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Abstract
Purpose Advanced testicular germ cell tumours (GCT) generally have a good prognosis owing to their unique sensitivity 
towards cisplatin-based chemotherapies. However, cisplatin-resistant GCT have a poor outcome. Further studies are manda-
tory to better understand resistance mechanisms and develop therapeutic strategies for refractory GCTs.
Methods Protein levels in cisplatin-resistant GCT cell lines of NTERA-2, NCCIT and 2102EP were analyzed by quantita-
tive proteomic mass spectrometry (MS) in combination with stable isotope labelling by amino acids in cell culture (SILAC). 
Differentially abundant protein markers of acquired cisplatin resistance were validated by Western blotting. Comprehensive 
bioinformatical annotation using gene set enrichment analyses (GSEA) and STRING interaction analysis were performed 
to identify commonly affected pathways in cisplatin resistance and the data were compared to the GCT cohort of the ‘The 
Cancer Genome Atlas’.
Results A total of 4375 proteins were quantified by MS, 144 of which were found to be differentially abundant between 
isogenic resistant and sensitive cell line pairs (24 proteins for NTERA-2, 60 proteins for NCCIT, 75 proteins for 2102EP). 
Western blotting confirmed regulation of key resistance-associated proteins (CBS, ANXA1, LDHA, CTH, FDXR). GSEA 
revealed a statistically significant enrichment of DNA repair-associated proteins in all three resistant cell lines and specific 
additional processes for individual cell lines.
Conclusion High resolution MS combined with SILAC is a powerful tool and 144 significantly deregulated proteins were 
found in cisplatin-resistant GCT cell lines. Our study provides the largest proteomic in vitro library for cisplatin resistance 
in GCT, yet, enabling further studies to develop new treatment options for patients with refractory GCT.
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Introduction

Testicular germ cell tumours (GCTs) are the most com-
mon malignant solid neoplasms in men between the age of 
15 and 40 with an increasing incidence seen over the last 
4 decades [1]. Histologically, type II GCT are divided into 
seminomas (SEM) and nonseminomatous GCT (NSGCT) 
according to the WHO [2]. NSGCT comprise distinct sub-
entities, e.g. embryonal carcinomas (EC), yolk sac tumours, 

choriocarcinomas and teratomas (TER) [3]. The distinction 
between SEM and NSGCT is important because of vary-
ing treatment approaches, treatment responses and patients’ 
prognosis [4]. The treatment of GCTs primarily comprises 
a radical inguinal orchiectomy of the affected testis. Subse-
quent cisplatin-based combination chemotherapy is required 
in metastatic GCTs [5, 6]. The introduction of cisplatin-
based combination chemotherapy has led to cure rates of up 
to 90% even in metastatic disease stages [7–9]. Teratomas 
are of particular interest, as they are uniformly cisplatin-
resistant and surgery is the only successful therapy [6]. 
The number of patients with recurring disease that finally 
fail several lines of platinum-based chemotherapy is about 
3–5% of all GCT patients and about 15% of patients with 
primary metastatic disease [5, 8, 10, 11], but they have an 
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exceptionally poor prognosis with a life expectancy of only 
a few months [12].

In this study, we compared cisplatin-resistant and cis-
platin-sensitive cell lineages of pluripotent NTERA-2 and 
NCCIT as well as the nullipotent 2102EP cells (with NCCIT 
deriving from a TP53 mutated mixed mediastinal GCT) [13, 
14] by high-resolution mass spectrometry (MS) combined 
with stable isotope labelling with amino acids in cell culture 
(SILAC) [15–18]. The NTERA-2 and NCCIT cell lines rep-
resent EC, which can develop in all other types of NSGCT. 
Both cell lines represent a very well-studied in vitro model 
for NSGCTs. 2102EP represents an undifferentiated nulli-
potent EC, i.e. expresses markers of pluripotency, but do not 
tend to differentiate in response to differentiation-inducing 
signals. Cell lines representing seminoma were not used. We 
provide a proteomic resource library and functional annota-
tions determined by gene set enrichment analyses (GSEA), 
the STRING algorithm and DAVID Gene Ontology annota-
tion of acquired cisplatin resistance in GCT cell lines and 
compared our findings to the ‘The Cancer Genome Atlas’ 
(TCGA) cohort of ‘testicular germ cell tumours’. These 
findings may help to detect new treatment options for GCT 
patients with cisplatin-resistant disease course. There are 
already some treatment options available, but as common 
mutations (e.g. receptors, kinases, etc.) are lacking in GCT, 
targetable mechanisms of cisplatin resistance need to be dis-
covered and further analysed.

Material and methods

Culture of human GCT cell lines

The two human GCT cell lines NTERA-2 (CRL 1973) and 
NCCIT (CRL 2073) were supplied by ATCC, USA. 2102EP 
cells were a kind gift from PD Dr. Dr. Friedemann Honecker. 
All cell lines were cultured in HEPES-buffered RPMI-1640 
(Biochrom, Berlin, Germany) supplemented with fetal calf 
serum (FCS, 10%; CC Pro, Neustadt, Germany), penicillin 
(100 IU/ml; Sigma-Aldrich, Munich, Germany), streptomy-
cin (100 μg/ml; Sigma-Aldrich) and l-glutamine (2 mM; 
Biochrom, Berlin, Germany). The incubation temperature 
was 37 °C in a humid atmosphere with 5% carbon dioxide 
in the air.

Induction of cisplatin resistance in human GCT cell 
lines

For all parental GCT cell lines (NTERA-2, NCCIT, 
2102EP), isogenic cisplatin-resistant sublines (NTERA-R, 
NCCIT-R, 2102EP-R) were established through repeated 
cisplatin-exposure to increasing sublethal cisplatin concen-
trations (0.01–0.5 µg/ml) over a time period of 9–12 months, 

as described previously [19]. Cisplatin resistance was vali-
dated by treating sensitive and resistant cell lines after 72 h 
with increasing concentrations of cisplatin followed by com-
paring cellular viability using the CellTiter 96 R AQ One 
Solution Cell Proliferation Assay (Promega GmbH, Waldorf, 
Germany) (Fig. 1a).

Proteomic analysis of human GCT cell lines

We performed protein expression profiling by mass 
spectrometry in combination with stable isotope label-
ling by amino acids in cell culture (SILAC) as described 
before [15–18]. NTERA-2, NCCIT and 2102EP cells and 
their resistant counterparts NTERA-2-R, NCCIT-R and 
2102EP-R were cultured in RPMI 1640 medium supple-
mented with 10% dialyzed FCS (Invitrogen, Thermo Fisher 
GmbH, Bremen, Germany), 4 mM glutamine, antibiotics 
and 0.115 mM l-arginine-13C6 (Arg + 6) and 0.275 mM 
l-lysine-2D4 (Lys + 4) or equimolar amounts of l-arginine-
13C6

15N4 (Arg + 10) and 0.275 mM l-lysine-13C6,15N2-Lys 
(Lys + 8) (Eurisotop GmbH, Saarbrücken, Germany) for at 
least ten cell cycles. Labelled cells were lysed in 0.5% Noni-
det P-40 buffer containing 50 mM Tris/HCl, pH 7.8, 150 mM 
NaCl, 1 mM  Na3VO4, 1 mM NaF, 0.2% lauryl maltoside and 
protease inhibitors (cOmplete™ Protease Inhibitor Cocktail, 
Roche, Mannheim, Germany). After isolation, the protein 
amounts were determined by a colorimetric BCA assay. 
Equal amounts of SILAC-labelled proteins (50 µg for each 
trial), were mixed and separated by SDS-PAGE (4–12% 
NuPAGE Bis–Tris Gel, Invitrogen, Thermo Fisher Scientific 
GmbH, Germany). Proteins were visualized with Coomas-
sie brilliant blue stain and each lane cut into 11 equidistant 
slices irrespective of staining. Gel slices were reduced with 
10 mM DTT for 55 min at 56 °C, alkylated with 55 mM 
IAA for 20 min at 26 °C and digested with modified trypsin 
(Promega GmbH, Walldorf, Germany) overnight at 37 °C. 
Resulting peptides were concentrated on a C18 precolumn 
(25 mm × 150 μm I.D., Reprosil-Pur C18-AQ 120 Å 5 μm, 
Dr. Maisch HPLC GmbH, Ammerbuch, Germany) for 5 min 
at a flow rate of 10 μl/min and separated on a C18 capillary 
column (200 mm × 75 μm I.D., Reprosil-Pur C18-AQ 120 Å 
3 μm, Dr. Maisch HPLC GmbH, Ammerbuch, Germany) at 
a flow rate of 300 nl/min, with a gradient of 5–35% acetoni-
trile 0.1% formic acid over 90 min using a Proxeon nano 
LC coupled to a Q Exactive mass spectrometer (Thermo 
Fisher Scientific GmbH, Bremen, Germany). MS conditions 
were as follows: spray voltage, 1.8 kV; heated capillary tem-
perature, 270 °C; and normalized collision-energy (NCE) 
28. The mass spectrometer was operated in data-dependent 
acquisition mode. Survey MS spectra were acquired in the 
Orbitrap (m/z 350–1600) with a resolution setting of 70,000 
at m/z 200, a target fill value of 1e6 and a maximum fill 
time of 60 ms. The 15 most intense ions were sequentially 
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isolated for HCD MS/MS fragmentation and detection at a 
resolution setting of 17,500, a target fill value of 2e5 and a 
maximum fill time of 60 ms. Raw data were analysed with 

MaxQuant software version 1.3.0.5 (Max Planck Institute for 
Biochemistry, Martinsried, Germany) against the UniprotKB 
human reference proteome revision 02–2017 containing 
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Fig. 1  Proteomic comparison of cisplatin-resistant and cisplatin-
sensitive GCT cell lines. a Comparison of cellular viability with 
increasing cisplatin concentrations in cultures of cisplatin-sensitive 
and cisplatin-resistant cell lines of NTERA-2, NCCIT and 2102EP 
with significant higher viability in resistant cell lines with high con-
centrations of cisplatin. b The diagram demonstrates the workflow 
of the three cisplatin-resistant and three cisplatin-sensitive cell lines 

for SILAC labelling and LC–MS/MS analysis. c Normal distribu-
tion of  log2 SILAC ratios among the three named cell lines was seen. 
d Numeric Venn diagram of all quantified proteins in the three cell 
lines NTERA-2, NCCIT and 2102EP. e Principle component analysis 
showing technical and biological reproducibility of proteomic analy-
sis f Numeric Venn diagram of significantly differentially regulated 
proteins in all three cell lines
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92,928 sequence entries. Up to two missed cleavages of 
trypsin were allowed. Oxidized methionine, N-terminal pro-
tein acetylation and the respective isotope-labelled arginine 
and lysine residues were searched as variable modifications 
and cysteine carbamidomethylation as fixed modification. 
The false discovery rates at the protein and peptide levels 
were both set to 1%, respectively. Missing values in indi-
vidual experiments are denoted by ‘Not a Number (NaN)’. 
No further data imputation or similar was used.

Statistical analysis

Perseus Software version 1.5.2.6 (Max Planck Institute for 
Biochemistry, Martinsried, Germany) was used for sta-
tistical evaluation. The mean of the biological replicates 
was calculated for each cell line (mean resistant/parental 
ratio). In order to compare  Log2 ratios of quantification to 
the intensity,  Log10 values were calculated for intensities of 
each mean value. Afterwards, significance B analysis using 
a Wilcoxon-Mann–Whitney test with a Benjamini–Hoch-
berg FDR < 5% was performed by Perseus software to cal-
culate the p values of outlier proteins from the 1/1 ratio [20]. 
 Log10 intensity was plotted against  Log2 ratios of quantified 
resistant/parental ratios. Proteins were coloured according 
to their p values where blue colour means > 0.05, red color 
0.05–0.01, yellow between 0.01 and 0.001 and light green 
coloured proteins mean that they have p values less than 
0.001.

Western blot analysis

Cell lines were lysed in RIPA buffer (1 l PBS Dulbecco pH 
7.4; 5 g 5% sodium deoxycholate, 10 ml  IGEPAL® CA-630) 
with protease inhibitors. Protein concentration was quanti-
fied by the Bio-Rad DC Protein Assay (Bio-Rad Laborato-
ries GmbH, Feldkirchen, Germany). The Western blot analy-
ses were performed using the following primary antibody 
dilutions: monoclonal rabbit anti-CBS (D8F2P, Cell Signal-
ling  Technology®, Massachusetts, USA, 1:1000), polyclonal 
rabbit anti-LDHA (Cell Signalling  Technology®, Massa-
chusetts, USA, 1:1000), monoclonal rabbit anti-ANXA1 
(D16A10, Cell Signalling  Technology®, Massachusetts, 
USA, 1:1000), monoclonal rabbit anti-CTH (D4E9J, Cell 
Signalling  Technology®, Massachusetts, USA, 1:1000) 
monoclonal mouse anti FDXR (6C2, Invitrogen, Thermo 
Fisher Scientific, Darmstadt, Germany 1:1000). Polyclonal 
immunoglobulins/HRP secondary antibodies (1:1000, Dako, 
Agilent Technologies GmbH, Waldbronn, Germany) were 
used for the detection of primary antibodies. Membranes 
were developed using the ECL system (Amersham Biosci-
ence Europe GmbH, Freiburg, Germany).

Gene set enrichment analysis

Functional annotations were predicted using gene set 
enrichment analysis (GSEA) software downloaded from 
the home page (http:// www. gsea- msigdb. org/ gsea/ index. 
jsp) [21, 22]. Log2 transformed proteomics resistance vs 
native ratios and the value 0 as native pendant were sub-
jected uploaded into the software. Enrichment analysis 
was performed on the HALLMARK GeneSets with 1000 
permutations on the original dataset format and gene set 
as Permutation type. Significant enrichments were defined 
as nominal p values < 0.05 and FDR q < 25% as suggested 
by GSEA. For visualization in a bar graph p- and q-values 
were − log2 transformed. Enrichment plots were saved 
from the GSEA reports.

Online analyses tools and software

The STRING algorithm was used to predict protein–pro-
tein interaction by confidence using standard settings 
(https:// string- db. org) [23]. The DAVID annotation has 
been used to predict molecular functions of deregulated 
genes or proteins found in mass spectrometry analyses 
based on ‘Gene Ontology’ (GO), ‘Kyoto Encyclopedia 
of Genes and Genomes’ (KEGG), Uniprot and INTEPRO 
(https:// david. ncifc rf. gov/ home. jsp) [24]. The proteins 
detected in this study were also compared with the TCGA 
dataset of ‘testicular germ cell tumours’ via cBioPortal 
(https:// www. cbiop ortal. org/) [25, 26].

Results

Quantitative proteomic profiling 
of cisplatin‑resistant human GCT cell lines

We compared the protein profiles of three cisplatin-
sensitive human GCT cell lines to their complementary 
cisplatin-resistant subclones using high resolution mass 
spectrometry in combination with SILAC (Fig. 1b). Nor-
mal Gaussian distribution of  log2 SILAC ratios were seen 
in all three cell lines (Fig. 1c, Supplementary Fig. 1). In 
total, 4375 proteins were detected (Fig. 1d, Supplementary 
Table 1). Principle component analysis demonstrated high 
technical and biological reproducibility of proteomic anal-
ysis (Fig. 1e). A significantly different regulation between 
resistant and sensitive cell lines was found for 25 proteins 
in NTERA-2, for 60 proteins in NCCIT and for 75 pro-
teins in 2102EP (Fig. 1e and f, 2a–c). Of these, 16 were 
significantly deregulated in at least two of the three tested 
cell lines (Table 1).

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://string-db.org
https://david.ncifcrf.gov/home.jsp
https://www.cbioportal.org/
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Western blot analysis

We were able to confirm the obtained MS results using 
Western blotting of selected proteins described in Table 1 
(see Fig. 2d). The selected proteins showed a significant 
different regulation in at least two or all three cell lines in 
comparison to the parental lineages (Table 1). All three 

cisplatin-resistant cell lines showed lower expression 
of cystathionine beta-synthase (CBS) and cystathionine 
gamma-lyase (CTH) levels were lower in NTERA-2-R and 
2102EP-R compared with the cisplatin-sensitive counterpart 
(Fig. 2d I and II). Amounts of Annexin A1 (ANXA1), the 
l-lactate dehydrogenase A (LDHA) and NADPH-adreno-
doxin oxidoreductase (FDXR) were increased in all three 

(I)

(II)

(III)

(IV)

(V)

d

(a) (c)(b)

(d)

Fig. 2  Distribution of proteins from SILAC and validation of pro-
tein expression by Western Blot analysis. a–c Distribution of SILAC 
ratios of all quantified proteins according to their relative expression 
in the resistant vs. sensitive cells lines of NTERA-2, NCCIT and 
2102EP. d CBS (I) is downregulated in NTERA-2-R, NCCIT-R and 

2102EP-R. ANXA1 (II) and LDHA (III) are upregulated in NTERA-
2-R, NCCIT-R and 2102EP-R. FDXR (IV) is upregulated in NTERA-
2-R and 2102EP-R with similar expression in NCCIT and NCCIT-R. 
CTH (V) is downregulated in NTERA-2-R and 2102EP and shows 
higher expression in NCCIT-R
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resistant cell lines (Fig. 2d III–V), which is in accordance 
with the mass spectrometric analysis results (Fig. 2a–c).

Gene set enrichment analysis

In order to gain functional insights into the mechanisms of 
cisplatin resistance, we performed a gene set enrichment 
analysis (GSEA) of all genes coding for proteins altered in 
each cell line individually or commonly. GSEA determines, 
if a defined set of genes shows a statistically significant dif-
ference in enrichment between two biological states (cispl-
atin resistance vs. sensitivity) [21, 22]. We compared the 
cisplatin-resistance ratios to 50 hallmark gene sets represent-
ing specific biological states or processes (http:// www. gsea- 
msigdb. org/ gsea/ msigdb/ colle ctions. jsp). In each cisplatin-
resistant cell line individually, we found a heterogenous set 
of processes affected. The analysis of NTERA-2-R detected 
‘Interferon alpha and gamma’ signalling and ‘epithelial to 
mesenchymal transition’ (EMT) as mainly enriched gene 
sets (Supplementary Fig. 2a–d). Two sets related to ‘Myc 
targeting’ and ‘DNA repair’ were significantly affected in 
NCCIT-R cell line (Supplementary Fig. 2e–h). Furthermore, 
GSEA revealed seven significantly affected gene sets includ-
ing ‘P53 signalling’, ‘hypoxia’, ‘fatty acid metabolism’, 
‘glycolysis’, ‘late estrogen response’, ‘oxidative phospho-
rylation’ and ‘IL2 STAT5 signalling’ for 2102EP-R (Supple-
mentary Fig. 2i–p). The combined analysis of the three cell 

lines highlighted ‘DNA repair’, ‘oxidative phosphorylation’ 
and ‘early estrogen response’ as the three most prominently 
enriched gene sets (Fig. 3a–c).

STRING interaction prediction, DAVID gene 
ontology and TCGA cohort analysis

First, the DAVID Gene ontology tool was used to predict 
molecular functions of all proteins altered in the resistant 
cell lines (Supplementary Fig. 3 a, c, e, g, i, k). Proteins 
increased in amount in the resistant cells compared with the 
parental cell lines were involved in oxidoreductase activity, 
acetylation and metal binding were among others commonly 
deregulated in all three cell lines. Next, the STRING algo-
rithm was used to predict protein–protein interactions of the 
enriched proteins (Supplementary Fig. 3b, d, f). Proteins 
involved in the molecular processes found by the DAVID 
analysis were highlighted by colour. In contrast, proteins 
decreased in amount in resistant cell lines compared with 
the parental cell lines were involved in phosphatidyl-inositol 
binding and DNA methyltransferase activity (Supplementary 
Fig. 3 g–l).

Furthermore, using cBioPortal, we screened the TCGA 
GCT tissue cohort for mutational footprints and expression 
of all genes coding for affected proteins in resistant cell lines 
individually (Supplementary Fig. 4). In general, 149 GCT 
(seminoma and nonseminoma) samples were included. The 

Table 1  Overlapping proteins possibly associated with cisplatin resistance

The table summarizes the protein ratios in cisplatin-resistant cell lines (R) compared with the sensitive parental control cell lines (S) and the 
corresponding p values of all proteins that showed significantly different levels in at least two of the three tested cell lines. Increased levels are is 
highlighted with a green arrow (↑) and decreased levels are marked with a red arrow (↓)
NaN not a number

Protein name Gene name NTERA-2 (R/S) p value NCCIT (R/S) p value 2102EP (R/S) p value

Cystathionine beta-synthase CBS 0.24 ↓ 2.38E-06 0.44 ↓ 4.52E-04 0.34 ↓ 2.20E-04
Annexin A1 ANXA1 4.89 ↑ 3.13E-10 3.14 ↑ 2.46E-06 1.44 ↑ 1.98E-01
Rabenosyn-5 RBSN 34.36 ↑ 3.16E-09 35.74 ↑ 1.78E-14 NaN NaN
l-lactate dehydrogenase A chain LDHA 4.10 ↑ 2.29E-08 2.18 ↑ 1.35E-03 5.47 ↑ 5.79E-10
NADPH:adrenodoxin oxidoreductase, mitochon-

drial
FDXR 8.59 ↑ 3.18E-13 1.27 ↑ 4.72E-01 3.96 ↑ 1.63E-07

Epiplakin EPPK1 3.24 ↑ 3.48E-06 0.58 ↓ 1.19E-02 3.31 ↑ 1.33E-05
Ankyrin repeat domain-containing protein 62 ANKRD62 5.22 ↑ 9.97E-03 53.86 ↑ 1.51E-18 0.05 ↓ 2.41E-18
Vimentin VIM 1.60 ↑ 6.77E-02 2.70 ↑ 4.32E-05 0.25 ↓ 5.46E-10
Voltage-dependent anion-selective channel 

protein 1
VDAC1 1.30 ↑ 3.26E-01 2.34 ↑ 4.78E-04 0.47 ↓ 6.49E-04

Collagen alpha-1(I) chain COL1A1 210.43 ↑ 1.37E-56 0.11 ↓ 3.20E-12 NaN NaN
Cystathionine gamma-lyase CTH 0.31 ↓ 1.02E-04 0.35 ↓ 7.14E-06 0.87 ↓ 5.87E-01
3-ketodihydrosphingosine reductase KDSR 0.20 ↓ 2.02E-04 12.86 ↑ 2.25E-08 0.77 ↓ 5.43E-01
RAD50-interacting protein 1 RINT1 0.23 ↓ 6.19E-05 13.42 ↑ 1.29E-10 1.55 ↑ 1.84E-01
Transgelin TAGLN 3.20 ↑ 1.12E-04 NaN NaN 0.09 ↓ 7.36E-16
Centromere protein J CENPJ 19.94 ↑ 7.19E-07 1.21 ↑ 7.47E-01 0.02 ↓ 2.21E-28
Serine/threonine-protein kinase 38-like STK38L 12.34 ↑ 1.06E-06 0.70 ↓ 3.04E-01 0.06 ↓ 2.05E-16

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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majority of the samples were highly aneuploid, harbored a 
12gain, were mainly in the typical age of 14–44 years and 
were isolated from testis. Indeed, expression of analyzed 
genes was mainly associated with a nonseminomatous cell 
character (Supplementary Fig. 4). Nevertheless, expression 
of a subset of genes could also be related to seminomas. 
Mutations in the analyzed genes were overall rare, with 
IFITM3 (enriched in 2102EP-R) harboring a deep deletion 
in 2.1% of samples, GDF3 being amplified in 7% (enriched 
in NCCIT-R) and STK38L (enriched in NT2/D1-R) being 
amplified in 8% as most affected genes by mutation.

Discussion

Cisplatin resistance in GCTs rarely occurs in primary dis-
eases, but in up to 15% of metastatic diseases with poor 
prognosis for the affected patient [5]. The mechanisms of 
cisplatin resistance in GCTs are complex, still not completely 
understood and might depend on GCT subtypes [27]. Differ-
ent cellular and molecular mechanisms and GCT character-
istics, such as DNA damage repair systems, the p53/MDM2 
axis and apoptotic pathways as well as epigenetic changes 
have been investigated and seem to contribute to cisplatin 
resistance as a multifactorial phenomenon [27]. Because tis-
sue specimens from cisplatin-resistant GCTs are rare, we 
analyzed the protein expression profiles of three different 
cisplatin-resistant GCT cell lines (NTERA-2-R, NCCIT-R 
and 2102EP-R) and their cisplatin-sensitive parental coun-
terparts using mass spectrometry in combination with stable 
isotope labelling with amino acids in cell culture (SILAC) 
[13, 14] to detect proteins with a possible impact on cispl-
atin resistance. In addition, GSEA, DAVID Gene Ontology 

and STRING analyses were performed and the results were 
compared with the TCGA GCT tissue cohort.

Cystathionine beta-synthase (CBS) was significantly 
decreased in amount in all three cisplatin-resistant cell lines 
in comparison to their cisplatin-sensitive parental lineage. 
CBS is an enzyme that regulates homocysteine metabolism 
and catalyzes the formation of cystathionine [28]. Further-
more, it participates in different desulfurization reactions, 
which lead to the production of hydrogen sulfide  (H2S) 
[29]. CBS is most commonly synthesized in the liver, the 
pancreas, the kidney and the brain with only low baseline 
expression in testicular tissues [30, 31]. Its role in cancer 
biology is complex and seems to be cancer type-specific 
[30]. For example, serous ovarian cancer [32] as well as 
invasive urothelial bladder carcinoma [33], colorectal can-
cers [27] and prostate cancer [28] have shown high levels 
of CBS and inhibiting CBS has improved the effect of cis-
platin-based chemotherapy in these neoplasms. The down-
regulation of CBS via small molecule inhibitors or siRNAs 
reduced antioxidant capacity and therefore enhanced the 
sensitivity of cancer cells to chemotherapy. It is also sug-
gested that decreased levels of CBS and  H2S production 
might activate the intrinsic apoptotic pathway via release of 
mitochondrial cytochrom C [34]. According to the human 
protein atlas [35], testicular GCT tissue show low synthe-
sis of CBS and other molecules of sulfur metabolism (e.g. 
glutathione (GSH) or methallothioneins). Masters et al. also 
showed, that cisplatin-sensitive GCT cell lines have low lev-
els of GSH and glutathione-S-transferase (GST) [36]. These 
findings are not quite in accordance with our findings of 
low CBS levels in cisplatin-resistant GCT cell lines, but 
further investigations are required to better define its role 
in resistance.

Fig. 3  GSEA analysis reveals 
DNA repair as common gene set 
deregulated in cisplatin-resistant 
cells. a The ten most affected 
gene sets of the combined ratios 
of three NT2, four NCCIT 
and four 2102EP replicates of 
proteomic analysis represented 
as the − log2 of the nominal 
(NOM) q value and the FDR 
q value. b Enrichment plot: 
DNA REPAIR Profile of the 
Running ES Score and Positions 
of GeneSet Members on the 
Rank Ordered List (p < 0.004, 
q < 0.19). c Blue–Pink O’ Gram 
in the Space of the analyzed 
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values of all genes in the Gen-
eSet referred to 0
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Another enzyme of the cysteine metabolism, namely 
cystathionine gamma lyase (CTH), showed decreased lev-
els in two of the three resistant cell lines (NTERA-2-R and 
NCCIT-R). CTH catalyzes the breakdown of cystathionine 
to cysteine, alpha-ketobutyrate and  H2S. It plays a key 
role in the bodies  H2S production [28, 30]. Its function in 
tumour biology has only been investigated in some tumour 
entities. The studies showed, similar to the role of CBS in 
the abovementioned tumours, that murine prostate cancer 
cells showed high amounts of CTH and its product  H2S 
in metastatic prostate cancer [37], similar to breast cancer 
cells [38, 39]. Inhibition of CTH resulted in a decreased 
tumour burden. In our study, resistant NTERA-2 and 
NCCIT showed decreased levels of CTH in comparison 
to the sensitive cell lines. A function of low CTH levels in 
resistant tumour cell lines remains to be elucidated, yet.

The Annexin A1 (ANXA1) levels were significantly 
increased in resistant NTERA-2 and NCCIT cell lines. 
ANXA1 is a calcium-dependent phospholipid binding 
protein that belongs to the Annexin superfamily [40–42]. 
ANXA1 is a substrate for different kinases, e.g. epidermal 
growth factor receptor kinase, and is involved in different 
cellular pathways which are in association with inflamma-
tion, cell differentiation and proliferation [43]. Its role in 
tumour biology (e.g. tumour development, proliferation) 
has been conflicting because its expression is increased in 
some cancers (e.g. esophageal, gastric, colorectal, pan-
creatic and lung adenocarcinoma) and decreased in others 
(e.g. esophageal, lung squamous cell carcinoma, breast 
carcinoma and prostatic adenocarcinoma), but a common 
function of ANXA1 in chemosensitivity was reported 
[44–46]. Wang et al. could show an increased ANXA1 
expression in a platin-resistant cell line of pulmonary 
adenocarcinoma and verified this in primary tumour tis-
sue of cisplatin-resistant patients [47]. These previously 
reported roles of ANXA1 complement our findings and 
supports the contribution of ANXA1 to the development 
of cisplatin resistance irrespective of the tumours’ tissues 
of origin.

In addition, the protein levels of L-lactate dehydroge-
nase A chain (LDHA) were elevated in NTERA-2-R and 
2102EP-R cells. LDHA plays an important role in anaerobic 
glycolysis [48, 49]. In tumour cells, LDHA plays essential 
role in initiation, growth, tumour maintenance, progres-
sion and metastasis [49]. Increased LDH levels are often 
used as diagnostic markers, prognostic factors and indi-
cators of treatment response for GCTs and other tumours 
[50]. According to cisplatin treatment response, Manerba 
et al. showed that inhibition of LDH in Burkitt’s lymphoma 
cells increased cisplatin sensitivity possibly through higher 
amounts of reactive oxygen species (ROS) [51]. This can 
on the opposite indicate that higher levels of LDHA in cis-
platin-resistant GCT cell lines help to overcome cell stress. 

However, further investigations regarding the detailed role 
of LDHA in cisplatin-resistant cell lines are necessary.

Furthermore, a significantly increase of COL1A1 and 
COL1A2 levels was detected in cisplatin-resistant NTERA-2 
cell lines in comparison with the parental cell line, with 
decrease in resistant NCCIT cell line. Both proteins resem-
ble extracellular matrix proteins for that increased levels 
have been detected in stressed cells [52]. They have further 
been shown to play an important role in cisplatin-resistance 
in pulmonary adenocarcinoma cell lines [52]. It remains 
unclear why the protein levels are different in the three dif-
ferent cell lines and needs further investigation.

GSEA revealed that DNA repair is the only significant 
gene set deregulated in all three cell lines, which has been 
considered for cisplatin resistance in GCT before [27]. In 
NTERA-2-R, interferon alpha and gamma signalling as well 
as epithelial to mesenchymal transition (EMT) were the most 
enriched gene sets. The role of EMT in chemoresistance 
has been described by Ashrafizadeh et al. but has not been 
evaluated for GCTs [53]. NCCIT cell lines showed signifi-
cantly deregulated sets of MYC targeting and DNA repair. 
The function of DNA repair mechanisms in GCT cisplatin 
resistance are still slightly controversial, since both, upregu-
lation and downregulation of DNA repair-associated genes 
has been described in GCTs [27]. For 2102EP cells, GSEA 
revealed seven significantly affected gene sets, including 
p53 signalling, oxidative phosphorylation and IL2 STAT5 
signalling. Mutations and inactivation of p53 are known to 
be involved in cisplatin resistance of GCT by reducing apop-
totic cell death [54].

DAVID Gene Ontology and STRING analyses showed a 
deregulation of proteins involved in oxidoreductase activity, 
acetylation and metal binding. The upregulation of NADPH-
adrenodoxin oxidoreductase (FDXR) in resistant cell lines 
could be validated by Western blot. Oxidoreductase activ-
ity, acetylation and metal binding have been described in 
connection to p53 [55–57]. A reduced p53 activity has been 
shown to induce an increased resistance against cisplatin in 
testicular germ cell-derived human embryonal carcinoma 
cells also by a direct regulation of FDRX [58]. Although 
p53 pathway was only detected as significantly regulated in 
cisplatin-resistant 2102EP, these data indicate a strong p53 
dependency and a deregulated oxidative stress response in 
cisplatin-resistant GCT.

Screening of the TCGA GCT cohort demonstrated that 
most genes/proteins found increased in the resistant situa-
tion, show already basal expression in GCT tissues (mostly 
nonseminomas). Thus, rather an overshooting/upregulation 
of expression than an induction of gene expression is associ-
ated with acquisition of therapy resistance. The mutational 
burden was overall low, nevertheless some genes were 
frequently mutated in GCT tissues, putatively affecting 
their molecular function. During development of cisplatin 
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resistance, these mutated genes might be induced as well, 
further contributing to cisplatin resistance by their altered 
function or increased expression turnover.

In summary, high resolution mass spectrometry in com-
bination with SILAC quantification is a powerful tool to 
detect differences of protein levels in cisplatin-resistant 
and cisplatin-sensitive cell lines. We detected 144 signifi-
cantly deregulated proteins were found in cisplatin-resistant 
GCT cell lines. The findings of mass spectrometry could 
be validated by Western blot analysis. With this study, we 
therefore provide a large proteomic resource in vitro library 
for studying proteomic alterations contributing to acquired 
cisplatin resistance in testicular germ cell tumour cell lines. 
The detected and analysed proteins need further investiga-
tions to unravel their putative role in cisplatin resistance of 
GCT and to determine possible new treatment approaches.
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