/kg bosutinib or 3 μL dimethylsulfoxide (DMSO) every other day for 6 weeks as we 

previously described [20–22,30]. We previously demonstrated that nilotinib and bosutinib 

penetrate the brain, inhibit Abl activity and induce autophagic clearance of α-Synuclein and 

p-Tau in A53T mice and lentiviral gene transfer models [20,21,30,32,33].

Here we show the effects of TKIs on α-Synuclein and p-Tau in brain and peripheral tissue in 

2–3 months old A53T and WT mice treated with TKIs every other day for 6 weeks. No 

differences in immunological profiles were observed in WT mice between DMSO, nilotinib 

and bosutinib treatment, so WT data were presented as only WT. As we previously 

demonstrated, α-Synuclein was significantly increased (Figure 2F, n=4, p<0.01) in A53T 

brains compared to WT, and this increase was greater (n=4, p<0.001) in older mice. 

However, both nilotinib and bosutinib reduced α-Synuclein levels (p<0.01) in young as well 

as older (p<0.01) A53T mice, which remained higher than WT. p-Tau (ser 396) was also 

significantly increased (Figure 2F, n=4, p<0.05) in young A53T brains compared to WT, 
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and this increase was greater (n=4, p<0.0001) in older mice. Nilotinib and bosutinib 

reversed p-Tau levels (p<0.05) in young as well as older (p<0.001) A53T mice, which 

remained higher than WT. Nilotinib and bosutinib also prevented the increase of caspase-3 

activity that was detected in young and old A53T mice treated with DMSO (Figure 2G, 

p<0.05) compared to WT mice. Both nilotinib and bosutinib significantly reduced p-Tau 

levels, which remained higher than control. α-Synuclein was also significantly increased in 

3–4 month old A53T mice peripheral tissues, including muscle (gastrocnemius), small 

intestine and blood (Figure 3A, n=4, p<0.05) compared to WT, and nilotinib and bosutinib 

reversed α-Synuclein levels. Similarly, p-Tau levels were also significantly increased in 

muscle, small intestine and blood (Figure 3B, n=4, p<0.05) of 3–4 months old A53T mice 

compared to WT, and nilotinib and bosutinib reduced p-Tau. No effects of TKIs were 

observed on total α-Synculein or p-Tau levels in WT mice. The decrease in α-Synuclein and 

p-Tau (threonine 231) levels were further verified by WB analysis that show a significant 

increase in α-Synuclein and p-Tau in the small intestine and gastrocnemius muscle of A53T 

mice with DMSO compared to WT (Figure 3C, p<0.05, n=4). However, nilotinib and 

bosutinib reduced the levels of both α-Synuclein and p-Tau back to WT levels, suggesting 

TKI effects on peripheral tissue.

Nilotinib and bosutinib modulate changes in blood immunological profiles of A53T mice. 

To determine the effects of α-Synuclein and p-Tau clearance in 1–2 months old mice, 

immune markers were measured in whole blood and total brain lysates after 6 week trials 

with TKIs. Only IL-1α was significantly reduced in the A53T brain (Figure 3D, n=4, 

p<0.05) compared to WT, and nilotinib and bosutinib reversed this effect in A53T but had 

no effects on WT mice (data not shown). However, the levels of IL-1α and IL-1β was 

significantly increased in the A53T blood (Figure 3F, n=5, p<0.05) compared to WT, and 

nilotinib and bosutinib reversed IL-1α and 1β levels back to WT, and significantly decreased 

IL-6 (p<0.05) compared to WT. Moreover, IL-10 was significantly increased in the A53T 

brain (Figure 3F, n=4, p<0.05) compared to WT, but neither nilotinib nor bosutinib altered 

the level of brain IL-10 in A53T brains, but they reversed it back to WT in the blood (Figure 

3G, n=4, p<0.05), suggesting that TKIs may be able to differentially modulate pro-and anti-

inflammatory innate immune changes in the blood and the brain. Furthermore, bosutinib 

significantly reduced IL-2 in the A53T brain (Figure 4A, n=5, p<0.05) compared to DMSO 

and WT. IL-2 was significantly increased in A53T blood (p<0.05) compared to WT, and 

both nilotinib and bosutinib reversed the increase of IL-2 in the blood of A53T mice back to 

WT level (Figure 4B, n=4, p<0.05). Nilotinib and bosutinib did not change the decrease of 

IL-3 levels in A53T brains (Figure 4A) but nilotinib reversed IL-3 increase in A53T blood 

(Figure 4B, n=4, p<0.05) and bosutinib reduced it below WT levels (p<0.05). Nilotinib and 

bosutinib did not affect the alteration of VEGF and IFN-γ in A53T brains compared to WT 

(Figure 4C, n=4, p<0.05), but they reversed the significant increase of VEGF in A53T blood 

compared to WT (Figure 4D, n=4, p<0.05). No significant changes were observed in CCL2 

and CCL5 in A53T compared to WT brains (Figure 4E, n=4), but CX3CL1 was increased in 

A53T brains compared to WT (Figure 4E, n=4, p<0.05) and nilotinib and bosutinib reversed 

this increase back to WT level. However, CCL5 was significantly increased in A53T blood 

compared to WT (Figure 4F, n=4, p<0.05) and nilotinib and bosutinib abrogated this effect. 
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Blood CX3CL1 was significantly increased in A53T blood compared to WT mice (Figure 

4F, n=4, p<0.001) and nilotinib and bosutinib failed to change CX3CL1 levels in the blood.

Nilotinib and bosutinib alter microglia morphology and reduce astrocyte and dendritic cells 

count. Immuno-histological staining showed increased number of ionized calcium-binding 

adapter (IBA)-1 positive microglia in the striatum of 3–4 months old A53T mice (Figure 5B, 

n=4) compared to WT (Figure 5A, n=4). Stereological counting showed a significant 

increase in microglial number in A53T striatum compared to WT (Figure 5E, n=4, p<0.05), 

and either bosutinib (Figure 5C, n=4) or nilotinib (Figure 5D, n=4) significantly increased 

the number of IBA-1-positive microglia (Figure 5E, p<0.01) compared to DMSO. 

Interestingly, microglia predominantly displayed an amoeboid-like morphology in DMSO 

treated A53T striatum (Figure 5B, insert) but this morphology appeared ramified after 

bosutinib (Figure 5C, insert) and nilotinib (Figure 5D, insert) treatment. Glial Fibrillary Acid 

Protein (GFAP) staining showed increased number of reactive astrocytes in the striatum of 

3–4 months old A53T mice (Figure 5G, n=4) compared to WT (Figure 5F, n=4). 

Stereological counting showed a significant increase in reactive astrocytes in A53T striatum 

compared to WT (Figure 5J, n=4, p<0.01), and either bosutinib (Figure 5H, n=4) or nilotinib 

(Figure 5I, n=4) reversed GFAP staining back to WT levels. CD11b staining showed 

increased number of dendritic cells in the A53T striatum (Figure 5L, n=4) compared to WT 

(Figure 5K, n=4) and stereological counting showed a significant increase in CD11b-

positive cells in A53T compared to WT (Figure 5O, n=4, p<0.001), and bosutinib (Figure 

5M, n=4) or nilotinib (Figure 5N, n=4) reversed CD11b staining, which remained higher 

than WT levels (p<0.05).

Discussion

These studies provide insights into the systemic immune response and its potential role in 

modulating innate and adaptive immunity in the brain in α-Synucleinopathies. α-Synuclein 

and p-Tau may induce a peripheral inflammatory response in parallel with CNS immune 

alterations, suggesting that Abl activity and pathogenic proteins (p-Tau and α-Synuclein) 

function within a common loop; involving local communication between microglia and 

neurons and global crosstalk between body and CNS immunity. The current studies show 

age-dependent loss of immunosuppression via IL-10 and IL-4 and increase in caspase-3 

activity in A53T brains. The early increase in IL-10 is perhaps due to an anti-inflammatory 

response, which is lost over time and results in decreased levels of the protective anti-

inflammatory response at later stages of α-Synuclein accumulation. At least in the blood, 

IL-4 stimulates T-cell proliferation and induces differentiation of B cells into plasma cells, 

thus regulating humoral and adaptive immunity, while decreasing the production of TH1 

macrophages, IFN-γ, and IL-12 [54–60]. The presence of IL-4 in extravascular tissues also 

promotes alternative activation of macrophages, which is coupled with secretion of IL-10 

and diminution of inflammation [54–60]. In the brain, however, activation of microglia may 

either be beneficial or detrimental to neuronal survival. It is possible that the observed 

increase in activated amoeboid-like microglia in young A53T mice is an early event that 

leads to production of pro-inflammatory cytokines (IL-6 and IL-1β) and caspase-3 activation 

[61], but modulation of the immune profile, via TKI, may result in ramified resting 

microglia phenotype [62], indicating a de-activated state. When microglia encounter α-
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Synuclein or p-Tau they may actively change phenotype into a classical TH1 state, which is 

induced by TH1 cytokines such as IL-1, IL-6 and TNFα. A second state of activation 

associated with the TH2 cytokine profile of IL-4, IL-10, is the alternative activation state in 

which macrophages promote angiogenesis via increased VEGF levels. The ability of 

nilotinib and bosutinib to efficiently reduce p-Tau and α-Synuclein both centrally and 

peripherally may regulate microglia activation in A53T mice, leading to beneficial 

inflammatory response.

The decreased levels of IL-2 and IL-3 in A53T mice suggest loss of the immunological 

memory, leading to alterations of adaptive immunity. IL-3 is secreted by basophils and 

activated T cells to support growth and differentiation of multipotent hematopoietic stem 

cells into myeloid or lymphoid progenitor cells [37]. In addition, IL-3 stimulates 

proliferation of granulocytes, monocytes, and dendritic cells [37]. Activated T cells can 

either induce their own, and that of other, proliferation and differentiation of T cells in 

collaboration with IL-2 [63,64]. IL-2 is normally produced by T cells during an immune 

response [65,66]. For example, antigen binding to T cell receptors stimulates the secretion of 

IL-2 and survival of antigen-specific CD4+ and CD8+ T cells [67–69]. As such, IL-2 and 

IL-3 are necessary for the development of T cell immunologic memory, which depends 

upon the expansion of the number and function of antigen-selected T cell clones. 

Furthermore, IFN-γ activates macrophages and it is critical for innate and adaptive immunity 

against viral and intracellular bacterial infections and for tumor control; and its aberrant 

expression is associated with autoimmune diseases [38,39]. Therefore, the importance of 

IFN-γ in the immune system is its immunomodulatory effects, which seem to be suppressed 

in the brain and blood of A53T mice. Furthermore, IFN-γ is produced predominantly by 

natural killer cells as part of the innate immune response, and by CD4 Th1 and CD8 

cytotoxic T cells once antigen-specific immunity develops [38,39]. However, despite the 

increased level of α-Synuclein and p-Tau in the blood and other tissues, including muscle 

and small intestine, no endogenous antibodies seem to be produced via T cell activation to 

protect against the pathogenic increase in amyloid protein in the blood or the brain. This 

suggests that T cells are either assured that the pathogenic species are not ‘foreign invaders’ 

or antigenic, or the immune system is incapable of mounting a protective strategy to degrade 

or eliminate α-Synuclein and p-Tau. However, the non-immunological autophagic clearance 

of amyloids with nilotinib and bosutinib may restrain the inflammatory response in the 

absence of immunological memory.

Chemokine brain levels, including CCL2 and CCL5 was decreased, but CX3CL1 

concentration remained high independent of the effects of TKI, suggesting altered 

chemotactic activity in the brain and blood of A53T mice. CCL2 is involved in the 

neuroinflammatory processes that take place in neurodegeneration [70]. CCL5 recruits T 

cells, eosinophils, basophils, and leukocytes into inflammatory sites, and induces the 

proliferation and activation of certain natural-killer cells with the help of particular T-cell-

released IL-2 and IFN-γ [47,48]. Therefore, the simultaneous decrease in CCL2, CCL5 as 

well as IL-2 and IFN-γ, suggests a vicious cycle that reflects failure of immunological 

counteraction of α-Synuclein and p-Tau in A53T mice. CCL2 and CCL5 play a crucial role 

in the brain, but their alterations have not been well studied in systemic immunity in 

neurodegenerative diseases. CCL2 is expressed by neurons throughout the brain [71] and its 
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expression level in glial cells is increased in epilepsy [72,73], brain ischemia [74], AD [75], 

experimental autoimmune encephalomyelitis (EAE) [76], and traumatic brain injury (TBI) 

[77]. CCL5 is a Human Immunodeficiency Virus (HIV)-suppressive factor released from 

CD8+ cells [78] and it is implicated in several human diseases [79–82].

It is important to note that the constantly elevated level of CX3CL1 was only decreased in 

the brain, but not in the blood, in A53T mice treated with nilotinib and bosutinib, suggesting 

that autophagic clearance of α-Synuclein and p-Tau may lead to attenuation of brain 

CX3CL1 level. The relationship between CX3CL1 and microglia activity has been 

extensively studied in several models of neurodegeneration, but fluctuations of soluble 

blood CX3CL1 have not been demonstrated in previous studies. We previously 

demonstrated that CX3CL1 levels are differentially altered in Tau gene transfer animal 

models that also over-express murine phosphorylated α-Synuclein [11,83]. Neurons secrete 

CX3CL1 [84], which exists in both membrane-bound and soluble forms [85].

The membrane-bound CX3CL1 can serve as an adhesion molecule for leukocytes 

expressing the fractalkine receptor (CX3CR1) [86] and soluble CX3CL1 can function as 

both a pro-inflammatory chemo-attractant that activates receptive inflammatory cells [49,87] 

and an anti-inflammatory [88], neuro-protective agent that reduces neuronal apoptosis [89]. 

Several findings suggest that deletion of CX3CR1 increases microglia activity in models of 

acute and chronic neuronal injury [90–93]. Exogenous CX3CL1 is neuro-protective in some 

models of neuro-inflammation [94,95], and disruption of CX3CL1 signaling causes 

neurotoxicity in models of systemic inflammation, PD, and amyotrophic lateral sclerosis 

[96] but protects against neuronal loss in a mouse model of focal cerebral ischemia [97]. 

Although the relationship between soluble CX3CL1 in peripheral blood and inflammatory 

diseases of the CNS has not been studied, serum CX3CL1 is increased in patients with 

multiple sclerosis [89,98], TBI [99] and HIV with CNS complications [100].

In conclusion, these studies demonstrate that nilotinib and bosutinib can reduce the levels of 

α-Synuclein and p-Tau in peripheral tissues and inside the CNS, and are therapeutic 

candidates to treat gastrointestinal complications in α-Synucleinopathies and other 

neurodegenerative diseases. Decreased inflammation may also contribute to less protein 

accumulation. TKIs may also be used to modulate the peripheral immune profile, which may 

affect CNS immunity, providing a double-edged strategy to facilitate protein degradation 

and orchestrate the systemic and CNS inflammatory response, thus mediating beneficial 

regulation of innate and adaptive immunity. The differential effects of nilotinib and 

bosutinib on the immune profile may be attributed to their potency to inhibit Abl and/or Src 

and other tyrosine kinases [34,35]. Finally, Abl and other TKIs should be explored as anti-

inflammatory agents that provide combined effects, including amyloid clearance and anti-

inflammation in neurodegenerative diseases.
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Figure 1. Age-dependent alterations of brain immunity in A53T mice
Histograms represent ELISA levels of A) α-Synuclein and p-Tau in the brain of A53T mice, 

and B) shows caspase-3 activity in young and older mice. Graphs represent the levels of 

mouse A53T brain immune markers, including C) pro-inflammatory IL-1α, IL-1β, IL-6 and 

TNF-α, D) anti-inflammatory IL-4 and IL-10, E) modulators of immune memory IL-2 and 

IL3, F) VEGF and IFN-γ and G) chemokines CCL2, CCL5 and CX3CL1. n= 5 for each 

strain at each time point. ANOVA, Neuman Keuls, Mean±SD, * indicates significantly 

different than WT with p<0.05, **p<0.01, ***p<0.001, **** p<0.0001.
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Figure 2. Differential levels of immune markers in A53T brain and blood
Histograms represent levels of A) pro-inflammatory cytokines IL-1α, IL-1β, IL-6 and TNF-

α in the brain and total blood of A53T mice, B) anti-inflammatory cytokines IL-4 and IL-10, 

C) modulators of immune memory IL-2 and IL3, D) VEGF and IFN-γ and E) chemokines 

CCL2, CCL5 and CX3CL1. n=4 for each strain at each time point. ANOVA, Neuman 

Keuls, Mean±SD, * indicates significantly different than WT with p<0.05, **p<0.01, 

***p<0.001. Histograms represent ELISA levels of F) α-Synuclein and p-Tau and G) 

caspase-3 activity in the brain of A53T mice treated I.P with 10 mg/kg nilotinib or 5 mg/kg 

bosutinib or 3 μL DMSO every other day for 6 weeks. n=4 for each strain at each time point. 

ANOVA, Neuman Keuls, Mean±SD, * indicates significantly different than WT with 

p<0.05, **p<0.01, ***p<0.001.
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Figure 3. Nilotinib and bosutinib decrease CNS and peripheral levels of α-Synuclein and p-Tau 
and modulate cytokine levels
Histograms represent ELISA levels of A) α-Synuclein and B) p-Tau in the spleen, heart, 

muscle, intestine and blood of A53T mice treated I.P with 10 mg/kg nilotinib or 5 mg/kg 

bosutinib or 3 μL DMSO every other day for 6 weeks. C) Western blot analysis on 10% S 

NuPAGE gel showing analysis of muscle and intestine homogenized in 1xSTEN buffer to 

compare nilotinib and bosutinib effects with DMSO in A53T mice. D) brain and E) blood 

levels of pro-inflammatory IL-1α, IL-1β, IL-6 and TNF-α. F) brain and G) blood levels of 

anti-inflammatory IL-4 and IL-10. n= 5 for each strain at each time point. ANOVA, Neuman 

Keuls, Mean±SD, * indicates significantly different than W, p<0.05.
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Figure 4. Nilotinib and bosutinib modulate changes in the blood immunological profiles of A53T 
mice
Histograms represent ELISA levels in A53T mice treated I.P with 10 mg/kg nilotinib or 5 

mg/kg bosutinib or 3 μL DMSO every other day for 6 weeks in A) brain and B) blood levels 

of modulators of immune memory IL-2 and IL3, C) brain and D) blood VEGF and IFN-γ 

and E) and F) blood levels chemokines CCL2, CCL5 and CX3CL1. n=5 for each strain at 

each time point. ANOVA, Neuman Keuls, Mean±SD, * indicates significantly different than 

WT with p<0.05, **p<0.01.

Hebron et al. Page 19

J Clin Cell Immunol. Author manuscript; available in PMC 2015 January 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. Nilotinib and bosutinib alter microglia morphology and reduce the number of 
astrocyte and dendritic cells
Coronal 20 μm thick brain sections show IBA-1 and nuclear DAPI staining of microglia in 

the striatum of A) WT mice, B) A53T mice treated with DMSO, insert is higher 

magnification, C) A53T mice treated with bosutinib, insert is higher magnification, and D) 
A53T mice treated with nilotinib, insert is higher magnification. E) histograms represent 

stereological quantification. Coronal 20 μm thick brain sections show GFAP and nuclear 

DAPI staining of astrocytes in the striatum of F) WT mice, G) A53T mice treated with 

DMSO, H) A53T mice treated with bosutinib, and I) A53T mice treated with nilotinib. J) 
histograms represent stereological quantification. Dendritic cells stained with CD11b and 

nuclear DAPI labeling in the striatum of K) WT mice, L) A53T mice treated with DMSO, 

M) A53T mice treated with bosutinib, and N) A53T mice treated with nilotinib. O) 
histograms represent stereological quantification. n=5 for each strain at each time point. 

n=4, ANOVA, Neuman Keuls, Mean±SD, * indicates significantly different than WT with 

p<0.05, **p<0.01.
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