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Genome Sequence of a Blattabacterium Strain Isolated from
the Viviparous Cockroach, Diploptera punctata
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ABSTRACT Here, we report the genome sequence and characterization for a Blatta-
bacterium strain isolated from the viviparous cockroach, Diploptera punctata, which
provides amino acids critical for intrauterine embryo development. The genome was
assembled by sequencing of the cockroach fat body, which is the location of this
obligate symbiont.

he Pacific beetle mimic cockroach, Diploptera punctata, reproduces by matrotrophic
viviparity. D. punctata embryos develop inside the brood sac, a unique organ that
functions as both a uterus and a pseudoplacenta; embryos are provided with nutrients
by a secretion of milk-like components (1-5). The D. punctata milk is deficient in two
essential amino acids, tryptophan and methionine (4, 6). It has been hypothesized that
endosymbiont metabolism remediates this dietary deficiency; previous research sug-
gests that blattabacteria are the exclusive component of the embryonic microbiome
(7). We present a genome analysis of a Blattabacterium strain derived from D. punctata
(Blattabacterium sp. strain DPU) to determine the potential role that this endosymbiont
has during embryonic development of D. punctata.
Bacterial DNA was collected from fat body tissue dissected from a female D.
punctata cockroach using a modified version of previously described protocols (8,
9) with the use of a Qiagen DNeasy Blood & Tissue kit. Samples were homogenized
in 200 ul of sterile 1X phosphate-buffered saline. This extract was passed through
a 20-um glass syringe filter (Millipore) and centrifuged for 10 min at 8,000 X g at
4°C. The resulting pellet was resuspended in the extraction kit lysis buffer, and DNA
was extracted following the manufacturer’s protocol. lllumina Nextera library prep-
aration and HiSeq paired-end sequencing produced 6,778,349 paired-end reads of
75 bp and 4,444,306 reads of 125 bp. Less than 1% of reads were lost during quality
control using Trimmomatic (10). metaSPAdes (v.1.2.2, with default settings) imple-
mented in KBase (11, 12) generated 187 contigs with an Ny, value of 625,590 bp,
which is the length of the largest contig. BLASTn comparison of these contigs to Citation Jennings EC, Korthauer MW, Benoit JB.
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FIG 1 Genome presentation of Blattabacterium sp. strain DPU. Outer to inner rings represent GC skew (purple and
green bars indicate negative and positive skew, respectively), GC content of each strand, RNA genes, including
tRNA, rRNA, and transfer-messenger RNA genes (blue), and predicted coding sequences (teal). CDS, coding DNA
sequence.

transcription, and mRNA translational machinery were identified in the assembly
(Fig. 1). dUTP nucleotidohydrolase, ribonucleoside diphosphate reductase subunit 3,
and two hypothetical proteins were identified in the plasmid. Orthology analysis using
eggNOG-mapper (15) with the full available database revealed that most coding genes
serve in translation and ribosome formation. The next most prominent known genome
functions are amino acid metabolism and transport, followed by energy production and
conversion. In addition to enzymes for central carbohydrate metabolism and nitrogen
salvage, metabolic pathway prediction using the KEGG module mapper (16) identified
complete biosynthetic pathways for nearly all essential amino acids. The traditional
biosynthetic pathway for methionine is incomplete, however. Genes for all enzymatic
reactions to produce methionine are present except for metA, which facilitates the
conversion of homoserine and succinyl-coenzyme A to O-succinylhomoserine, and the
alternative metX, which produces O-acetylhomoserine. An alternative methionine path-
way has been suggested in other cockroaches (8), or shared synthesis could occur with
the cockroach host based on genes identified in recent transcriptomic studies (5).
However, the ability to synthesize selenomethionine is retained. Blattabacterium sp.
strain DPU also has the ability to synthesize the nonessential amino acids alanine,
arginine, cysteine, glutamate, and glycine.

Data availability. lllumina raw sequence reads and genome sequences have been
deposited in association with BioProject PRINA610624. The plasmid sequence has been
deposited in GenBank under accession number MT645221.
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