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Abstract
Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI)
data using voxel-basedmorphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise
differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that
combined support vectormachine (SVM)with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs)
using their structural MRI data.We first employed both VBM and ROI analyses to compare gray matter volume (GMV) andwhite matter
volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to
discriminate SZ patients fromNCs using significant between-group differences in both GMV andWMV as input features.We found that
SZpatients showedGMandWMabnormalities in several brain structuresprimarily involved in the emotion,memory, and visual systems.
An SVMwith a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the
best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients.
These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for
disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

Abbreviations: ANOVA = analysis of variance, AUC = area under the curve, CAL = calcarine, CAU = caudate, CSF =
cerebrospinal fluid, CUN = cuneus, FDR = false discovery rate, FFG = fusiform gyrus, FWHM = full-width at half-maximum, GLM =
general linear model, GM= graymatter, GMV= gray matter volume, HIP= hippocampus, LING= lingual gyrus, MFG=middle frontal
gyrus, MOG =middle occipital gyrus, MRI =magnetic resonance imaging, NCs = normal controls, PANSS = Positive and Negative
Syndrome Scale, PCUN = precuneus, PHG = parahippocampal gyrus, PoCG = postcentral gyrus, RFE = recursive feature
elimination, RGMV = regional gray matter volume, ROC = receiver operating characteristic, ROI = region of interest, RWMV =
regional white matter volume, SCID = structured clinical interview according to the DSM-IV-TR, STG = superior temporal gyrus,
SVM= support vector machine, SZ = schizophrenia, TBV = total brain volume, THM = thalamus, VBM = voxel-based morphometry,
WM = white matter, WMV = white matter volume.
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1. Introduction were selected as features in the discriminate analysis of 2 groups
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Schizophrenia (SZ) is a disabling mental disorder characterized
using SVM combined with RFE.
2. Materials and methods

by delusions and auditory hallucinations, as well as impairments
in memory, attention, executive, and many other high-order
cognitive functions.[1,2] The development of magnetic resonance
imaging (MRI) has offered an effective and noninvasive approach
to examine the anatomy of the brain and has prompted numerous
scientists to explore the underlying neuropathology of SZ. The
vast majority of studies show that graymatter (GM) reductions in
the brains of SZ patients typically involve the temporal, frontal,
and parietal lobes.[3–7] GM abnormalities in the occipital lobe,
insula, striatum, thalamus, cerebellum, and cingulate regions
have also been reported.[8–12] White matter (WM) fibers link
spatially distinct cortical and subcortical regions. Several studies
have suggested that SZ is a type of disconnection syndrome [13,14];
thus, it is reasonable to hypothesize that WM aberrances are
associated with this psychosis.[6,15] A number of studies have
found white matter volume (WMV) reductions in the corpus
callosum, bilateral frontal lobe, and internal capsule in SZ
patients.[16–18]

However, these GM or WM deficits were identified using
conventional univariate analyses at a group level, which can
analyze group-wise differences in brain areas but generally
cannot differentiate among the individuals in 2 or more groups.
Recently, machine learning, which is a type of multivariate
analysis that can automatically discriminate individuals within a
sample group, was used to classify several neuropsychiatric
disorders and addictions, such as SZ,[19–24] Alzheimer’s
disease,[25–28] depression,[29–31] attention-deficit hyperactivity
disorder,[32–34] and smoking.[35]

Support vector machine (SVM) is a specific method of
supervised machine learning that aims to classify data points
by maximizing the margin between classes in a high-dimensional
space.[36] Advantages of this method are the selection of training
examples that are most informative for the classification and a
good scaling for high dimensions. A previous study discriminated
SZ patients from normal controls (NCs) by analyzingmultimodal
brain imaging data (EEG, structural MRI, and functional MRI)
with a SVM classifier and achieved a good classification
performance with a 91% accuracy and 100% prediction rate.[37]

A more recent study applied the SVM method to the automatic
classification of 72 SZ patients and 74 NCs and achieved an
average accuracy of 80%.[38] These previous findings demon-
strate the promising classification performance of the SVM
method, as well as the potential for applying this method to
identify biomarkers for the diagnosis of psychiatric diseases.
Recent studies have shown that feature reduction can increase

computational speed and improve classification performance,
by removing uninformative, irrelevant, or redundant features
from the classification procedures.[27,39] A recursive feature
elimination (RFE) algorithm is an iterative procedure that
eliminates 1 backward feature at a time,[40] and thus, can
prevent information loss that can occur by eliminating several
features in 1 iteration.[41] Previous studies have indicated that
RFE employed for dimensionality reduction can significantly
improve classification accuracy of neuroimaging data [35] and
yield a better classification performance than many other feature
reduction methods.[40]

In this study, we employed voxel-based morphometry (VBM)
and region of interest (ROI) analyses to compare differences in
gray matter volume (GMV) and WMV between SZ patients and
NCs. Significant between-group differences in GMV and WMV
2

2.1. Subjects

Forty-one SZ patients (the SZ group) and 42 age- and sex-
matched NCs (the NC group) were included in this study. The SZ
patients were diagnosed by trained and experienced clinical
psychiatrists using a structured clinical interview according to the
DSM-IV-TR (SCID).[42] The SZ and NC groups were recruited
from Guangzhou Brain Hospital and the local community,
respectively. All subjects were aged between 18 and 45 years, and
their biological parents were Han Chinese. Before scanning, a
clinical assessment was performed by psychiatrists using the
Positive and Negative Syndrome Scale (PANSS).[43] The subjects
obtained a consensus score for each item on all 3 subscales
(positive symptoms, negative symptoms, and general psychopa-
thology) that was based on a 7-point scale indicating the severity
of the symptom (1=absent; 2=minimal; 3=mild; 4=moderate;
5=moderate severe; 6= severe; 7=extreme).[44] The inclusion
criteria for all SZ patients included the following: (1) a total score
of at least 60 for the 3 PANSS subscales and (2) at least 3 positive
symptom items on the PANSS with a score of at least 4.
The exclusion criteria for all subjects included the following:

(1) any other psychiatric Axis I disorder meeting DSM-IV criteria,
including schizoaffective disorders, mental retardation, major
depressive disorder, bipolar disorder, delirium, dementia,
memory disorder, and other cognitive disorders; (2) mental
disorder due to substance dependence, a serious unstable somatic
disease, definite diabetes, thyroid diseases, hypertension or heart
disease; (3) narrow angle glaucoma; (4) a history of epilepsy,
except for febrile convulsions; (5) alcohol dependence meeting
DSM-IV-TR criteria (excluding nicotine dependence); (6)
receiving electroconvulsive therapy within the past 6 months;
(7) a contraindication for MRI; (8) medical resource neuroleptic
malignant syndrome or serious tardive dyskinesia; (9) a serious
suicide attempt or an irritative state; (10) noncompliant drug
administration or a lack of legal guardians; or (11) lactating,
pregnant, or planning pregnancy. In addition, the NCs were
excluded if they had a first- or second-degree relative with a
psychiatric Axis I disorder according to the DSM-IV criteria.
Before enrollment, all subjects or their legal guardians provided
written informed consent. These studies were performed
according to the Declaration of Helsinki and approved by the
Ethics Committees of the Guangzhou Brain Hospital.

2.2. MRI data acquisition

Imaging data were acquired using Philips 3T MR systems
(Philips, Best, The Netherlands) located at Guangzhou Brain
Hospital. For each subject, an anatomical image was obtained
using a sagittal 3-dimensional gradient-echo T1-weighted
sequence (TR=7.6ms, TED=3.7ms, TI=795ms, flip angle=
8°, 180 slices, slice thickness=1mm, Gap=0mm, matrix=
256�256, inversion time=0).

2.3. Image processing

Image processes were described in our previous studies.[29,30,45]

Briefly, all T1-weighted MRI data processing was performed
using the SPM8 software package (http://www.fil.ion.ucl.ac.uk/
spm; Institute of Neurology, University College London, UK).

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


First, each T1-weighted MRI was segmented into 3 tissue maps, principle.[41] It implements the following idea: input vectors are
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including GM, WM, and cerebrospinal fluid (CSF) by using the
new segmentation algorithm from SPM8. Second, a customized,
population-specific template was created from the segmented
tissue maps by using the DARTEL template-creation tool.[46]

Third, all GM and WM maps were warped to the custom
template space, using its corresponding smooth, reversible
deformation parameters. A modulation was applied by locally
multiplying tissue values by the Jacobian determinants derived
from the special normalization step.[47] Finally, all warped,
modulated GM and WM images were smoothed with an 8-mm
full-width at half-maximum (FWHM) Gaussian kernel.
2.4. VBM analysis
Smoothed modulated GM and WM images were analyzed with
SPM8 utilizing a general linear model (GLM). Voxel-wise GMV
differences between the SZ and NC groups were investigated
using analysis of variance (ANOVA). The covariates included in
the model were total brain volume (TBV= total GMV + total
WMV), age, gender, and years of education. The resulting
statistical map was corrected for multiple comparisons to a
significance level of P<0.05 by combining individual voxels (P<
0.001) and using a cluster size of 173 voxels. This correction was
confinedwithin a whole-brain mask and determined usingMonte
Carlo simulations (FWHM=8mm, iterations=1000) using the
AFNI AlphaSim program (http://afni.nih.gov/afni/docpdf/Alpha
Sim.pdf).

2.5. ROI analysis

Recently, many studies have suggested the use of higher-resolution
parcellation,ofup to1000 smallerparcels, insteadofusing a coarse
parcellation scheme of AAL atlas including 90 brain regions.[48–50]

Therefore,we parcellated the entire cerebrum into 1024ROIswith
equal sizes using a high-resolution automated anatomical labeling
(AAL) atlas,[51] which was defined from the standard AAL atlas
including 90 cerebral regions.[52] We then calculated the regional
GMV (RGMV) and regional WMV (RWMV) in each of the 1024
ROIs from the modulated GM and WM images, respectively.
ANOVAs were performed to compare the RGMV and RWMV
in 1024 ROIs between the SZ and NC groups. The covariates
included in the model were TBV, age, gender, and years of
education. The significance level was P<0.05, corrected by false
discovery rate (FDR) correction.

2.6. Correlation between the PANSS and the RGMV or RWMV

We calculated the RGMV or RWMV of brain areas showing
significant between-group differences in both the VBM and ROI
analyses. The partial correlations between the PANSS scores
(including positive, negative, and total scores of PANSS) and the
RGMV or RWMV of brain areas were calculated, controlling for
the age, gender, years of education, and TBV. The volumes of
extracted brain areas and the partial correlations were calculated
in Matlab 2010b using in-house scripts.

2.7. SVM with RFE

In this study, a classification method of SVM with RFE was
applied to discriminate SZ patients from NCs using the
significant between-group differences in RGMV and RWMV
identified by the VBM and ROI analyses. SVM is an effective
classification method based on the structural risk minimization
3

nonlinearly mapped to a high-dimension feature space.[53] In the
feature space, the machine searches for an optimal hyperplane,
which maximizes the distance from the hyperplane to the closest
examples in each class to classify different groups. Once the
hyperplane is found, it can be used to predict the group label of a
new testing example. The symbols (+) and (–) are used to
represent 2 classes. The input features and the class labels are
given. A linear decision function is a simple weighted sum of the
input vector plus a bias.[54] Given the nature of input features, a
linear decision function was applied. The weight vector and bias
value are represented by w and b, respectively. The decision
function is:

DðxÞ ¼ w:xþ b

IfD(x)>0, x belonged to class (+), else ifD(x)<0, x belonged to
class (–), else x was on the decision boundary. A linear kernel
SVM implemented in the LIBSVM toolbox was used in this
study.[55]

In machine learning, some features are uninformative,
irrelevant, or redundant for classification, and too many features
may cause “over-fitting.”. Therefore, eliminating a number of
features not only simplifies the classification model but also
improves the classification accuracy.[56] The SVM-RFE algorithm
uses the SVM classifier iteratively to remove redundant features
while preserving discriminative features. RFE is an iterative
procedure that trains the classifier and removes the smallest
ranking criterion feature after ranking.[40] We chose the square of
the feature weightswi (wi

2) of the decision function as the ranking
criterion. Clearly, the smaller weight of a feature means the less
contribution to the decision function. In each iteration, we
computed the ranking criteria wi

2 for all features and eliminated
the feature corresponding to the smallest wi

2. We obtained a
discriminate feature list after n iterations.
The performance of the classifier is evaluated by leave-one-out

cross-validation (LOOCV). The leave-one-out method is a cross-
validation error estimation method.[57] The superiority of the
leave-one-out method has been proven.[58,59] The LOOCV
involves using data from all but 1 subject as a training set, and
the remaining data are used as a test set. This process should be
repeated until each sample is used to calculate the overall accuracy
of SVM.
Furthermore, we plotted the receiver operating characteristic

(ROC) curves and calculated the area under the curve (AUC) to
examine the possibility of discriminating SZ patients and NCs
correctly. The value of the AUC is between 0 and 1. It is generally
believed that a value close to 1 indicates a better prediction
performance. Inaddition to theaccuracyandAUC,wemeasured the
sensitivity and specificity to quantify the performance of the SVM.
Thedefinitions of sensitivity, specificity, andaccuracy are as follows:

Sensitivity ¼ TP
TPþ FN
Specificity ¼ TN
TNþ FP
Accuracy ¼ TPþ TN
TNþ FNþ TNþ TP

where TP is true positive, the number of positive subjects
classified as positive; FN is false negative, the number of positive

http://afni.nih.gov/afni/docpdf/AlphaSim.pdf
http://afni.nih.gov/afni/docpdf/AlphaSim.pdf
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subjects classified as negative; TN is true negative, the number of with the NC group. The SZ group showed significant WMV

Table 1

Demographic and clinical characteristics.

SZ patients (n=41) NC (n=42) t value (x2) P

Age, y 25.68±6.61 26.02±6.227 �0.259 0.796
Gender, F/M 17:24 15:27 0.289 0.591†

Education years, y 11.07±3.26 11.62±2.241 �0.891 0.376
TBV, mm3 1184.72±120.57 1192.21±109.31 0.297 0.767
Positive PANSS score 24.98±3.921 7.07±0.342 29.482 <0.0001

∗

Negative PANSS score 23.29±7.281 8.4±1.726 12.888 <0.0001
∗

Total PANSS score 43.07±7.333 16.86±0.256 22.587 <0.0001
∗

Values are showed as the mean±SD.
F= female, M=male, NCs=normal controls, PANSS=Positive and Negative Syndrome Scale, SZ= schizophrenia, TBV= total brain volume.
∗
Statistical significance was set at P<0.05.

† For the gender distribution among the 2 groups, P value was obtained using the x2 test.
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negative subjects classified as negative; and FP is false positive, the
number of negative subjects classified as positive.
A permutation test was applied to evaluate the statistical

significance of the classification results.[60] The permutation test
is a type of nonparametric test and can be used to test a null
hypothesis.[61] In our analysis, we permuted the class labels of
the training data for 1000 times randomly and performed
all classification process with each set of permuted class labels.
Based on probability distributions, it is possible to test the null
hypothesis indicated by a small P value. The P value was
computed as the proportion of accuracies that are no less than the
accuracy obtained by the original data. The statistical significance
was set at P<0.05.
3. Results
3.1. Clinical and demographic characteristics

The clinical and demographic characteristics of all subjects are
shown in Table 1. There was no significant difference in age,
gender, years of education, and TBV between the SZ and NC
groups (P>0.05). However, the positive, negative, and total
scores for the PANSS in the SZ group were significantly higher
than those in the NC group (P<0.0001).
3.2. VBM analysis of GMV and WMV
The VBManalysis indicated that the SZ group showed significant
GMV reductions in the left hippocampus (HIP) (Fig. 1A) and the
right middle occipital gyrus (MOG) (Fig. 1B), as well as
significant GMV increases in the right posterior lobe of the
cerebellum (Fig. 1C), left caudate (CAU) (Fig. 1D), and left
thalamus (THM) (Fig. 1D) when compared with the NC group.
The SZ group showed significant WMV reductions in the right
lingual gyrus (LING) (Fig. 2A), right calcarine (CAL) (Fig. 2A),
and right cuneus (CUN) (Fig. 2B), as well as significant WMV
increases in the right precuneus (PCUN) (Fig. 2C) when
compared with the NC group.

3.3. ROI analysis of GMV and WMV

The ROI analysis indicated that the SZ group showed significant
GMV reductions in the leftMOG (Fig. 3A), the parahippocampal
gyrus (PHG) (Fig. 3B), right MOG (Fig. 3C), and right
postcentral gyrus (PoCG) (Fig. 3D), as well as significant
GMV increases in the right PCUN (Fig. 3E) when compared
4

reductions in the right LING (Fig. 4A), bilateral CAL (Fig. 4A),
bilateral CUN (Fig. 4A), and left superior temporal gyrus (STG)
(Fig. 4B), as well as significant WMV increases in the left middle
frontal gyrus (MFG) (Fig. 4C), right PCUN (Fig. 4D), and right
fusiform gyrus (FFG) (Fig. 4E) when compared with the NC
group.

3.4. Correlation between PANSS and RGMV or RWMV

We calculated the RGMV or RWMV of 17 brain areas (as shown
in Figs. 1–4), which showed significant between-group differ-
ences in both the VBM and ROI analyses. The RGMV of the left
PHG, as well as the RWMV of the right PCUN and left STG
indicated significant positive correlations with positive PANSS
scores, after controlling for age, sex, years of education, and TBV
(Fig. 5).

3.5. Overall classifier performance

Automatic classifications were performed to distinguish SZ
patients from NCs. First, we applied the significant between-
group differences for both RGMV and RWMV in the VBM
analysis as the input features for the classifier. The linear SVM
without RFE classifier achieved an accuracy of 82.6% (P<0.05),
a sensitivity of 83.8%, and a specificity of 81.3%; the linear SVM
with RFE classifier yielded a better classification performance
with an accuracy of 88.4% (P<0.05), a sensitivity of 91.9%,
and a specificity of 84.4% for the same input. Second, we applied
the significant between-group differences for both RGMV and
RWMVby the ROI analysis as the input features for the classifier.
The linear SVM without RFE classifier achieved an accuracy of
79.5% (P<0.05), a sensitivity of 71.4%, and a specificity of
87.8%; the linear SVM with RFE classifier achieved a slightly
better performance with an accuracy of 80.7% (P<0.05), a
sensitivity of 73.8%, and a specificity of 87.8%. ROC curves
were computed taking each subject’s discriminative score as a
threshold and are presented in Fig. 6. The areas under the ROC
curve for the 4 classifiers were 0.915, 0.948, 0.895, and 0.887
(Table 2).

4. Discussion

In the present study, we applied a machine learning method that
combined SVM with RFE to discriminate SZ patients from NCs
using structural MRI data. Our results indicated that the SZ
patients showed significant GM and WM abnormalities



primarily in the emotion, memory, and visual systems according In this study, we achieved better performances in the

Figure 1. Gray matter volume abnormalities in schizophrenia patients compared with normal controls by the VBM analysis. Schizophrenia patients showed
significant gray matter volume reductions (A and B) and increases (C and D). VBM = voxel-based morphometry.
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to both the VBMandROI analyses. In the discriminative analyses
of SZ patients, the SVM with RFE classifier used with the
significant structural abnormalities identified by the VBM
analysis as input features achieved the best performances (an
accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of
84.4%), which was better than the performances of previous
discriminative analyses of SZ patients using structural MRI
data.[23,24]
discriminative analyses of SZ patients using the SVM with
RFE classifier, when compared with those using the SVMwithout
RFE classifier. The machine learning method of SVM has been
used to obtain available biomarkers in the diagnoses of
psychiatric diseases and addictions.[23,62–64] However, some
input features are irrelevant or redundant for classification
when performing classification with SVM. Thus, the exclusion
of uninformative features from the dataset while retaining

http://www.md-journal.com


discriminative features can not only increase the computation performance (a classification accuracy of 89.47%, a sensitivity of

Figure 2. White matter volume abnormalities in schizophrenia patients compared with normal controls by the VBM analysis. Schizophrenia patients showed
significant white matter volume reductions (A and B) and increases (C). VBM = voxel-based morphometry.

Yang et al. Medicine (2016) 95:30 Medicine
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speed but also improve the classification performance.[65,66] A
previous study by our group selected features based on their
rankings of discriminative power by computing F-scores
individually and independently and achieved a good result in
the discriminative analysis of depressive patients with structural
MRI data.[29] A more recent study applied VBM with a
multivariate classification method consisting of a SVM with
RFE to discriminate smokers from nonsmokers using their
structural MRI data and achieved the highest accuracy of
69.6%.[35]

In addition to using dimensionality reduction, the feature
characters (i.e., structural and functional characteristics) and
spatial resolution of brain areas might also affect the classifica-
tion accuracy. A previous study introduced an M3 method to
identify AD patients by combining multimodal imaging and
multilevel measures and demonstrated promising classification
87.50%, and a specificity of 90.91%).[26] In this study, we
compared both GM andWM structures between SZ patients and
NCs and then applied these structural abnormalities as input
features of discriminate analyses. Our results verified that
multiple structural characteristics were useful in increasing the
classification performance (see supplementary Table S1, http://
links.lww.com/MD/B107). Moreover, in the previous study,[35]

the SVM-RFE procedure was applied separately on raw GMVs,
mean GMVs from the standard AAL atlas (including 90 cerebral
areas) and from the high resolution AAL atlas (including 1024
cerebral areas), and it achieved the highest accuracy when the
high-resolution AAL atlas was used. However, our results were
inconsistent with this finding and indicated that the classifiers
using the input features from the VBM analysis achieved better
performances than those using the input features from the ROI
analysis. The reason for this inconsistencymight be the significant

http://links.lww.com/MD/B107
http://links.lww.com/MD/B107


between-groups differences of GMVs in the VBM analysis but consistent with previous findings in chronic SZ patients.[78,79]

Figure 3. Gray matter volume abnormalities in schizophrenia patients compared with normal controls by the ROI analysis. Schizophrenia patients showed
significant gray matter volume reductions (A–D) and increases (E). ROI = region of interest.

Yang et al. Medicine (2016) 95:30 www.md-journal.com

7

not raw GMVs that were adopted as the input features of
classifiers in this study.
In this study, we found significant GM andWM abnormalities

in many brain areas involved primarily in the emotion, memory,
and visual systems, which were consistent with many previous
studies.[67–75] More importantly, several important brain areas
related to emotion processing and memory functions, such as the
left PHG, left STG, and right PCUN, showed significant positive
correlations between their RGMV or RWMV and positive
PANSS scores. These results were largely consistent with a
previous multimodal MRI studies that indicated that SZ patients
showed lower values of canonical variants in subcortical regions,
including the thalamus, striatum, hippocampus, parahippocam-
pal gyrus, and visual cortex.[76]

It has been reported that SZ patients show emotional
processing deficits in identifying emotions, understanding the
feelings of others, inferring people’s thoughts, and responding
emotionally to others.[77] Our results indicated that SZ patients
showed increased RGMV in the left CAU and left THM, which is
Interestingly, the increased RGMV in the CAU are thought to be
related to antipsychotic usage.[80] The striatum is an essential
neural system in emotional learning that receives sensory input
and identifying stimuli that predict rewarding or reinforcing
outcomes.[81,82] Moreover, our results indicated that SZ patients
showed reduced RWMV in the left STG, which plays an
important role in the recognition of learned social-emotional
values, especially nonverbal social cues,[81] and is one of the most
consistent regions showing significant structural abnormalities in
SZ patients.[3,83] A recent functional near-infrared spectroscopy
study showed that the fronto-temporal dysfunction is involved in
the pathophysiology of abnormal emotional processing and
cognitive inhibition in SZ patients.[84] We also found significant
increases in RGMV and RWMV in the right PCUN, which is
linked to self-awareness, mentalizing, and the theory of
mind.[85,86] Reduced structural and functional connectivity
among the amygdala, PCUN, and parietal regions might
contribute to abnormalities in emotional processing in SZ
patients.[87,88]

http://www.md-journal.com


Figure 4. White matter volume abnormalities in schizophrenia patients compared with normal controls by the ROI analysis. Schizophrenia patients showed
significant white matter volume reductions (A and B) and increases (C–E). ROI = region of interest.

Figure 5. Significant positive correlations between the RGMV or RWMV of ROIs and positive PANSS scores, controlling for age, sex, education years, and TBV:
(A) RWMV of PCUN.R; (B) RGMV of PHG.L; (C) RWMV of STG.L. ROI = region of interest, RGMV = regional gray matter volume, RWMV = regional white matter
volume, PCUN.R = right precuneus, PHG.L = left parahippocampal gyrus, STG.L = left superior temporal gyrus, PANSS = positive and negative syndrome scale,
TBV = total brain volume.
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Pronounced deficits in memory, including episodic memory

number of subjects can train a more robust model to discriminate

5. Conclusion
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Figure 6. ROC curves of automatic classifications. Significant between-group
differences of both RGMV and RWMV by the VBM analysis were used as the
input features of the linear SVM without RFE (blue line) and with RFE (red line).
Significant between-group differences of both RGMV and RWMV by the ROI
analysis were used as the input features of the linear SVM without RFE (green
line) and with RFE (black line). RFE = recursive feature elimination, ROC =
receiver operating characteristic, ROI = region of interest, RGMV = regional
gray matter volume, RWMV = regional white matter volume, SVM = support
vector machine, VBM = voxel-based morphometry.

Table 2

Classification performances.

Sensitivity Specificity Accuracy AUC

VBM/SVM without RFE 83.8% 81.3% 82.6% 0.915
VBM/SVM with RFE 91.9% 84.4% 88.4% 0.948
ROI/SVM without RFE 71.4% 87.8% 79.5% 0.887
ROI/SVM with RFE 73.8% 87.8% 80.7% 0.895

AUC = area under the curve, RFE= recursive feature elimination, ROI= region of interest, SVM=
support vector machine, VBM= voxel-based morphometry.
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and semantic memory, are also affected in the daily life of SZ
patients.[89,90] Our results indicated that the SZ patients showed
reduced RGMV in the left HIP and left PHG, which is consistent
with previous studies.[6,91] The HIP contributes to the recollec-
tion of contextual information in the service of relative memory
tasks and is one of the most prominent impaired brain regions in
both first-episode and chronic SZ patients.[91,92] In addition, a
previous study demonstrated reduced functional and anatomical
connectivity between HIP and some brain areas, such as the
posterior cingulate cortex, medial prefrontal cortex, and
PHG.[93] Reduced hippocampal volume and aberrant hippocam-
pal modulation might work together to impair episodic memory
in SZ patients.
SZ patients have impairments in higher-order processing and

primary functions, such as visual processing.[94] In this study, we
found significant GMandWMabnormalities in the visual cortex,
including the bilateral MOG, bilateral CAL, bilateral CUN, right
FFG, and right LING. GM andWMabnormalities in the primary
visual areas and visual association areas of SZ patients have been
well documented.[95–97] As for the clinical symptoms, SZ patients
sometimes experience visual hallucinations, which is associated
with activity in the visual association areas.[98] A previous ROI
study revealed a significant GMV reduction in the bilateral visual
association areas in chronic SZ patients.[96] More recently, a
study showed that SZ patients had a lowermagnetization transfer
ratio and fractional anisotropy in WM adjacent to visual
areas.[97] Thus, our findings may support the notion that both
dysfunction of visual areas and disconnections between them and
other brain areas contribute to the impaired visual processing in
SZ patients.
There are several limitations to this study. First, the sample size

was modest. The VBM and ROI analyses with relatively small
sample sizes in this study might have insufficient statistical power
and were at risk for false-positive errors. Moreover, a large
SZ patients from NCs. Second, the SZ patients included in this
study were chronic SZ patients, and their brain structures might
be affected by antipsychotic use. We plan to recruit first-episode,
treatment-naive SZ patients in future studies. Third, although we
analyzed both GM and WM structures and applied the
abnormalities found in SZ patients into the machine learning
study, multimodal MRI data including structural and functional
MRI data will be useful for achieving better performance in a
discriminative analysis. Fourth, this study suffered from that
neuropsychological tests were not performed. In the future study,
we plan to collect the data of the Measurement and Treatment
Research to Improve Cognition in Schizophrenia (MATRICS)
Consensus Cognitive Battery (MCCB), which provides a reliable
and valid assessment of cognition across major cognitive
domains.
In this study, we demonstrated that SZ patients showed GM and
WM abnormalities in a variety of brain structures but primarily
in the memory, visual, and emotion systems. The SVM-RFE
classification showed good performance in distinguishing SZ
patients from NCs by using structural features from structural
MRI data. Distinct neuroanatomical profiles associated with SZ
patients can provide a potential biomarker for disease diagnosis.
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