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Determination of GLUT1 
Oligomerization Parameters using 
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Eric Arnoys & Larry Louters

The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis 
in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across 
different cell types can vary dramatically. Prior studies in erythrocytes—which express particularly 
high levels of GLUT1—have suggested that GLUT1 is able to form tetrameric complexes with enhanced 
transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest 
expression of GLUT1, however, is unclear. To address this question, we developed a genetically 
encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor 
Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus 
of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of 
multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled 
us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data 
provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant 
of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live 
cells.

The efficiency of glucose uptake into cells is a major determinant of bioenergetic homeostasis. Members of the 
facilitated glucose transporter/solute carrier 2A (GLUT/SLC2A) family of proteins passively transport glucose 
across the plasma membrane, primarily enabling glucose uptake from systemic circulation1. Within this fam-
ily, GLUT1 and GLUT4 are the most well studied members due to their roles in basal and insulin-stimulated 
glucose uptake, respectively. While the mechanisms that regulate GLUT4 abundance at the cell membrane have 
been the subject of intense investigation, the mechanisms that govern GLUT1 abundance at the membrane have 
received less attention. Because of its relatively ubiquitous expression and its role in basal glucose uptake, it was 
long assumed that GLUT1 is primarily regulated by transcriptional expression, with little acute regulation at the 
level of cell signaling. More recent studies, however, suggest that the subcellular localization of GLUT1 is highly 
dynamic, albeit distinct from that of GLUT42–5.

Several overlapping—and sometimes competing—mechanisms regulate the activity of GLUT1 in glucose 
transport. First among these is the differential expression of GLUT1 in distinct cell types, which can vary by 
orders of magnitude, for example in cancer versus normal cells6,7. The transcriptional programs that maintain 
the basal steady-state of GLUT1 expression in different cell types are poorly understood, though it is clear that 
GLUT1 is expressed to some degree in most cells of the body and plays an important role in basal glucose uptake. 
Various perturbations of metabolic homeostasis, including decreases in nutrient or oxygen availability, typically 
increase basal GLUT1 transcription, as do extracellular signals that promote cellular growth and proliferation8,9.

A second mechanism of GLUT1 activation involves the regulation of its subcellular distribution between 
internal vesicular compartments and the cell surface. Unlike the abundance of GLUT4 (SLC2A4) at the mem-
brane, which is more binary in nature and acutely triggered by extracellular signals such as insulin, the abundance 
of GLUT1 on the cell surface appears to be continuously titrated in response to the bioenergetic status of the 
cell, particularly with regards to the critical variable of cytoplasmic [AMP]/[ATP] ratio3. Changes in this ratio 
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differentially trigger the activity of AMP-activated kinase (AMPK), which in turn controls the activity of TXNIP, 
a protein that binds to the C-terminal domain of GLUT1 to trigger its endocytic internalization10. This same 
domain appears to be important for sorting, recycling and retention of GLUT1 in various cellular compartments, 
suggesting a complex interplay among several different proteins that differentially control the subcellular locali-
zation of GLUT1 under different physiological circumstances2,5.

A third mechanism that impinges on the activity of GLUT1 involves its ability to form higher-order mul-
timeric complexes on the plasma membrane11,12. Work primarily performed in erythrocytes has demonstrated 
that GLUT1 monomers can associate into homodimeric and homotetrameric complexes that display enhanced 
transport activity relative to monomeric transporters13,14. While these studies provide compelling evidence for 
multimerization as mechanism of regulation, it is currently unclear whether it applies only to erythrocytes—
which express unusually high levels of surface GLUT1—or can also be generally applied to other cell types with 
lower expression levels15.

An efficient and simple method to quantify the number of molecules required for physical interaction to occur 
at the plasma membrane involves the use of bioluminescent Förster resonance energy transfer (BRET) between 
a luciferase donor and a fluorescent acceptor16,17. In this proximity-dependent assay, the energy from a biolumi-
nescent reaction catalyzed by luciferase is harnessed to stimulate the fluorescence of an acceptor fluorophore that 
is typically located within 10 nm of the luciferase donor. A number of donor/acceptor pairs for BRET assays have 
been previously described, the most common of which utilize Renilla luciferase (Rluc) and a green fluorescent 
protein (GFP) derivative such as the yellow fluorescent protein (YFP)16. The sensitivity of BRET assays depends 
heavily upon the degree of spectral overlap between donor emission and acceptor excitation. Although the sensi-
tivity of the assay tends to increase along with greater spectral overlap, a greater degree of overlap also produces a 
higher signal-to-noise ratio that limits dynamic range of the assay18.

In this study we describe a new version of the traditional BRET assay using a small (19 kDa) monomeric 
luciferase derived from deep-sea shrimp (Nanoluciferase, Nluc) as a donor and the well-characterized red flu-
orescent protein mCherry as an acceptor19,20. Use of this new BRET pair overcomes some of the problems tra-
ditionally associated with BRET, as the donor and acceptor have little overlap in their emission spectra, yet can 
still produce a sensitive BRET signal due to the unusually high catalytic efficiency of Nluc19,21. Previous studies 
have demonstrated that Nluc is capable of exciting fluorophores that emit in the far-red spectrum, though this 
work utilized organic fluorophores rather than genetically encoded fluorescent proteins21,22. By tethering Nluc 
and mCherry proteins to either terminus of GLUT1, we were able to demonstrate the formation of multimeric 
complexes in live cells, while also confirming the previously described orientation of GLUT1 monomers within 
this complex. Single-molecule BRET with dual tagged GLUT1 also allowed us to estimate the distance between 
N- and C-termini in GLUT1, while saturation BRET analysis coupled with flow cytometry allowed us to estimate 
the density of GLUT1 proteins required to achieve oligomerization. This approach provides a useful framework 
for validating biochemically defined protein interactions in live cells and also allows for a more precise way 
of determining the physiological relevance of these interactions in comparison to endogenous levels of protein 
expression in biological membranes.

Results
Validation of the Genetically-Encoded BRET Pair: NanoLuciferase and mCherry.  The quantita-
tive principles governing BRET reactions are based upon equations developed by Theodor Förster for determin-
ing resonance energy transfer between two fluorophores (FRET)16,23. For the purposes of determining the degree 
of association between molecules in the two-dimensional plane of a biological membrane, the two key factors of 
interest are the efficiency of resonance energy transfer (E) between a given donor/acceptor pair, and the distance 
at which this efficiency is at 50%, defined as the Förster radius (R0)24. These two factors are related by the Förster 
equation (equation 1), which specifies that BRET efficiency is proportional to the sixth power of the ratio between 
the actual distance between donor and acceptor (R) and the Förster radius.

= +E R R1/[1 ( / ) ] (1)0
6

The Förster radius is a unique value for every donor/acceptor pair that can be calculated using four essential 
variables that are specific to a given BRET assay (equation 2). These variables include the orientation factor (κ​)  
between the donor and acceptor, the quantum yield of the donor luciferase (Φ​0), the refractive index of the 
assay medium (n), and the degree of overlap (J) between the donor emission spectrum and acceptor excitation 
spectrum.
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Assuming that both the donor and acceptor molecules in a given BRET assay are free from rotational constraints, 
a dipole orientation factor of 2/3 can be assigned for determination of the Förster radius25. The other three varia-
bles must be experimentally determined for specific donor/acceptor pairs.

Previous BRET pairs using firefly or Renilla luciferase suffer from a lack of dynamic range due to their use 
of donor/acceptor pairs with relatively poor spectral separation16. To improve this critical aspect of BRET, we 
reasoned that use of a brighter donor would allow us to use an acceptor with greater spectral separation without 
losing detectable BRET emission. To this end we chose Nanoluciferase (Nluc) as a donor due to the fact that is has 
a turnover rate more than 100 times higher than that of firefly luciferase (Fluc) or Renilla luciferase (Rluc)19. The 
reaction catalyzed by Nluc is spectrally similar to that of Rluc, emitting light in the blue spectrum with a peak at 
460 nm (Fig. 1a). Furthermore, the quantum yield of this enzyme has previously been published, allowing us to 
calculate the theoretical Förster radius with a variety of red-shifted acceptor proteins with published extinction 
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coefficients20,26. These data were used to generate a table of theoretical values for several monomeric BRET accep-
tors (Table 1)25.

Among the various monomeric fluorescent acceptor proteins we considered, we chose to work with mCherry 
as an acceptor due to its large spectral separation from Nluc (Table 1). Using mCherry provides an exceedingly 
low theoretical “background BRET ratio” (610 nm/410 nm for Nluc only), which is coupled with a reasonable 
fluorescent brightness compared to similarly red-shifted acceptors (Fig. 1a; Table 1). Though other fluorescent 
acceptors would potentially work as well or better in BRET assays with Nluc, use of mCherry as an acceptor 
emphasizes the particular utility of Nluc as a donor to significantly red-shifted proteins in BRET assays.

To empirically test the efficiency of the Nluc-mCherry BRET pair and validate its predicted Förster radius, 
we produced a series of mCherry-Nluc fusion proteins linked by a repeat peptide of known dimensions24. These 
proteins were transfected into 293FT-HEK cells in a 96-well format and assayed using a luminescence plate reader 
equipped with filters capable of separating the Nluc and mCherry spectra (Fig. 1a). Using this approach we deter-
mined the efficiency of resonance energy transfer (ERET) for each fusion construct according to equation 3, which 
relates the ratio of donor emission to acceptor emission (410/610 nm) in the presence of either the donor alone 
(ID) or both the donor and acceptor (IDA).

= −E I I1 ( / ) (3)RET DA D

A plot of these data as a function of the number of hexapeptide linker repeats clearly demonstrates that increas-
ing the number of repeats leads to a decrease in BRET efficiency, as would be predicted by the Förster equation 
(Fig. 1b).

The hexapeptide linker (GGSGGS) produces a tertiary fold of known diameter24, which further allowed us to fit 
the BRET efficiency data to the Förster equation along with calculated Förster radius of 37.1 angstroms (Table 1). 
Fitting of our measured efficiency data to this equation with actual distances (R) between Nluc and mCherry in 
our series of linker fusion proteins produced a highly significant correlation of 0.9995 (Fig. 1c). Importantly, the 
background signal of Nluc alone is extremely low (ID =​ 0.0033 +/− 0.0003), which allows us to measure changes in 

Figure 1.  Determination of BRET parameters for the Nanoluciferase/mCherry combination. (a) The 
normalized emission spectrum of Nanoluciferase (NanoLuc) and excitation spectrum of mCherry are shown 
in relation to the filter sets used to detect emission from each molecule. Nluc emission was detected using 
a 410 nm peak filter with an 80 nm bandwidth (blue shading), while mCherry emission was detected with a 
610 nm longpass filter (red shading). Both filter sets optimally detect light well outside of the overlap region 
in which bioluminescent resonance energy transfer occurs. (b) The resonance energy transfer efficiency (ERET, 
equation 3) was calculated from spectral emission data for a series of vectors in which mCherry and Nluc 
were tethered by different numbers of a hexapeptide repeat (inset) of known dimensions. Error bars represent 
standard deviation of averaged values across three separate experiments. (c) Fitting of RET efficiency values 
and physical distances between mCherry and Nluc to the Förster equation using a Förster radius of 37.1 
angstroms (see Table 1) gives a line fit of r2 =​ 0.9995, demonstrating good correlation of experimental data to the 
theoretically predicted value.
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BRET ratio without dampening due to high background noise (Supplemental Figure 1). These data provide strong 
empirical validity for the use of Nluc and mCherry as a viable donor/acceptor pair in BRET assays.

Assignment of distance between the N- and C-termini of GLUT1 using BRET.  The hexapeptide 
linker series we created produces data that fit well in the linear portion of the Förster equation (equation 1), allow-
ing us to produce a standard curve by which the distance between Nluc and mCherry can be calculated using 
linkers of unknown dimensions (Fig. 2c). With this principle in mind, we fused mCherry to the N-terminus of the 
glucose transporter GLUT1 and Nluc to the C-terminus to create a fusion protein in which the donor and accep-
tor interact at a fixed distance in transfected cells (Fig. 2a). The BRET ratio (610/410 nm) created by this construct 
fit within the calibrated hexapeptide linker series we had previously tested, allowing us to determine the aver-
age distance between the N- and C-termini of GLUT1. Our data suggest an average distance of 28.28 +​/− 7.61  
angstroms typically separates these two domains when GLUT1 is inserted into the membrane of cells (Fig. 2b), 
which is a reasonable estimate based on the crystal structure and homology model of human GLUT127,28.

Estimation of molecular density required for oligomerization of GLUT1 on the plasma  
membrane.  We noticed that the BRET signal produced by our mCherry-GLUT1-Nluc fusion protein 
increased as a function of increasing plasmid transfection (Fig. 3a). This finding was unexpected since the BRET 
ratio for mCherry-Nluc fusion proteins typically remains constant regardless of the amount of vector transfected 
into cells due to the 1:1 stoichiometry of donor:acceptor and fixed distance between them. In contrast, the GLUT1 
dual fusion protein demonstrates saturation kinetics that would be expected of a fixed amount of donor being 
titrated with increasing concentrations of acceptor (Fig. 3a).

To explain this unexpected result, we hypothesize that two modes of resonance energy transfer are occurring 
in cells transfected with mCherry-GLUT1-Nluc. The corrected BRET ratio produced at low levels of expres-
sion reflects “intramolecular BRET” between the N- and C-termini of GLUT1 molecules, which remains con-
stant when mCherry-GLUT1-Nluc exists in a monomeric state. In contrast, the increased BRET signal seen with 
increasing expression levels of mCherry-GLUT1-Nluc can be accounted for by “intermolecular BRET” between 
molecules of a multimer in which light emitted from the Nluc donor on one mCherry-GLUT1-Nluc protein 
activates the fluorescence of mCherry on a juxtaposed fusion protein (Fig. 3b). These data would explain the 
saturation kinetics of our data and can be further confirmed using co-transfection of individually labeled GLUT1 
proteins.

Given the saturation kinetics we observed for intermolecular BRET with the dual-labeled GLUT1 fusion pro-
tein, we hypothesized that it might be possible to estimate the number of GLUT1 molecules required to induce 
multimerization on the surface of 293FT cells. In this system, the number of mCherry molecules is equiva-
lent to that of the GLUT1 proteins to which they are fused, indicating that accurate quantification of mCherry 
abundance relative to the BRET ratio would provide an estimate of the number of fusion proteins necessary 
to induce intermolecular BRET, which serves as a proxy for oligomerization. To quantify the average num-
ber of mCherry-GLUT1-Nluc proteins present in cells after transfection, we produced a standard curve using 
mCherry-coated beads whose fluorescence could be measured by flow cytometry (Fig. 3c). These beads are 
calibrated to specific MESF (molecular equivalent of soluble fluorophore) values, which provide a correlation 
between fluorescent intensity and molecular abundance.

Using the settings derived from mCherry beads, we then measured the fluorescent intensity of cells trans-
fected with different amounts of the mCherry-GLUT1-Nluc. After converting the fluorescent intensities of each 
cell population to an MESF value, we plotted each MESF against corrected BRET ratios (BRET signal minus 
Nluc-only signal) and fit them to a hyperbolic saturation curve (Fig. 3d). These data produced an EC50 value of 
8.40 ×​ 105+​/−​1.58 ×​ 105 molecules/cell, suggesting that approximately this number of GLUT1 proteins must be 

Fluorescent 
Protein

Extinction 
Coefficient 

(M−1cm−1) ε

Fluorescence 
Quantum 

Yield Φ
Brightness 

(ε•Φ)

Spectral 
Overlap 
(x1014)

Theoretical 
Förster 

Radius (Å)

Acceptor 
Emission 

Maximum 
(nm)

Peak 
Emission 

Shift 
(nm)*​

Background 
Nanoluc 
Signal**​

mCherry 72000 0.22 15840 4.19 37.1 610 160 0.06

mPlum 41000 0.01 410 2.4 33.8 649 199 0.06

mStrawberry 90000 0.29 26100 6.64 40.1 596 146 0.11

mTangerine 38000 0.3 11400 2.9 34.9 585 135 0.14

mOrange2 58000 0.6 34800 5.39 38.7 565 115 0.34

mKO 51600 0.6 30960 4.68 37.8 559 109 0.39

mBanana 6000 0.7 4200 0.73 27.7 553 103 0.43

Citrine (YFP) 77000 0.76 58520 7.66 41.0 529 79 1.21

Emerald GFP 57500 0.68 39100 13.7 45.2 509 59 1.70

mHoneydew 17000 0.12 2040 5.47 38.8 562 112 2.11

Cerulean (CFP) 43000 0.62 26660 9.86 42.8 475 25 4.54

Table 1.  Theoretical BRET Values for NanoLuciferase Donor and Fluorescent Protein Acceptor Pairs.  
(*the peak emission shift was calculated by subtracting the Nluc emission maximum [450 nm] from the 
acceptor protein emission maximum; **the theoretical background BRET ratio was calculated by taking the 
ratio of light emitted by Nluc alone at the acceptor emission maxima divided by the measured donor wavelength 
[410 nm]).
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expressed in a 293FT cells in order for 50% of the molecules to be involved in multimeric complexes. Importantly, 
parallel experiments with a mCherry-2xlinker-Nluc fusion protein connected by two hexapeptide repeats failed 
to display saturation BRET kinetics, and instead produced a linear curve fit in which the BRET ratio remained 
the same regardless of the number of fusion protein expressed (Fig. 3d). These data support the hypothesis that 
mCherry-GLUT1-Nluc forms higher-order multimers in the membrane, while other soluble mCherry-Nluc 
fusion proteins do not.

Validation of intermolecular BRET with individually tagged GLUT1 monomers.  To further con-
firm that intermolecular BRET could be used to investigate the multimerization kinetics of GLUT1, we individ-
ually fused either Nluc or mCherry to the N-terminus of GLUT1 (Fig. 4a). When expressed in 293FT-HEK cells, 
these constructs produced single proteins at the predicted molecular weight, which could be detected along with 
the endogenous GLUT1 protein expressed by these cells (Fig. 4b). Importantly, all of the various fusion proteins 
increased 2-deoxyglucose transport into transfected cells, indicating that they are functionally active and properly 
transported to the plasma membrane (Fig. 4c).

To demonstrate that the BRET signals detected by co-transfection of individually tagged proteins result from 
physical interactions within a single membrane, we performed a control experiment in which the same amount 
of plasmid DNA for Nluc-GLUT1 and mCherry-GLUT1 were transfected into either the same 293FT cells (cis 
transfection) or into two separate cell populations that were subsequently mixed at a 1:1 ratio (trans transfection). 
Using filtered luminescence on our plate reader, we then measured the donor (410/80 nm filter) and acceptor 
(610 nm long-pass filter) emission signals generated by addition of the Nluc substrate furimazine. In addition 
we used the standard monochromater function on the same plate reader to measure mCherry fluorescence after 
excitation with 587 nm light. As expected, we observed a dose-dependent increase in total Nluc emission and 
mCherry fluorescence as a function of the amount of DNA transfected into each well (Fig. 4d,e). Using filtered 
luminescence measurement of the BRET signal produced by these experiments, however, we only detected a 
dose-dependent increase in BRET for the cells transfected in cis, whereas the cells transfected in trans displayed 
the same BRET ratio as observed for cells transfected with Nluc-GLUT1 only (Fig. 4f).

To further validate these findings, we also measured the complete emission spectrum of Nluc-Glut1 in the 
presence or absence of a doxycycline-inducible mCherry-Glut1 fusion protein using the monochromator func-
tion on our plate reader (Supplemental Figure 1a). When the mCherry-Glut1 is present, an upward shift in signal 
is seen in the region corresponding to the emission spectrum of mCherry (Fig. 1a, Supplemental Figure 1b). 

Figure 2.  Determination of the distance between N- and C-termini of GLUT1 using BRET. (a) Cartoon 
diagrams of the vectors used for determination of BRET values for dual-labeled GLUT1. The background 
BRET ratio (610 nm/410 nm signal) was determined using GLUT1 fused to Nluc alone, while a dual-tagged 
vector with mCherry linked to the N-terminus and Nluc linked to the C-terminus was used to measure the 
average distance between these two sites. (b) Absolute BRET ratios are shown for each of the indicated fusion 
constructs, with error bars representing standard deviations of triplicate experiments. The BRET ratio for the 
dual-tagged GLUT1 lies within the range of values determined for the linker vector series. (c) The linker vector 
series was used to create a calibration curve relating distance to linker number, and therefore BRET ratio. 
Fitting of the data derived from the dual-tagged GLUT1 vector to this curve produced an estimated distance of 
28.28 +/− 7.61 angstroms between the N- and C-termini of GLUT1.
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Disruption of cell membrane complexes using detergents has no effect on Nluc activity, but results in a clear loss 
of resonant energy transfer to mCherry, demonstrating the requirement of membrane co-localization for BRET to 
occur (Supplemental Figure 1c–e). These data indicate that intermolecular BRET signals from separately tagged 
GLUT1 molecules represent true physical interactions between GLUT1 monomers rather than non-specific acti-
vation of the acceptor by light scattering within the well plate assay.

Determination of monomer orientation in GLUT1 multimers.  Prior studies of GLUT1 in human 
erythrocytes have suggested that GLUT1 monomers interact in a specific orientation to form dimers, which 
then further organize into tetramers11,14. While the specific structural features of these higher order complexes 
have not been solved, studies with GLUT1/GLUT4 chimeras indicate that GLUT1 dimers form via interactions 
between the N-termini of juxtaposed monomers, likely at the interface between transmembrane helices 5 and 211.  
In contrast, work with GLUT1/GLUT3 chimeras suggests that the formation of tetramers seems to involve 
C-terminal interactions mediated at least in part by transmembrane helix 912. Because the maximum BRET ratio 
(BRETmax) that can be achieved is a function of distance between the donor and acceptor, we reasoned that satu-
ration BRET assays using different combinations of Nluc and mCherry tagged GLUT1 could be used to test this 
model of GLUT1 oligomerization16.

To perform saturation BRET assays, we transiently transfected 293FT cells with a fixed amount of 
Nluc-GLUT1 and increasing amounts of mCherry-GLUT1, while varying the location of the epitope tags on 
either terminus of the recombinant GLUT1 fusion proteins (Fig. 5a,c). As controls, we also performed the 

Figure 3.  Saturation BRET analysis with dual-tagged GLUT1 indicates the formation of higher-order 
homomeric complexes. (a) Transfection of increasing amounts of plasmid vector encoding the GLUT1 dual-
tagged vector produces a saturable increase in corrected BRET values, determined by subtracting the Nluc-
GLUT only BRET ratio from the absolute BRET ratio for each experimental replicate. Error bars represent 
standard deviation of averaged values across three separate experiments (R2 =​ 0.996). (b) Cartoon diagram 
of distinct modes of BRET that are proposed to interpret the non-linear increase in BRET signal associated 
with increasing expression of mCherry-GLUT1-Nluc. Saturability is indicative of resonant energy transfer 
between aggregated fusion proteins (intermolecular BRET), and occurs in addition to the local transfer of 
energy between the N- and C-termini of monomers (intramolecular BRET). (c) Standard curve of fluorescent 
intensity versus MESF (molecular equivalents of soluble fluorophore) for mCherry beads, which was used to 
estimate the number of mCherry-Glut1-Nluc fusion proteins expressed in 293FT cells by transient transfection. 
External lines (black) represent 95% confidence intervals for the line-fitted data (gray, R2 =​ 0.9611). Error bars 
represent standard deviations of four separate cytometry runs using identical laser settings on the cytometer. 
(d) Comparison of BRET values and molecular equivalent of soluble fluorophore (MESF) values derived from 
cells transfected with the dual-tagged GLUT1 (blue, R2 =​ 0.949) versus those transfected with a mCherry-Nluc 
fusion vector (red, mCherry-2x linker-Nluc). Error bars represent standard deviation of averaged values across 
three separate experiments.
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saturation BRET transfections with soluble mCherry only and a generic membrane protein (CD44-mCherry), 
which were predicted to produce no change in BRET ratio or an increase in signal due to non-specific mem-
brane saturation, respectively. The data for each acceptor/donor combination were fit to standard binding curves, 
from which the maximum BRET ratio (BRETmax) and effective concentration at half BRETmax (EC50) could be 
determined in terms of plasmid ratios. In this context, BRETmax values are proportional to the distance between 
donor and acceptor, whereas EC50 values represent the relative affinity between donor and acceptor. These exper-
iments clearly demonstrate that the closest association and highest relative affinity between Nluc and mCherry 
are achieved by transfecting cells with GLUT1 monomers bearing both fusion tags on N-termini (Fig. 5b). 
Furthermore, adding the mCherry acceptor to the C-terminus of GLUT1 had little more effect than when 
GLUT1-Nluc fusion proteins were transfected with the non-specific acceptor protein CD44-mCherry, suggesting 
that GLUT1 oligomers primarily form by orienting their N-termini together in close apposition (Fig. 5b,d).

Figure 4.  Validation of intermolecular BRET with separate GLUT1 fusion proteins. (a) Cartoon diagrams of 
the vectors used for determination of BRET values with individually labeled GLUT1 monomers fused to either 
Nluc or mCherry at the N-terminus. (b) Transient expression of the various GLUT1 fusion proteins in HEK-293FT 
cell lysates. The size of each fusion protein is consistent with expected molecular weights relative to the indicated 
mass ladder. Area in the box at 44 kilodaltons represents signal from β​-actin (680 nm channel) that bled over 
into the Glut1 scan (800 nm channel). (c) Uptake of 2-deoxyglucose by HEK-293FT cells that were transfected 
with the indicated GLUT1 fusion proteins. Uptake assays were performed at a density of 5.0 ×​ 104 cells/well at 72 
after transfection. (d) Raw 410/80 nm signals are shown for cells that were transiently transfected with increasing 
amounts of Nluc-GLUT1 and mCherry-GLUT1. Transfection in cis represents cells that received both vectors 
simultaneously, while transfection in trans represents a 50:50 mix of cells that received only one of the two vectors 
transfected separately. Values represent the average of duplicate wells. (e) Raw mCherry fluorescence values 
(Ex: 585 nm, Em: 610 nm, monochrometer) are shown for the same cells as in D. Values represent the average of 
duplicate wells. (f) Absolute BRET ratios are shown for the same cells as in D. Actual resonance energy transfer is 
only occurring in cells that display BRET ratios above the background for Nluc only.
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Figure 5.  Intermolecular BRET between GLUT1 monomers suggests N-to-N terminal orientation occurs 
first in higher order complexes. (a) Cartoon diagrams of the vectors used in panel B for determination of 
BRET values with individually labeled GLUT1 monomers. Nluc was fused to the N-terminus of GLUT1 as 
donor, whereas the mCherry acceptor was fused to either terminus of GLUT1 or to the intracellular C-terminus 
of CD44 as a non-specific control. (b) Corrected BRET values are shown as a function of acceptor: donor ratio 
[A]/[D] in terms of plasmid concentration. The data for each acceptor/donor combination were fit to standard 
binding curves, from which the maximum BRET ratio (BRETmax) and effective concentration at 50% BRETmax 
(EC50) could be determined in terms of plasmid ratios. BRETmax values are proportional to the distance between 
donor and acceptor, whereas EC50 values represent the relative affinity between donor and acceptor. As a 
negative control, soluble Nluc was co-transfected with mCherry-GLUT1 (gray data points) to demonstrate 
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As expected, the BRET interactions between these individually tagged GLUT1 proteins could be completely 
competed away by co-transfecting increasing amounts of unlabeled GLUT1 along with the donor and acceptor 
fusion proteins. In contrast, co-transfection of unlabeled GLUT1 with the dual-tagged mCherry-GLUT1-Nluc 
fusion protein only decreased its BRET signal to that seen with monomeric concentrations of the protein (Fig. 5e). 
Together these data support the idea that individual GLUT1 monomers can interact in stable, homomeric com-
plexes if expressed at sufficient levels, and that these complexes primarily form via N-terminal interactions with 
each other.

Stable saturation BRET analysis of GLUT1 complexes in renal cells.  Having confirmed with 
our BRET system that GLUT1 monomers can form higher order complexes that preferentially associate via 
N-terminal interactions, we further determined the relative amount of GLUT1 required to achieve this interac-
tion. To perform the saturation BRET assay between Nluc-GLUT1 and mCherry-GLUT1, we utilized the Tet3G 
inducible expression system engineered into a Sleeping Beauty (SB) transposable element vector (pT2) to allow 
for stable expression in 293FT-HEK cells29,30. In this system, Nluc-GLUT1 and the Tet3G transactivator protein 
are both constitutively expressed at moderate levels using the human elongation factor 1-alpha (EF1α​) promoter 
(Fig. 6a), which is less prone to epigenetic silencing than the CMV promoter found in the pcDNA3.1 vector we 
used for transient transfection. Expression of mCherry-GLUT1 was in turn controlled by the Tet3G responsive 
element (TRE) promoter, which is bound and transcriptionally activated by Tet3G in a dose-responsive fashion 
by addition of the tetracycline analog doxycycline (Fig. 6a, Supplemental Figure 1a). These three vectors were 
co-transfected into 293FT cells along with the SB transposase, which allows for stable insertion of the expression 
cassette flanked by inverted terminal repeats (ITR) that this enzyme recognizes (Fig. 6a).

After selection of stable polyclonal cell lines (293FT/doxGB1) with puromycin, we induced expression of 
mCherry-GLUT1 with a 2-fold serial dilution of doxycycline for 48 hours to determine the amount of drug 
required to saturate cells with Glut1. Interestingly, we found that increased expression of the mCherry-GLUT1 
fusion protein by doxycycline also resulted in accumulation of both Nluc-GLUT1 and endogenous GLUT1 
(Fig. 6b). This finding suggests that the cellular machinery responsible for turnover of endogenous GLUT1 
becomes progressively saturated with mCherry-GLUT1 and is unable to sustain removal of any of the three iso-
forms. As such, we were unable to use flow cytometry as a proxy for total Glut1 abundance, since the quantity of 
mCherry-Glut1 in cells is not directly proportional to the total abundance of Glut1 in cells.

As an alternative approach, we analyzed doxycycline-induced cells in parallel with immunoblot and BRET 
assay to determine the relative amount of mCherry-GLUT1 expression that would be required to form multimers 
capable of resonant energy transfer. The corrected BRET values were compared to concentrations of doxycycline 
(Fig. 6c) and to the relative amount of mCherry-GLUT1 protein (Fig. 6d), which was determined by compar-
ing the pixel intensity of the mCherry-Glut1 band on immunblots to the pixel intensity of endogenous Glut1. 
Both data sets were then fit to hyperbolic saturation curves from which EC50 values could be calculated. Our 
data indicate that ~50% of mCherry-GLUT1 proteins are involved in higher order, multimeric complexes at 
4.69 +/− 0.25 ng/mL of doxycycline, which corresponds to an expression level of about 3-fold over endogenous 
GLUT1 expressed in 293FT cells.

Discussion
Development of simple, cost-effective assays for quantifying protein-protein interactions is critical for vali-
dating the wealth of data emerging from shotgun proteomic screens of affinity purified protein complexes. 
Bioluminescent Förster resonance energy transfer (BRET) has become a method of choice for studying 
protein-protein interactions between membrane proteins due to its ability to be measured in live cells using a 
simple plate reader format. Previous iterations of the methodology using firefly or Renilla luciferase BRET donors 
have demonstrated the broad utility of BRET for molecular and cellular biology studies, despite the relatively 
limited dynamic range of these assays16,17,24. More recent development of Nanoluciferase (Nluc) from a species of 
deep-sea shrimp has provided a significantly “brighter” BRET donor that has been harnessed for the development 
of “nanoBRET” assays19. Until now this methodology has been utilized only with chemically conjugated organic 
BRET acceptors, though it is theoretically amenable to use with genetically encoded protein acceptors as well21,22.

In this study, we describe a new variant of “nanoBRET” using Nluc and the red fluorescent protein mCherry. 
This specific BRET pair was chosen due to the large spectral separation between Nluc and mCherry emission 
maxima, which generates an exceedingly low background BRET ratio using the filter sets described above. This 
characteristic is important for generating reproducible BRET data across a large range of acceptor concentrations, 
particularly at concentrations far below saturation. Our empirical values for this BRET pair fit remarkably well 

the necessity of membrane localization for BRET to occur. Error bars represent standard deviation of averaged 
triplicate values for a representative experiment. (c) Cartoon diagrams of the vectors used in panel D, using 
Nluc fused to the C-terminus of GLUT1 as the BRET donor. (d) Corrected BRET values are shown as a function 
of acceptor:donor ratio [A]/[D] in terms of plasmid concentration, as in panel B. (e) Corrected BRET values 
for an unlabeled competition assay are shown as a function of the ratio between unlabeled GLUT1, and the 
combination of Nluc-GLUT1 and mCherry-GLUT1. The intermolecular BRET signal produced by transfecting 
the donor and acceptor as separate fusion proteins (red line) could be competed down to background levels 
of signal (green and purple lines), whereas the BRET signal produced using the mCherry-GLUT1-Nluc dual 
fusion protein (blue line) could only be competed down to the level generated by intramolecular BRET between 
the N- and C-termini of GLUT1.
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Figure 6.  Determination of the relative GLUT1 density required for the formation of higher order 
membrane complexes. (a) Maps of the Sleeping Beauty transposable element vectors used for stable integration 
of Nluc-GLUT1 and a tetracycline-inducible mCherry-GLUT1 into transfected cells. (b) Stable 293FT/Nluc-
GLUT1 (control) or inducible 293FT/doxGB1 cells were induced for 48 hours with the indicated concentration 
of doxycycline (Dox). Cell lysates were harvested, deglycosylated and separated by SDS-PAGE prior to 
immunoblotting for GLUT1. All three species of GLUT1 can be detected on blots based upon their differential 
sizes. Two separate exposure times are shown to demonstrate the differential abundance of the transgenic 
GLUT1 fusion proteins, and the endogenous GLUT1. (c) Corrected BRET ratios were plotted relative to the 
concentration of doxycycline used to induce mCherry-GLUT1 expression. Data were log fit to a sigmoidal curve 
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with theoretical predictions made by the Förster equation, allowing us to calculate parameters for homotypic 
interactions between GLUT1 molecules with high confidence.

While we cannot determine the precise stoichiometry of higher order GLUT1 multimers using BRET alone, 
our data are consistent with the organizational model proposed by Carruthers et al. which suggests that GLUT1 
monomers initially associate as N-to-N terminal dimers, and then form tetramers stabilized by homotypic inter-
actions between juxtaposed C-termini of the four monomers (Fig. 6e)11,14. We observed the highest interaction 
affinity and highest BRET ratio when the donor (Nluc) and acceptor (mCherry) proteins were fused to N-termini 
of separate GLUT1 molecules, suggesting that N-to-N interactions occur first and are physically the closest in 
final complexes. The presence of tetramers allows for the possibility of BRET between GLUT1 molecules alter-
natively tagged on the N- and C-termini, though as expected, these interactions have lower affinity (due to later 
formation of tetramers) and decreased maximum BRET ratio (due to the increased distance between donor and 
acceptor).

Our quantitative determination of EC50 values for protein expression and molecular density as a function of 
GLUT1 multimerization provides important insights into the relevance of this phenomenon in cell types other 
than erythrocytes. It has been proposed that higher order complexes in erythrocytes—especially tetramers—
transport glucose more efficiently than monomeric GLUT1, though the density of GLUT1 expression required for 
this to occur is not clear. Because GLUT1 expression on erythrocyte membranes is unusually high, accounting for 
an estimated 10–20% of the membrane proteome, it is possible that the mechanism of multimerization is only rele-
vant at these remarkable surface densities31. Our BRET data suggest that GLUT1 oligomers begin to form at signif-
icantly lower densities of GLUT1, with EC50 values of about 3-fold relative to endogenous GLUT1 in 293FT cells. 
This corresponds to an estimated 8.4 ×​ 105 molecules of GLUT1 per cell, which is consistent with cellular expres-
sion levels reported by competitive ELISA for GLUT1 transgenic CHO cells that form higher order tetramers32.  
Given an average spherical radius of 14.5 μ​m for the 293FT cell line we used in this study, we estimate that a sur-
face density of 1.27 ×​ 103 molecules/μ​m2 will result in ~50% of GLUT1 monomers being found in higher molecu-
lar weight complexes. Notably, the density of GLUT1 molecules on the surface of erythrocytes has been estimated 
to be about 3.1 ×​ 105 molecules of GLUT1 per cell, all of which are found in tetrameric complexes33. Since the sur-
face area of human erythrocytes is about 140 μ​m2, yielding a surface GLUT1 density of 2.21 ×​ 103 molecules/μ​m2, 
it is unsurprising that nearly all surface GLUT1 molecules in these cells are found in higher order complexes34.

With our improved understanding of GLUT1 surface densities required to achieve multimerization, it seems 
increasingly likely that differential uptake of glucose by non-erythroid cell types may be achieved by modulat-
ing the abundance of GLUT1 on the cell surface. As surface densities approach the threshold at which higher 
order complexes of transporter begin to form spontaneously, glucose uptake would be expected to increase in 
a non-linear fashion, achieving more efficient transport into cells. This mechanism has particular relevance for 
cancer types that are known to upregulate GLUT1 expression in response to hypoxia—via hypoxia-inducible 
factor alpha, HIF1α​—or signaling by other prominent oncogenic pathways, which facilitate increased glycolytic 
metabolism during the process of cellular transformation35,36.

It is also possible that acute regulation of GLUT1 multimerization at levels below the threshold of spontane-
ous aggregation explain differential glucose uptake by normal cells under starvation conditions or in response 
to a variety of agonists that have been previously described by our research group37,38. Of particular note is the 
apparent dependence of tetramers on stable disulfide bonding, which was revealed by the DTT-sensitive nature 
of these structures in erythrocytes33. Studies in mouse L929 cells, which have a low basal expression of GLUT1, 
have provided hints that dynamic aggregation of GLUT1—independent of increased expression—may indeed be 
a mechanism for activation. Nitroxyl, a compound known to induce disulfide bond formation in hydrophobic 
environments, activates glucose uptake 4–6 fold in these cells, as do a number of other thiol-reactive compounds 
such as phenylarsine oxide and cinnamaldehyde39–41. Interestingly, these same compounds fail to further activate 
uptake in HCLE cells, which express very high levels of GLUT1 and display high basal glucose uptake37. These 
findings imply that GLUT1 multimerization as a mechanism for regulating glucose uptake rates is relevant across 
a number of cells types, responding to both the abundance and redox status of the cellular environment.

Methods
Plasmid vector generation.  Vectors containing the open reading frames for Nanoluciferase (NanoLuc, 
pNL1.1) and mCherry (pmCherry) were obtained commercially from Promega and Clontech, respectively. These 
sequences were PCR amplified using restriction site linked primers, and cloned in frame into the GATEWAY 

(R2 =​ 0.999), from which a doxycycline EC50 value of 4.69 +/− 0.25 ng/mL was determined. (d) The fluorescent 
intensity of each band on the immunoblot in (B) was normalized to actin to derive a corrected pixel value. 
These values were then expressed as fold increases relative to endogenous GLUT1 for each sample. Corrected 
BRET ratios were plotted against relative protein expression values for GLUT1, and fit to a sigmoidal curve as 
indicated (R2 =​ 0.996) to obtain an EC50 value of 3.01 +​/− 0.10 fold expression relative to endogenous GLUT1 
in 293FT cells. Error bars represent standard deviations of triplicate experimental replicates. (e) Model of higher 
order GLUT1 complexes represented with interactions between monomers. Each monomer is shown with its 
twelve alpha helical transmembrane domains, with extracellular (dashed) and intracellular (solid) loop regions. 
Our BRET data are consistent with previous studies indicating that GLUT1 transporters initially associate as 
N-to-N terminal dimers with contact interfaces between helicies 5 and 8 of one monomer and helicies 2 and 
11 of the other. Two sets of dimers then associate into a tetramer via interfaces involving helix 9 from each 
monomer. This orientation limits further associations and specifies tetramers as the preferred species under 
saturation conditions.
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compatible pcDNA3.1-nV5-DEST or pcDNA6.2-cV5-DEST destination vectors (Invitrogen/Life Technologies) 
in place of the V5 epitope tag. This allowed us to use the GATEWAY cloning system for subsequent recombina-
tion of the mouse Glut1 open reading frame (Open Biosystems, source ID 6808315) from the pCR8-TOPO entry 
vector into each of these vectors to create individual GLUT1 fusion proteins with Nluc or mCherry at either 
terminus. For the dual fusion vector (pcDNA6.2-mCherry-Glut1-Nluc), the open reading frame for mCherry 
was inserted in frame upstream of Glut1-Nluc in the pcDNA6.2-Glut11-Nluc vector using standard restriction 
cloning methods.

The fusion vectors in which mCherry and Nluc were linked together by a defined series of hexapeptide 
(GGSGGS) repeats were created by removing GLUT1 from pcDNA6.2-mCherry-Glut1-Nluc via restric-
tion digest, and replacing it with a gBlock double-stranded DNA sequence (Integrated DNA Technologies) by 
Gibson cloning (New England Biolabs). This new insert contained one copy of the hexapeptide coding sequence 
(GGCGGCAGCGGCGGATCC) connecting the open reading frames of mCherry and NanoLuc, and was 
located upstream of BamH1 and Xba1 sites immediately proximal to the 5′​ end of NanoLuc. Subsequent hexa-
peptide repeats were inserted by digesting the vectors with BamH1 and Xba1 and inserting in an annealed, 
double-stranded oligonucleotide encoding a single hexapeptide repeat flanked by overhangs homologous to the 
BamH1 and Xba1 restriction sites. Insertion of this oligonucleotide extended the repeat by a single unit in frame 
with the mCherry and Nluc proteins and re-introduced new 3′​ BamH1 and Xba1 sites, while at the same time 
destroying the 5′​ BamH1 site. Repeated iterations of this protocol allowed for creation of a series of linker vectors 
in which mCherry and Nluc were connected by a linker of 1–10 repeats of the hexapeptide.

The stable transposable element vectors based on the Sleeping Beauty system were created by subcloning the 
expression cassettes for mCherry-GLUT1 and Nluc-GLUT1 into the pT2-HB vector (obtained from Dr. Perry 
Hackett via Addgene, #26557)29. The original cytomegalovirus promoters from the pcDNA3.1 expression vectors 
(see above) were subsequently excised and replaced with either the constitutive human elongation factor 1-alpha 
promoter (EF1α​, for Nluc-GLUT1) or the Tet3G-responsive element promoter (TRE3G, for mCherry-GLUT1). 
We also subcloned the open reading frame for Tet3G cassette (from the pCMV-TET3G, Clontech) into 
pT2-EF1α​ to create a constitutively expressing stable vector for tetracycline/doxycycline inducible expression of 
mCherry-GLUT1. Partial maps for these three vectors are shown in Fig. 6a. Stable insertion of each cassette into 
cells was carried out by co-transfection of the pT2 series vectors with pCMV(CAT)T7-SB100 (obtained from Dr. 
Zsuzsanna Izsvak via Addgene, #34879), which encodes the SB100X transposase30.

Cell culture and transfections.  The 293FT-HEK cells (Invitrogen) used in this study were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM, Gibco), which was supplemented with 10% fetal bovine serum 
(Atlanta Biologicals). Cells were split three times per week to maintain log-phase growth, and seeded at specific 
densities after counting with a standard hemocytometer. Transient transfections into 293FT-HEK cells were per-
formed using LipoD293 cationic lipid reagent (SignaGen Laboratories) at a ratio of 3 μ​L of reagent per 1 μ​g of 
plasmid DNA. Transfections into cells plated to 96-well plates (see below) were performed in a final volume of 
100 μ​L per well, whereas transfections into cells in 6-well plates were done in a final volume of 2 mL. In both cases, 
media was subsequently changed 18–24 hours after transfection to remove excess cationic lipid from the media. 
Stable insertion of transposable elements was selected for by culture of cells in media containing 2.0 μ​g/mL of 
puromycin (Sigma-Aldrich).

BRET assay measurements.  BRET assays were uniformly performed in white-walled, microclear-bottom 
96-well plates into which 293FT cells were seeded at a density of 1.0 ×​ 104 per well (Greiner Biosciences). Cells 
were transfected in triplicate with expression plasmids (50 ng per well) at 18–24 hours post-seeding. The follow-
ing day (~24 hours post-transfection), media was removed and replaced with fresh complete media. At 48 hours 
post-transfection media was again removed and replaced with serum and phenol red-free DMEM media, and 
cells were allowed to equilibrate for one hour under normal culture conditions. The cells were subsequently 
treated with 5 nm furimazine (Promega) and immediately measured for emission of light at 410 and 610 nanom-
eters using a Synergy Hybrid H1 plate reader (BioTek) equipped with a 410/80 and 610-long pass luminescence 
filter set. The corrected BRET ratio was determined by subtracting the basal 610/410 filtered luminescence value 
of GLUT1-Nluc alone (ID) from the 610/410 ratio of cells also expressing mCherry-fusion acceptors (IDA) at 
various levels.

For BRET assays performed in parallel with flow cytometry to allow for calculation of mCherry expression 
density, 1.0 ×​ 106 cells were transfected in 6-well plates with volumes scaled according to the surface area ratio of 
96-well to 6-well plates (1:100). At 24 hours after transfection, the cells were reseeded in parallel to a new 6-well 
plate and in triplicate to a 96-well assay plate at densities of 1.0 ×​ 106 and 2.0 ×​ 104 cells per well, respectively. The 
BRET assays were performed 18–24 hours after replating as indicated above.

2-Deoxy-glucose uptake assays.  HEK-293FT cells were plated to 6-well dishes at a density of 5.0 ×​ 104 
cells/well and transfected 24 hours later with 1.0 μ​g/well of plasmid DNA for each GLUT1 fusion protein. After 
48 hours, the cells were detached and replated to 24-well dishes at a density of 5.0 ×​ 104 cells/well and allowed to 
adhere and equilibrate to culture conditions for 18–24 hours. Glucose uptake was measured using the radiolabe-
led glucose analog 2-deoxyglucose (2DG), which was added with 14C-mannitol as a control for cell membrane 
integrity. Briefly, the media was replaced with 0.3 mL of glucose-free HEPES buffer [pH 7.4] (140 mM NaCl, 5 mM 
KCl, 20 mM HEPES, 2.5 mM MgSO4, 1 mM CaCl2, 2 mM sodium pyruvate, 1 mM mannitol) supplemented with 
1.0 mM (0.3 μ​Ci/mL) 2-DG (1, 2-3H) and 1.0 mM (0.02 μ​Ci/mL) mannitol (1-14C). After a 10 minute incubation, 
cells were washed twice with cold glucose-free HEPES. The cells were digested in 0.25 mL 0.3 M NaOH prior to 
measuring the 3H-2DG uptake and 14C-mannitol background signal. Quadruplicate 3H-2DG uptake values cor-
rected for 14C-mannitol binding were averaged and tested for significance using student’s T-test.
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Flow cytometry.  Transfected 293FT cells were replated to 6-well dishes and allowed to adhere and equili-
brate to culture conditions for 18–24 hours. Cells were rinsed with PBS and detached from the plate in 1 mL of 
cold versene (Invitrogen/Life Technologies). Cells were subsequently filtered to achieve a single cell suspension, 
and immediately assayed on a FACScalibur flow cytometer (Becton Dickinson). Each cell population was gated 
according to forward and side scatter profile to identify intact cells, which were then measured on the FL2 chan-
nel to quantify mCherry expression. No fewer than 2.0 ×​ 104 cells were captured for each sample, and each condi-
tion was measured in triplicate to obtain a mean fluorescent intensity (MFI) for the population. Mean fluorescent 
intensities were translated into molecular equivalents of soluble fluorophore (MESF) using calibrated mCherry 
beads (Clontech) with defined MESF values. The beads were run for each assay replicate using the same laser set-
tings that were used to quantify mCherry expression in transfected cells.

Immunoblotting.  Transfected cells in 6-well format were rinsed once with PBS and directly scraped into 
0.1 mL lysis buffer (20 mM Tris [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium pyroph-
osphate, 1 mM sodium glycerophosphate, 1 mM sodium orthovanadate, 0.5% NP40, 0.1% Brij35, 0.1% sodium 
deoxycholate) supplemented with fresh protease inhibitor cocktail (Sigma-Aldrich). The lysate was homogenized 
by sonicating for 5 seconds while incubating on ice, and then cleared by centrifugation at 10,000 ×​ g for 5 minutes 
in a chilled centrifuge at 4 °C. Soluble protein was removed to a fresh tube on ice, quantified by Bradford assay 
and denatured for 10 minutes at 95 °C in a dry bath. The samples were then deglycosylated with recombinant 
PNGaseF (prepared from E.coli using the pOPH6 vector from Dr. Shaun Lott, obtained via Addgene, #40315)42, 
diluted with 5×​ Laemmli sample loading buffer, and then separated by SDS-PAGE on an 8% Tris-glycine gel. The 
gel was transferred overnight at 50 mA and 4 °C to a nitrocellulose membrane in Tris-glycine transfer buffer. The 
membrane was blocked with 3% non-fat dry milk in Tris-buffered saline with 0.05% Tween 20 (TBST), and then 
incubated overnight with primary antibodies diluted 1:1000 in 3% BSA/TBST at 4 °C. Primary antibodies were 
washed off in three consecutive rinses in TBST for 5 minutes at room temperature, and the membrane was sub-
sequently incubated in TBST containing at 1:25,000 dilution of secondary antibodies (goat-anti-mouse-DyLight 
700 and goat-anti-rabbit-DyLight 800, Cell Signaling Technologies). After a final three rinses for 5 minutes each 
in TBST, the membranes were scanned and quantified on a Li-Cor Odyssey infrared scanner. The polyclonal 
rabbit antibody targeted to the C-terminus of GLUT1 was purchased from Epitomics/Abcam, while the mouse 
monoclonal antibody to β​-actin was purchased from Sigma-Aldrich.

Graphing and statistical analysis.  Data for each experiment were exported into the Prism software pack-
age (Mac version 6, GraphPad Software) for graphing and statistical analysis. Data were best fit to standard hyber-
bolic or sigmoidal curves with correlation coefficients indicated in each legend. EC50 values with 95% confidence 
intervals were obtained from triplicate or quadruplicate experiments as indicated and, when relevant, analyzed 
for significance using student’s T-test.
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