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During the last decades several lines of evidence reported the association of an

adverse intrauterine environment, leading to intrauterine restriction, with future

disease, such as obesity and metabolic syndrome, both leading to increased

cardiovascular and cancer risk. The underlying explanation for this association

has firstly been expressed by the Barker’s hypothesis, the “thrifty phenotype

hypothesis”. According to this hypothesis, a fetus facing an adverse intrauterine

environment adapts to this environment through a reprogramming of its

endocrine-metabolic status, during the crucial window of developmental

plasticity to save energy for survival, providing less energy and nutrients to

the organs that are not essential for survival. This theory evolved to the concept

of the developmental origin of health and disease (DOHaD). Thus, in the setting

of an adverse, f. ex. protein restricted intrauterine environment, while the

energy is mainly directed to the brain, the peripheral organs, f.ex. the

muscles and the liver undergo an adaptation that is expressed through

insulin resistance. The adaptation at the hepatic level predisposes to future

dyslipidemia, the modifications at the vascular level to endothelial damage and

future hypertension and, overall, through the insulin resistance to the

development of metabolic syndrome. All these adaptations are suggested to

take place through epigenetic modifications of the expression of genes without

change of their amino-acid sequence. The epigenetic modifications leading to

future obesity and cardiovascular risk are thought to induce appetite

dysregulation, promoting food intake and adipogenesis, facilitating obesity

development. The epigenetic modifications may even persist into the next

generation even though the subsequent generation has not been exposed to

an adverse intrauterine environment, a notion defined as the “transgenerational

transfer of environmental information”. As a consequence, if the increased
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public health burden and costs of non-communicable chronic diseases such as

obesity, hypertension, metabolic syndrome and type 2 diabetes have to be

minimized, special attention should be laid to the healthy lifestyle habits of

women of reproductive age, including healthy diet and physical activity to be

established long before any pregnancy takes place in order to provide the best

conditions for both somatic and mental health of future generations.
KEYWORDS

intrauterine growth restriction, IUGR, metabolic syndrome, obesity, offspring, small
for gestational age, cardiovascular risk
Introduction

The definition of intrauterine
growth restriction

Intrauterine growth restriction (IUGR) is a term attributed

to the state of a fetus that was unable to achieve its growth

potential due to an adverse intrauterine environment, based on

serial fetal ultrasound measurements (1–4). The notion of IUGR

should not be confused with the term “small for gestational age”

(SGA), that is a descriptive term to characterize a neonate that is

born with a birthweight and/or birth length below the -2 SDS for

gestational age and sex. Although many neonates are fulfilling

the criteria for both IUGR and SGA, it is important to

differentiate between these two entities, since the first

delineates an adverse intrauterine environment that forced the

fetus to a re-adaptation of its metabolic and endocrine

determinants, in order to spare energy for survival, that may

affect also future growth and development, while the latter term

of SGA is not obligatorily the result of an adverse intrauterine

environment (2).

According to the expert Consensus of 2016, fetal growth

restriction is defined by impaired biometric parameters as well as

vascular abnormalities of the placenta such as an increased

pulsatile index or an absent end-diastolic flow of the uterine

artery (3). The expert Consensus of 2018 (4) proposed following

variables as the definition of growth restriction in the newborn:

“birth weight under the 3rd percentile or three out of five

following points 1. Birth weight under the 10th percentile, 2.

Length under the 10nth percentile, 3. Head circumference under

the 10th percentile, 4. Prenatal diagnosis of fetal growth

restriction, 5. Maternal pregnancy information such as pre-

eclampsia or hypertension.”

The current narrative review article aims to highlight the

difference between IUGR and SGA, as well as the causes and

consequences of IUGR, with special emphasis on the mechanisms

linking IUGR to future poor cardiometabolic outcome.
02
Differences between intrauterine growth
restriction and small for gestational age

It is therefore important to differentiate between the terms

fetal growth restriction (FGR) or Intrauterine growth restriction

(IUGR) and small for gestational age (SGA). The term SGA

defines a fetus whose size is below the 10th percentile for

gestational age. Reasons for this can be ethnicity, parental

height, maternal weight, or age (5). However, the SGA-fetus

may grow along the designated percentiles and there is no

pathological condition. In contrast, the term FGR/IURG refers

to a pathological condition in which the fetus grows below its

expected percentiles. In this case the fetus can also grow over the

10th percentile but does not reach its expected growth potential

(6). In other words, a fetus exposed to inadequate protein intake

or to increased psychosocial stress of the pregnant woman

during gestation may adapt its endocrine-metabolic pathways

for survival during the window of developmental plasticity,

while a neonate born SGA can merely be born to an otherwise

healthy woman of short stature, without being exposed to an

adverse intrauterine environment.

The determinants of fetal growth

The adequate placental blood supply
A prerequisite for the appropriate growth of a fetus is the

supply of nutrients and oxygen. This is guaranteed via the

placenta. During pregnancy, the uterine vessels dilate to ensure

sufficient blood flow to the placenta. This is regulated by

hormones such as estrogens, progesterone, and human

chorionic gonadotropin (7). In addition, the placenta grows by

the formation of new villi. The number of intraplacental vessels

increases so that the fetus is supplied with enough nutrients and

oxygen (8). This procedure is regulated by growth factors, such

as leukemia-inhibitory factor, epidermal growth factor and

vascular endothelial growth factor, which are secreted by the

uterine glandular cells (9).
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The adequate blood supply through the placenta may

therefore guarantee adequate nutrient supply to the fetus. In

fetuses with FGR/IUGR the placenta is smaller and the number

of villi as well as vessels within these villi are reduced (8). The

decreased size of the placenta and the dysfunction of the

trophoblasts lead to an undersupply of the fetus with oxygen

and nutrients. Moreover, it has been described that both the

velocity of the umbilical blood flow as well as the umbilical

oxygen delivery are reduced in FGR pregnancies compared to

normal pregnancies (10).

Therefore, causes of placental insufficiency may be of

vascular origin, such as stenosis or inadequate vascular

development/angiogenesis, but also the result of pre-existing

chronic disease of the pregnant woman, such as arterial

hypertension, predisposing to pre-eclampsia, poorly controlled

pre-existing diabetes mellitus, or the influence of toxic agents,

such as smoking due to the vasoconstrictive effect of nicotine or

substance abuse, in the form of either excess alcohol

consumption or drug abuse (7, 8, 11–14).

Nutrient supply
Adequate oxygen and nutrient supply through the placenta

are therefore of paramount importance for normal fetal growth.

During pregnancy, the need for energy increases by 69kcal/day

in the first trimester, 266kcal/day in the second trimester and

496kcal/day in the last trimester. The main energy source of the

fetus is glucose. Since the fetus cannot produce glucose during

intrauterine life, it is dependent on the maternal supply (15).

Studies in animals have shown that inappropriate supply of

glucose during pregnancy, leading to fetal hypoglycemia,

predisposes to growth retardation and to congenital

malformations. Intellectual disability due to hypoglycemia has

also been well documented as is the case in poorly controlled

pregnant women with pre-existing type 1 diabetes mellitus or

even gestational diabetes (16). Moreover, an adequate supply of

amino acids and omega-3-fatty acids is particularly important

for the growth of the fetus and the placenta. In addition, a

sufficient intake of iron, iodide, and calcium is essential for

normal fetal growth (17). Vitamin D is also indispensable since

vitamin D deficiency has been shown to be associated with an

increased risk of preeclampsia and the development of

gestational diabetes, circumstances that, in turn, affect fetal

growth (18). Furthermore, folate supplementation can prevent

congenital malformations, especially neural tube defects,

preeclampsia or IUGR, caused by folate deficiency. Vitamin Β1

and B6 deficiency are also associated with pre-eclampsia and/or

IUGR (19).

The hormonal determinants of normal
fetal growth

Fetal growth is regulated by hormones mainly secreted by

the placenta and the fetus (20, 21). The most important key

regulator of fetal growth is fetal insulin, while insulin secreted by
Frontiers in Endocrinology 03
the beta-cells of the maternal pancreas does not cross the

placenta (22). Thus, the passage of the maternal glucose to the

fetal circulation drives the production of insulin by the fetal

pancreas, leading to fetal hyperinsulinemia, which, in turn,

promotes fetal growth.

During pregnancy, a state of inherent insulin resistance of

the pregnant woman, the beta-cells of the maternal pancreas

expand to secrete more insulin. In addition to that, the insulin-

sensitive organs, such as skeletal muscle and adipose tissue, that

in normal circumstances absorb glucose, through the

development of this insulin-resistant state, allow more glucose

to be available through the placenta to the fetus (23). The glucose

of the maternal circulation, therefore, is passively diffused

through the placenta to provide adequate fuel for fetal growth.

Thus, in situations characterized by hyperglycemia of the

mother, such as in case of pre-existing type 1 diabetes or

gestational diabetes, the increased glucose induces hypertrophy

of the fetal pancreatic beta cells and increased insulin

production, leading thus to fetal macrosomia (24, 25). In other

words, the paramount role of insulin during fetal development is

highlighted by the macrosomia of newborns born to mothers

with pre-existing diabetes, where maternal hyperglycemia drives

overproduction of insulin by the fetal pancreatic beta cells. On

the other hand, in cases of inadequate insulin production by the

fetus or inadequate action, such as in the case for example of

pancreatic agenesis of the fetus or leprechaunism, a genetic cause

of extreme insulin resistance, the newborn is characterized by an

extremely reduced birth weight, proving again the paramount

role of fetal insulin on fetal growth (26, 27). Furthermore, fetal

growth as well as placental development is stimulated by the

insulin like growth-factors (IGF), mainly IGF-2 and, to a lesser

degree, IGF-1 (28). The role of IGF-2 in fetal growth has been

demonstrated in the context of the Silver-Russel syndrome,

characterized by extreme intrauterine growth restriction due to

disorders in the methylation pattern of the IGF-2 gene in

affected fetuses. A further key regulator of fetal growth is the

growth hormone variant (GHV) secreted by the placenta. From

the 17th week of pregnancy, GHV replaces GH secreted by the

pituitary gland in the maternal blood circulation. GHV

promotes fetal growth by increasing blood and glucose supply

in favor of the fetus (29). Furthermore, fetal growth is regulated

by thyroid hormones (30). Thyroid hormones are secreted by

both the maternal thyroid gland, especially in the first half of

pregnancy, and the fetal thyroid gland, especially in the second

half of pregnancy. Thyroid hormones are essential for

neurogenesis and osteogenesis of the fetus. During pregnancy,

the demand for thyroid hormones and, therefore, also for iodide

increases by 20-50%. Consequently, the need-based

supplementation of iodide is crucial for pregnant women (31).

All these growth-promoting hormonal factors are counteracted

by the glucocorticoids. Glucocorticoids have mainly an inhibitory

effect on growth, but are essential for the differentiation of fetal

tissues and preparation for extrauterine life (28).
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The causes of impaired fetal growth

Impaired fetal growth may thus be the result either of

maternal, fetal, or placental causes (Table 1).

Maternal causes
The most common cause is preeclampsia in the pregnant

woman (13). Preeclampsia is defined by maternal hypertension

occurring after the 20th week of gestation with proteinuria and/

or maternal organ dysfunction and/or placental insufficiency (5).

Risk factors for preeclampsia are an antiphospholipid syndrome,

history of previous preeclampsia, poorly controlled pre-existing

type 1 diabetes mellitus, hypertension, positive family history for

preeclampsia, multiple pregnancy, nulliparity, obesity and age

over 40y (32). The pathogenesis of preeclampsia is not clearly

understood. The hypothesis, however, is that there is an

impaired development of the uterine spiral arteries. This leads

to an undersupply of the placenta, and consequently, to placental

ischemia. This results to the secretion of anti-angiogenic factors

into the maternal circulation, which, in turn, induce endothelial

damage (33). Preeclampsia is correlated with 5-23% lower birth

weight in comparison to uneventful normal pregnancies (34).

A further placental abnormality, a circumvallate placenta is

also associated with IUGR (35). In a circumvallate placenta the

chorionic surface is smaller than the basal surface, leading to a

folding of the membrane margin in an annular shape (35).

Circumvallate placenta is associated with persistent vaginal

bleeding in the first trimester and premature rupture of the

membranes (36). In these cases, the fetus is undersupplied with

blood and nutrients, which induces growth restriction.

Furthermore, pregnancies with placenta previa are also

accompanied by an increased risk for IUGR (37).
Frontiers in Endocrinology 04
Concerning maternal factors leading to impaired fetal

growth, inadequate control of maternal diabetes mellitus, as

mentioned before, is also a risk factor for fetal growth restriction,

as also witnessed by murine studies (38). This is caused by the

vasculopathy existing in diabetes, as also observed in humans

(39, 40). However, too tight glycemic control in pre-existing

diabetes can also lead to growth retardation if the mother has

prolonged hypoglycemia, and the fetus does not receive adequate

glucose supply (41). On the other hand, a poor glycemic control

of maternal diabetes can result to fetal macrosomia due to fetal

insulin overproduction as a response to maternal hyperglycemia.

The resulting glucose oversupply to the fetus during pregnancy

may then be complicated by postnatal hypoglycemia, due to the

interruption of the increased glucose supply from the maternal

circulation after birth, while the insulin production of the

offspring is still stimulated (42, 43). Furthermore, besides

impairment of fetal growth, either in the sense of macrosomia

or fetal growth restriction, preexisting diabetes mellitus of the

pregnant woman correlates with an increased risk of congenital

malformations, mainly congenital heart defects, neuronal,

musculoskeletal and limb malformations (41, 44).

Another maternal cause of growth retardation is maternal

hypertension (45, 46). Fetuses of women presenting gestational

hypertension have an increased risk of IUGR as well as an

increased risk of fetal morbidity and mortality (47). This can be

explained by the vasculopathy and associated ischemia of the

placenta, also leading to an oxygen undersupply of the fetus. In

addition, gestational hypertension is also associated with a

higher cardiovascular risk of the offspring (48).

Furthermore, the lack of micronutrients such as vitamins

and minerals can lead to impaired fetal growth and/or congenital

malformations (49). Therefore, maternal malnutrition but also
TABLE 1 Causes of intrauterine growth restriction.

Causes of Intrauterine Growth Restriction

Maternal causes Medical conditions A. Arterial hypertension and Pre-eclampsia
B. Poorly controlled Diabetes mellitus
C. Hyperthyroidism
D. Infections during pregnancy such as rubella, Toxoplasma etc.

Lifestyle factors A. Malnutrition
B. Smoking
C. Substance abuse

Placental causes Inadequate placental blood supply

Placental abnormalities A. Circumvallate placenta
B. Placenta previa

Chromosomal aberrations in the placental tissue

Fetal causes Genetic causes A. Chromosomal aberrations
B. Monogenic causes
C. Imprinting disorders

Congenital malformations

Metabolic causes

Twin/multiple pregnancies

Varia
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restrictive diets in the pregnant woman, as is the case in vegan

diets without supplementation of essential micronutrients and

vitamins, such as vitamin B12 supplementation, constitute

further causes of IUGR (45, 50, 51).

Moreover, impaired fetal growth can be the result of thyroid

dysfunction, namely maternal hyperthyroidism (52–54). In

studies, including that of Luewan et al., it has been shown that

hyperthyroidism and thyrotoxicosis of the pregnant woman

increases the risk of growth restriction and low birth weight of

the fetus (55, 56). On the other hand, since thyroid hormones are

vital for an appropriate fetal development, especially fetal brain

development, in a state of thyroid hormone deficiency the fetus

cannot develop properly. Hypothyroidism can therefore also

lead to impaired growth and development of the fetus (57, 58).

Furthermore , i t has been observed that maternal

hypothyroidism increases the risk of non-reversible intellectual

disability of the offspring (31, 59–61).

Infections during pregnancy are also further causes of IUGR.

There are numerous causative pathogens such as HIV, Zika

virus, Rubellla virus, cytomegalovirus, Toxoplasma gondii,

etc. (5).

Fetal and genetic causes
Growth retardation can also occur in the context of an

underlying genetic disorder. The genetic causes can be classified

into chromosomal aberrations (incl. aneuploidy and copy

number variants etc.) as well as monogenic causes. Imprinting

defects are also a known cause of growth retardation. The most

common underlying abnormalities are chromosomal

aneuploidies, such as trisomy 13, 18 and 21 (62). The

probability of chromosomal aberration increases with the

severity of fetal growth restriction (FGR) (63). Copy number

variants can also be the cause of FGR (64). In a French

multicenter study, a pathogenic or likely pathogenic copy

number variant was detected in 7.5% of fetuses with isolated

growth retardation diagnosed prenatally (65). Frequent copy

number variants associated with FGR are the 22q11.2

duplication, the Xp22.3 deletion as well as the 7q11.23 deletion

(66, 67). The 22q11.2 duplication, also called DiGeorge

syndrome, is a disorder characterized by immunodeficiency,

hypoparathyroidism, and congenital heart disease. Other

features can be developmental delay, hypothyroidism, renal as

well as skeletal abnormalities (68). Patients with a Xp22.3

deletion suffer from ichthyosis and can also have intellectual

disability (69). The 7q11.23 deletion leads to the clinical

phenotype of the Wiliams-Beuren syndrome. Williams-Beuren

syndrome is characterized by a vascular stenosis, cardiac valve

abnormalities, hypercalcemia, renal abnormalities, hypodontia

and developmental delay (70). Monogenic disorders can also

constitute causes of FGR. Examples of monogenic diseases

associated with FGR are Cornelia de Lange syndrome, Smith

Lemli Opitz syndrome, Bloom syndrome, 3M, Seckel syndrome

(62). Furthermore, imprinting defects can be associated with
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FGR. Epigenetic modifications can lead to a silencing of certain

alleles, so that only one allele, the paternal or maternal one, is

expressed in a tissue-specific manner. This process is called

genomic imprinting. Defects of this imprinting procedure can

lead to imprinting disorders resulting in IUGR, as for example

Silver-Russel syndrome (71). In most patients with Silver-

Russel-syndrome there is a hypomethylation of the imprinting

cluster region on the paternal chromosome 11p15.5, which leads

to biallelic silencing of the IGF2-gene and a biallelic expression

of the noncoding region H19. It can also be caused by maternal

uniparental disomy of chromosome 7 (UPD 7) or other rarer

molecular genetic causes. Silver-Russel syndrome is mainly

characterized by FGR, postnatal growth restriction, body

asymmetry and often developmental delay (72). Further

imprinting disorders associated with IUGR are the Temple

syndrome, the Kagami-Ogata syndrome, the Prader-Willi

syndrome, the pseudohypoparathyroidism 1b and others (73).

In addition, a correlation between FGR and chromosomal

aberrations in placental tissue has been described. A

chromosomal aberration affecting only one cell line of the

placenta, in which the fetus has a regular number of

chromosomes, is called “confined placental mosaicism”

(CPM). As presented in the review of Eggenhuizen et al.,

71.7% of CPM cases resulted in FGR (74).
The consequences of being
born IUGR

Short term consequences

There are both short- and long-term consequences of being

born with IUGR concerning both somatic and mental health as

highlighted below and listed in Table 2.

IUGR can be associated with complications during the

neonatal period. Fetuses born with IUGR have an increased risk

of morbidity and mortality. They are also at increased risk of

developing hypoglycemia shortly after birth due to reduced

glycogen and fat stores and limited ability of gluconeogenesis as

well as fat oxidation (75). Moreover, they are prone to hypothermia

due to lack of subcutaneous brown fat, disproportionate body mass

and increased transdermal temperature loss (76).

Moreover, in the context of placental insufficiency, the

fetuses often grow under chronic hypoxia. This leads to

increased erythropoiesis resulting in high hematocrit values

and subsequent hyperviscosity of the blood. This can result in

acute neonatal adverse events such as necrotizing enterocolitis or

thrombosis (5). Furthermore, neonates born IUGR are at

increased risk for developing respiratory complications (77).

Besides the short-term complications of newborns born

IUGR during the neonatal period, much more attention has

been laid to the long-term consequences of inadequate fetal

growth, in later life, as presented below.
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Long term consequences

Adverse future outcomes concerning somatic
health and disease
Metabolic derangements – cardiovascular risk

During the last decades numerous epidemiological studies

have reported an association of being born IUGR with future

non-communicable diseases in adolescence or adult life, namely

an increased incidence of insulin resistance expressed as future

obesity and metabolic syndrome with high risk of lipid

abnormalities, endothelial dysfunction leading to arterial

hypertension, fatty liver disease, glucose intolerance or even

type 2 diabetes in adult life, all contributing to higher

cardiovascular risk (75, 78, 79).

Furthermore, it has been reported that the increased risk of

metabolic syndrome and cardiovascular disease exists not only

during adulthood but also during childhood (78, 79). This

phenomenon is accentuated in case of a rapid weight gain

during infancy (80). The redistribution of weight gain in favor of

abdominal fat mass accumulation takes place mainly between the

2nd and 4th year of life. At the age of 4 years, IUGR children show

higher fat mass, insulin resistance and proinflammatory

parameters (81). Furthermore, they present an increased risk of

dyslipidemia and metabolic syndrome (5, 82). For example,

Tenhola et al. studied a group of 55 children with low birth

weight and 55 children with appropriate birth weight and found

that children born with low birth weight were at increased risk of

hypercholesterolemia. Predisposing factors were the female gender,

poor catch up growth in height and early initiation of puberty (83).

Somatic growth- catch-up growth

Infants born with IUGR usually show a fast growth in the first

years of life, called catch-up growth. This is accelerated in the first

months of life and continues with a modest acceleration till the 7th
Frontiers in Endocrinology 06
year, although most IUGR born children are expected to present

catch-up growth and enter the normal trajectories of weight and

height until the age of 3-4 years (5, 6, 41). A study by de Ridder

et al. showed that 91% of children born SGA reached a normal

height during the catch-up growth phase (84). Children that

cannot reach the normal height trajectory after their 4th

anniversary are less probable to enter the normal height

trajectories later. Moreover, studies in infants of diabetic mothers

with nephropathy born with IUGR showed that in childhood they

had lower height and weight even after the catch up-period (85).

Reproductive axis

Low birth weight is associated with insulin resistance and

decreased IGF1 levels reminiscent of a state of multi-hormonal

resistance (86). This hormonal constellation correlates with

increased LH levels and reduced SHBG levels in prepubertal

girls pointing to an underlying hormonal setting of PCOS-like

phenotype. This may result to precocious adrenarche and

increased androgen availability. The increased androgen levels

in girls born IUGR predispose thus to the development of

polycystic ovary syndrome (87), while no association has been

described between low birth weight and disorders of adrenarche

or puberty in male subjects (88). This association of former SGA

with reproductive axis disturbance and functional

hyperandrogenism in girls has been extensively studied by

Lourdes Ibanez and Francis de Zegher in previous years (81,

89, 90). However, concerning pubertal initiation, most children

born SGA, enter puberty slightly earlier but still in the normal

range compared to children born with normal weight for

gestational age, so called Adequate for Gestational Age (91).

Nephrological problems

A further complication of IUGR is kidney disease. According

to the review of Ritz et al. IUGR can lead to a reduced number of
TABLE 2 Consequences of intrauterine growth restriction.

Consequences of Intrauterine Growth Restriction

Short term consequences Increased risk of morbidity and mortality

Hypoglycemia

Hypothermia

Hyperviscosity

Respiratory complications

Long term consequences Metabolic derangements Metabolic syndrome

Cardiovascular disease

Growth impairment

Endocrine disorders Precocious adrenarche

Polycystic ovarian syndrome

Nephrological problems Renal insufficiency

Hypertension

Cancer risk Hepatoblastoma

Retinoblastoma
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nephrons. A low number of nephrons predisposes to glomerular

hypertrophy as well as tubular dysfunction, increasing the risk of

developing hypertension in later life (92). This is also supported

by the Brenner’s hypothesis, according to which a low nephron

number is associated with hypertension (93). Furthermore,

IUGR is associated with an increased risk of impaired renal

function and later development of end-stage renal disease

(94–96).

Cancer risk

IUGR also appears to be a risk factor for the development of

pediatric tumors. According to Spector et al. low birth weight

strongly correlates with the risk of developing hepatoblastoma

(97). Furthermore, low birth weight is associated with gliomas,

with an odds ratio of 2.13 (95% CI: 0.71-6.39 for birth weight

<1500g) as well as retinoblastomas with an odds ratio of 2.43

(95% CI: 1.00-5.89 for birth weight <1500g) (98). However,

O’Neill et al. postulated that there is no correlation between birth

weight and the risk of developing retinoblastoma (99). In

addition, it is worth mentioning that high birth weight is also

associated with higher tumor risk, namely with an increased risk

of leukemia (99).

The etiological pathway highlighting the link
between IUGR and impaired somatic
future outcomes

The initial observations that intrauterine growth restriction

can adversely influence health in adult life came from

Hertfordshire in the UK, where former IUGR-born babies

have been reported to have a significantly increased risk to

develop Metabolic syndrome in later life in comparison to those

born adequate for gestational age or even large for gestational

age (LGA). These initial observations have been reported by

David Barker in the late 80ies and early 90ies, who supported the

notion of ‘fetal origin of adult disease” and explained the

reported association through the “Thrifty phenotype

hypothesis” (100, 101).

The thrifty phenotype hypothesis

According to the thrifty phenotype hypothesis of Hales and

Barker, the fetus in a nutrient-restricted environment

redistributes energy for survival mainly directing nutrients

supply to the vital organs such as the brain, which leads to an

undersupply of other organs such as the pancreas. This brain-

sparing effect prioritizes the energy supply to the brain and

ensures fetal survival. However, it inevitably leads to a

disturbance of insulin homeostasis by provoking insulin

resistance of the peripheral organs such as the liver and the

muscles. This insulin resistant state predisposes the individual to

the development of metabolic syndrome and all its parameters

such as dyslipidemia, fatty liver, arterial hypertension and type 2

diabetes mellitus later in life (102).
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These initial observations from Hertfordshire, UK, have also

been confirmed from data originated from the Dutch famine,

where it became clear that children, whose mothers have been

undernourished during pregnancy due to the famine developed

arterial hypertension in later life, data also confirmed in other

parts of the world (103).

The notion of developmental mismatches

In other words, in case of impaired intrauterine milieu, for

example in the context of protein-restricted maternal nutrition

during pregnancy, exaggerated stress of the pregnant woman,

inadequate placental nutrient supply or blood underperfusion, the

endocrine-metabolic modifications that took place during the

important window of developmental plasticity ascertain

offspring’s survival on the short term, a notion that is known as

Immediate adaptive response (IAR) (104). This also persist into

the extrauterine life and confer an increased cardiometabolic risk

to the offspring, especially when the restricted intrauterine milieu

does not match to the nutrient-abundant extrauterine milieu, as

Gluckman supported in his notion of the match-mismatch

principle (105, 106) or otherwise reported as predictive adaptive

response (PAR) (107).

The predictive-adaptive response

According to the notion of predictive adaptive response

(PAR) as formulated by Gluckman et al, if the fetus has been

exposed to an adverse intrauterine environment, that has

induced an immediate adaptive response for survival, during

the window of developmental plasticity, this adaptation has

prepared the fetus to face the extrauterine environment

through a prediction of an also nutrient restricted extrauterine

environment. However, if the intrauterine nutrient-restricted

environment does not really match to the extrauterine

environment, since the nutrient-restricted intrauterine

environment is followed by a nutrient- or calories abundant

extrauterine environment, then this predictive adaptive response

may have long-lasting consequences for future health and

disease, supporting the notion of Developmental Origin of

health and disease (DOHaD) (108, 109).

Developmental origin of health and disease -
epigenetic modifications

According to the Developmental Origin of Health and

Disease (DOHaD) concept , th i s increased future

cardiometabolic risk of offspring born as IUGR is attributed to

epigenetic modifications taking place during the crucial window

of developmental plasticity in intrauterine life (109–111).

The probability of the occurrence of metabolic diseases

during life can be therefore influenced by prenatal events.

Adversaries in the prenatal environment can influence the

metabolism of the fetus. These processes can be mainly caused

by epigenetic modifications. Epigenetic modifications include
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DNA methylation and histone modifications (111) that take

place already prenatally. During early embryogenesis, the

methylation patterns of the fetus are programmed and can be

influenced by various factors, such as maternal nutrition (112).

As Waterland et al. have shown in a murine model, maternal

nutrition affects the phenotype of the fetus by modifying

methylation pattern in the offspring (113). These methylation

modifications induced by the maternal diet can thus increase the

risk of developing metabolic diseases in the offspring (114),

which may explain the increased incidence of metabolic

syndrome and type 2 diabetes mellitus in IUGR born

individuals. Moreover, factors such as maternal nutrition,

hypoxia or other pathologies can alter the expression profile of

amino acid transporters. This adaptive change in the expression

of amino acid transporters in the trophoblast also regulates fetal

growth (115, 116).

The transgenerational transfer of environmental clues

According to Gluckman et al., these epigenetic modifications

that took place in the first generation that has been exposed to an

adverse intrauterine environment may even be transferred and

expressed in the offspring of the next generation, although this

offspring has not been exposed to an adverse intrauterine milieu,

suggesting the notion of transgenerational transfer of epigenetic

modifications and highlighting the impact of avoiding

intrauterine adversaries in one generation to ascertain a

healthy outcome of future generations (104).

It is also worth mentioning that this transgenerational effect

that has been reported for the female line of inheritance has also

an impact from the paternal side affecting not only the

immediate subsequent generation, but also the generation after

that. Moreover, epigenetic modifications can take place not only

during intrauterine life but also during adolescence. Therefore,

not only the mother’s nutrition and lifestyle are relevant for the

health of the child, but also the grandparents’ nutrition and

lifestyle choices (117). In other words, the epigenetic changes

apply not only to the maternal epigenome but also to the

paternal (118). In this context it is important mentioning that

the Avon Longitudinal Study of Parents and Children

(ALSPAC), after appropriate adjustment, has demonstrated

that early paternal smoking is associated with greater body

mass index (BMI) at 9 years in sons, but not in daughters.

Sex-specific effects have also been shown in the Overkalix data

reporting that paternal grandfather’s food supply was only

linked to the mortality relative risk (RR) of grandsons, while

paternal grandmother’s food supply was only associated with the

granddaughters’ mortality RR. These transgenerational effects

were observed with exposure during the slow growth period

(concerning both grandparents) of fetal/ infant li fe

(grandmothers) but not during either grandparent’s puberty.

The authors concluded that sex-specific, male-l ine

transgenerational responses exist in humans and have

hypothesized that these transmissions are mediated by the sex
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chromosomes, X and Y. Such responses add an entirely new

dimension to the study of gene-environment interactions in

development and health and provide more data concerning the

impact of healthy lifestyle choices through the lifespan for future

generations (119–121).

Molecular mechanisms linking IUGR to insulin
resistance and future obesity/disturbed appetite

As mentioned above, children born IUGR are prone to

develop insulin resistance in later life (122). This was also

demonstrated in a murine IUGR model (123). Long et al.

proposed that this observation could be explained by an

impaired LRP6-Wnt-signaling pathway, which regulates the

expression of insulin -receptors, leading to insulin resistance

(124). A further possible underlying mechanism for the insulin

resistance in individuals born with IUGR is the upregulation of

ACSL1 expression. ACSL1 is a gene which regulates lipid

metabolism. The authors claim that the upregulation of

ACSL1 could facilitate the catch-up growth. However, this

could also lead to increased secretion of esterified fatty acids,

which promote insulin resistance and dyslipidemia (125).

Animal studies investigating the link between IUGR and

adipogenesis have demonstrated that the underlying

mechanisms predisposing to future obesity include a

dysregulation of appetite/satiety signals and abnormal

adipogenesis (126). According to Ross and Desai (126) there is

a developmental origin of adipogenesis and disturbed appetite

signals in intra-uterine-restricted newborns. As observed in

animal models of IUGR, maternal calorie restriction or

ligation of the uterine artery led to increased adult

adipogenesis, accentuated when the IUGR status has been

followed by a rapid extrauterine catch-up growth. It has been

demonstrated that gestational nutrient restriction led to a

dysregulation of orexigenic neuronal circuits at the

hypothalamic level. The predominant appetite regulatory site,

the hypothalamic Arcuate nucleus (ARC) receive signals from

peripheral circuits, such as the gastrointestinal tract, pancreas,

and the adipocytes but also from central inputs such as the brain.

The ARC contains the medial orexigenic neurons (NPY and

Agouti-related peptide neurons) and the lateral anorexigenic

neurons, the Pro-opiomelanocortin (POMC) and the Cocaine

and amphetamine regulated transcripts (CART). During fetal

development the hypothalamic neuronal stem cells (NSC)

proliferate and ultimately differentiate into neurons. Among

those, the ones destined to the ARC appetite center further

differentiate to express either orexigenic or anorexigenic

peptides. In their experimental animal setting the researchers

have demonstrated that intrauterine growth restricted animals

resulted in significantly increased food intake with resulting

hyperphagia due to dysregulated satiety signals, as evidenced by

reduced satiety signals to leptin or, on the contrary, increased

responses to appetite stimulatory signals from ghrelin.

Moreover, laboratory studies from the same research group
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have demonstrated that IUGR male offspring have upregulated

adipogenic signaling cascade evidenced by an increased

expression of enzymes promoting adipocyte lipid storage and

synthesis. IUGR adipocytes in culture retained this adipogenetic

characteristics even when deprived from the hormonal milieu in

which the IUGR offspring has been exposed in utero (126). It has

therefore been postulated that the mechanisms that result in

offspring obesity include the programming of the hypothalamic

appetite pathway and adipogenic signals regulating lipogenesis.

Processes include nutrient sensors, epigenetic modifications, and

alterations in stem cell precursors of both appetite/satiety

neurons and adipocytes which are modulated to potentiate

offspring obesity.

Furthermore, in a more recent experimental study Gong

et al. investigated the Bone marrow mesenchymal stem cells

(BMSC) of the intrauterine growth-restricted rat offspring and

demonstrated that they exhibited an enhanced adipogenic

molecular profile at miRNA, mRNA and protein levels, with

an overall up-regulated PPARg (miR-30d, miR-103, PPARg, C/
EPBa, ADRP, LPL, SREBP1), but down-regulated Wnt (LRP5,

LEF-1, b-catenin, ZNF521 and RUNX2) signaling profile (127).

Further experimental data point towards a sex-dimorphic

impact of IUGR on future adipogenesis with male offspring

exhibiting stronger adipogenic propensity than females,

especially with advancing age, also highlighting both the sex

dimorphism of such an effect but also the permissive effect of

postnatal caloric intake on future obesity development (128).

The disturbance of the hypothalamic-pituitary axis could

also predispose to an increased cardiovascular risk. Individuals

born SGA show GH resistance, witnessed by increased GH and

reduced IGF1 and IGFBP3 levels. Since reduced IGF1 levels are

associated with increased cardiovascular risk, this could

constitute a further underlying mechanism linking IUGR with

increased future obesity and cardiovascular risk (129).

Adverse future outcomes concerning
neurocognitive health and disease

According to the meta-analysis by Sacchi et al. (2), IUGR is

also associated with cognitive impairment. Children born IUGR

or SGA have lower cognitive scores than those born AGA. This

is the case for both preterm and term babies (2). These cognitive

abnormalities can also be verified by functional MRI (fMRI)

studies, that have shown reduced para-hippocampal activity in

SGA children compared to AGA children (130). Furthermore,

children born preterm with IUGR show impaired fine and gross

motor function and an increased risk of developing autistic traits

in comparison to preterm children born AGA (131). Cognitive

impairments are also described in children born with IUGR

during their school years, namely presenting learning difficulties

with reduced memory and concentration skills. The risk of

developing cerebral palsy is also increased in children born

IUGR (1). These observations could be explained by the

reduced brain volume, observed in children born IUGR (132).
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In addition, thyroid dysfunction in IUGR children could also

contribute to the cognitive impairment (5).

The etiological pathway highlighting the link
between IUGR and impaired neurocognitive
future outcomes
The notion of developmental plasticity

Children with low birth weight show neurocognitive

abnormalities as described above. This could be explained by

disturbed prenatal neuronal development. St. Pierre et al. were

able to demonstrate in a murine IUGR model that IUGR is

associated with impaired synaptic plasticity in the hippocampus

(133). In addition, Brown et al. described that IUGRmice show a

reduced number of neural stem cells in the hippocampus as well

as a disturbed induction of neuronal differentiation. These

processes could be caused by a downregulation of the Wnt

pathway (134). Other parameters such as neuroinflammation, a

disturbed blood-brain barrier and oxidative stress can also

contribute to the pathogenesis of neuronal dysfunction (135).

Therefore, although future neurocognitive outcome is

besides the scope of the current review article, these

observations of impaired neurocognitive development in case

of intrauterine restriction further highlight the importance of an

optimal intrauterine milieu to ascertain all aspects of

future health.
Treatment modalities

The role of breast feeding

Breastfeeding has beneficiary effects on the health of the child.

Studies have shown that breastfed children showed a slower

weight gain during the catch-up period and a reduced risk of

obesity and hypertonia (17, 136, 137). According to the meta-

analysis of Qiao et al. breast feeding is associated with decreased

risk of childhood obesity. This positive effect also increases with

increasing duration of breastfeeding (138). A positive effect of

breastfeeding has also been described for children’s cognitive

performance (139). Belfort et al. studied 1224 3-years-old and

1037 7-years-old children and found that children with a longer

breastfeeding duration showed higher language comprehension

scores at age 3 and higher verbal and nonverbal IQ scores at age 7

(140). Furthermore, breastfeeding can have protective effects

against necrotizing enterocolitis, an inflammatory disorder

common in premature and IUGR neonates (141).
Appropriate nutrition during infancy,
childhood, and adolescence

Optimal maternal nutrition not only during pregnancy but

also before pregnancy is of paramount importance for adequate
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nutrient supply to the fetus, as already presented in the previous

sections of this review. During the last years it became moreover

clear that the first 1000 days of life starting from conception until

the end of the second year of life are critical for both future health

and neurodevelopment. In other words, these 1000 days spanning

the period of the 270 days of pregnancy plus the 365 days of the

first year of life plus the next 365 days of the second year of life

play a major role in future health outcome of the offspring (142).

A lot of evidence has been accumulated for the importance of the

270 days of pregnancy in terms of healthy nutrition (micro- and

macronutrient composition) and avoidance of noxious agents

such as tobacco or alcohol abuse in the lifestyle pattern of the

pregnant woman. Since special dietetic preferences have also been

adopted by young women of reproductive age in modern

societies, such as vegan or vegetarian diets that cannot cover

micronutrients requirements of the pregnant woman, and several

deficiencies emerge as a consequence of such diets like iron, folate

of vitamin B12 deficiency, special attention should be laid to

supplementation with micronutrients and vitamins, especially

vitamin B12 in women following vegan diets (50, 143). Also, the

change in lifestyle in modern societies with increasing indoor

activities and decreasing sun exposure leads to higher rates of

vitamin D deficiency among women. Supplementation of vitamin

D3 during pregnancy leads to a decreased risk of preeclampsia

and IUGR (144). Furthermore, since deficiency of maternal iron,

calcium, magnesium, and selenium is associated with low birth

weight/IUGR, the supplementation of these micronutrients in the

pregnant woman can be beneficial for the proper development of

the fetus (19).

Moreover, moving into the early extrauterine feeding

environment, exclusive breastfeeding for the first 6 months of

extrauterine life, as already mentioned, should be advocated to

diminish the rates of future obesity and other negative health

issues. After the first 6 months of extrauterine life, when

exclusive breastfeeding can no more completely cover the

nutritional needs of the infant, then complementary food

should be introduced. It has been demonstrated that initiation

of solid foods before the age of 4 months is associated with an

increased risk for future obesity. Thus, promoting exclusive

breastfeeding during the first 6 months of extrauterine life and

avoiding the early introduction of solid foods before the age of 4

months during infancy are important components in the combat

against obesity. The time until the completion of the second year

of life is important for being exposed to new tasty, low fat, rich in

fruits and vegetables nutrition, the so-called Mediterranean diet

(145). Thus, promoting healthy food choices not only during

infancy but also during childhood are main determinants of the

strategy to prevent future obesity, as already reported by the

importance of the first 1000 days for future metabolic health,

especially when combined with physical activity and avoidance

of sleep deprivation (142, 146, 147).

Nutrition also plays an important role during the rest of life,

which can be partly explained by epigenetic modifications taking
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place also at later stages of life, mainly during adolescence.

Therefore, epigenetic modifications are important during the

lifespan both pre- and postnatally as well as during adolescence.

According to Han et al. BMI and smoking during adolescence

can influence the DNA methylation (148). Furthermore, studies

have shown that exercise and weight loss can also change the

methylation of certain genes and thus their expression (149–

151). Besides nutrition, further environmental factors such as

exposure to chemicals or metals can induce epigenetic

modifications (152). Taken together, a balanced diet and a

healthy lifestyle during adolescence are of paramount

importance for preventing future non-communicable diseases

of the current as well as the next generation (17).
Growth hormone treatment

Children born with SGA who do not show catch up growth

up to the chronological age of 4 years are often treated with

growth hormone (GH) therapy. The GH administration may

start at 2 years of age according to the US Food and Drug

Administration (FDA) and at 4 years of age according to

the European Medicines Agency (EMA). Beginning the

therapy at a young age has beneficial effects on the growth

gain (153). For example, Al Shaikh et al. studied retrospectively

the growth parameters of 26 patients with SGA. The patients

received growth hormone replacement therapy at a dose of

0.025-0.05 mg/kg/day. After 3.5 years of therapy, they

observed an increase in height of 1.46 SDS (154). Besides the

improvement of growth parameters, GH administration has a

favorable effect on metabolism as it reduces the risk of

hypertension (155) and leads to a reduction in adipose tissue

and lipids at the beginning of the treatment (156). At the end of

therapy, individuals after GH treatment have similar amounts of

adipose tissue and lower lipid levels compared to untreated ones

(87, 157). SGA individuals who have received GH therapy

exhibit bone-mineral density deficiencies shortly after

cessation of therapy, but these normalize 5 years after

cessation of therapy (158). Furthermore, GH treatment has

positive effects on the kidney development since it leads to an

increased renal length and volume. Moreover, after cessation of

GH treatment the renal function has been shown to be

comparable between SGA patients who received GH and

healthy controls (159).
Metformin

Another therapeutic target is the dysfunctional metabolism

in low-birth-weight children. As described above, IUGR children

tend to be overweight and develop metabolic syndrome and type

2 diabetes mellitus. Besides healthy lifestyle habits and healthy

nutrition there are not many therapeutic possibilities.
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Therapeutically, metformin could be considered as a therapeutic

option in children born with IUGR, although metformin is

neither FDA- nor EMA approved for use in children. A

randomized controlled trial by Diaz et al. showed that children

treated with metformin had a lower weight and BMI than the

control group. There was also an improvement in biochemical

variables, with a reduction in glucose and triglyceride levels as

well as fat mass (160). Furthermore, studies performed by Ibáñez

et al. showed that treatment of low-birth-weight pubertal girls

led to reduced fat gain, delayed pubertal development, and

improved biochemical parameters (161–163).

Moreover, according to Garcia-Conteras et al., based on

animal studies, maternal therapy with metformin could

theoretically also be beneficial for fetal growth (164). In the

study by Garcia-Conteras et al. IUGR pregnancies modelled by

malnourished pigs were investigated. They were able to

demonstrate that the weight of the internal organs and the

brain was higher in the metformin-treated group than in the

control group. Therefore, the authors claimed that metformin

therapy of the pregnant woman could contribute to the

prevention of IUGR (165). However, the results of such

animal studies cannot safely be extrapolated to humans yet.
Preventive measures

In order to eliminate some of the risk factors for IUGR

development, a healthy lifestyle of the woman before and during

pregnancy is mandatory. Preeclampsia and gestational

hypertension are associated with a higher BMI of the woman.

Therefore, healthy diet and regular moderate exercise are

recommended (166). According to Crovetto et al., in

pregnancies with an increased risk of SGA, following a

Mediterranean diet can lead to a risk reduction of SGA births

(167). Furthermore, an adequate supply of micronutrients can

also reduce the risk of growth restriction. If sufficient coverage is

not provided by adequate food intake, such as is the case in

restrictive diets, like vegan or vegetarian diets, then

supplementation with iron, magnesium, folate, and iodine

could be considered (166, 168). In the case of gestational

hypertension which cannot be regulated by lifestyle

modification, drug therapy is recommended. Methyldopa,

calcium channel inhibitors and beta-blockers are allowed for

pregnant women, while ACE inhibitors or AT1 antagonists are

contraindicated during pregnancy (169). In addition, in

pregnant women with increased risk of preeclampsia a low-

dose aspirin treatment is indicated. A Doppler velocimetry

screening of the uterine artery in the second trimester is also

recommended in women with an increased risk of preeclampsia

(170). As already reported, smoking, alcohol, and substance

abuse are also associated with an intrauterine growth restriction

(171–173). Therefore, education of young women of
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reproductive age to avoid such noxious agents is of paramount

importance. However, if the young women used to adopt such

unhealthy habits, then their consumption should be ceased long

before pregnancy planning and conception.
Conclusion

There is accumulated evidence during the last decades

pointing to the importance of an optimal intrauterine

environment to provide the best chances for future health.

On the contrary, according to the developmental origin of

health and disease, the susceptibility for future disease greatly

depends on the developmental window, during which an adverse

environmental cue, leading to intrauterine growth restriction, took

place, making an individual more vulnerable to adverse future

outcomes such as obesity, metabolic syndrome, hypertension,

non-alcoholic fatty liver disease and type 2 diabetes mellitus. All

these non-communicable diseases are interconnected ultimately

leading to increased cardiovascular risk and mortality.

Moreover, it has been proven that intrauterine growth

restriction may generally impair future health, increasing the

risk for nephrological problems or even cancer risk.

Furthermore, an adverse intrauterine environment leading to

IUGR is further associated with future neurocognitive

impairments of the offspring.

As a consequence, if the increased public health burden and

costs of non-communicable chronic diseases but also mental and

neurocognitive impairments have to be minimized, special

attention should be laid to the healthy lifestyle habits of young

people, especially women of reproductive age, including both

avoidance of noxious agents, such as smoking or alcohol

consumption, healthy diet and physical activity to be established

long before any pregnancy is programmed or takes place and

these healthy lifestyle patterns should be sustained through the

whole duration of pregnancy in order to provide the best basis for

both somatic and mental health of future generations.

Furthermore, promotion of breastfeeding and healthy eating

habits in infancy, childhood, and adolescence along with

physical activity may further minimize the risk of future disease.
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