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Measurements of fasting glucose (FG) or glycated hemoglobin A1c (HbA1c) are two clinically approved approaches commonly
used to determine glycemia, both of which are influenced by genetic factors. Obtaining accurate measurements of FG or HbA1c
is not without its challenges, though. Measuring glycated serum protein (GSP) offers an alternative approach for assessing
glycemia. The aim of this study was to estimate the heritability of GSP and GSP expressed as a percentage of total serum
albumin (%GA) using a variance component approach and localize genomic regions (QTLs) that harbor genes likely to
influence GSP and %GA trait variation in a large extended multigenerational pedigree from Jiri, Nepal (n = 1,800). We also
performed quantitative bivariate analyses to assess the relationship between GSP or %GA and several cardiometabolic traits.
Additive genetic effects significantly influence variation in GSP and %GA levels (p values: 1 15 × 10−5 and 3 39 × 10−5,
respectively). We localized a significant (LOD score = 3 18) and novel GSP QTL on chromosome 11q, which has been
previously linked to type 2 diabetes. Two common (MAF > 0 4) SNPs within the chromosome 11 QTL were associated with
GSP (adjusted pvalue < 5 87 × 10−5): an intronic variant (rs10790184) in the DSCAML1 gene and a 3′UTR variant (rs8258) in
the CEP164 gene. Significant positive correlations were observed between GSP or %GA and blood pressure, and lipid traits (p
values: 0.0062 to 1 78 × 10−9). A significant negative correlation was observed between %GA and HDL cholesterol
(p = 1 12 × 10−5). GSP is influenced by genetic factors and can be used to assess glycemia and diabetes risk. Thus, GSP
measurements can facilitate glycemic studies when accurate FG and/or HbA1c measurements are difficult to obtain. GSP
can also be measured from frozen blood (serum) samples, which allows the prospect of retrospective glycemic studies
using archived samples.

1. Introduction

Glycemic level influences a variety of medical conditions.
Hyperglycemia is a condition that is the result of excess

circulating glucose in the blood. While quantitative defini-
tions of hyperglycemia vary, the American Diabetes Associa-
tion considers fasting glucose (FG) of 100-125mg/dL or
glycated hemoglobin A1c (HbA1c) of 5.7-6.4% as prediabetic
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and FG greater than 125mg/dL or HbA1c greater than 6.4%
as diabetic [1]. Diabetes is a condition that affects millions
worldwide, and the global prevalence continues to increase,
especially in low- to middle-income countries [2]. Diabetes
causes numerous health conditions, exacerbates existing
health conditions, and is a risk factor for blindness, kidney
failure, heart attacks, and other cardiovascular disease events.
Diabetes-related complications significantly contribute to
global mortality rates [3].

Standardized clinical assays are in place to measure glyce-
mia, and these tests are used to diagnose diabetes and monitor
glycemic control over time. These assays include the measure-
ment of FG (plasma [FPG] or serum [FSG]) and HbA1c. FG is
a cross-sectional measurement of glycemic levels at that time
point while HbA1c is a measure of long-term glycemic control
over an 8- to 12-week period based on the time it takes to form
glycation of hemoglobin as well as the lifespan of a red blood
cell. However, these assays are not without their limitations.
FG may be impractical in situations where individuals must
travel a significant distance prior to sampling, making a fasting
state difficult to achieve. A meaningful HbA1c test is depen-
dent on the absence of blood disorders such as anemia, which
can generate spurious results [1].

Glycated serum proteins (GSP) are proteins within the
body that have undergone glycation and circulate in the
blood. The large majority (90%) of GSP consists of glycated
albumin (GA) [4], a globular protein in plasma whose main
purpose is to regulate the oncotic pressure of the blood.
Due to the shorter half-life of serum proteins, compared to
red blood cells, GSP levels show glycemic control over a
period of 2 to 3 weeks [5]. Used in conjunction with measures
of HbA1c, GSP measures can monitor glycemic control over
a 2- to 8-week period via the calculation of a “glycation gap”
[6]. In addition to monitoring short-term glycemic control,
GSP is reported to be associated with the risk of atherosclero-
sis [7, 8], microvascular complications of diabetes [9], and
cardiovascular disease-related outcomes [10]. Assessments
of GSP do not require sampled individuals to be fasting and
can be performed using frozen samples [11].

FG and HbA1c are heritable traits [12], and genetic var-
iants have been shown to influence variation in FG [13, 14]
and HbA1c [15], respectively. The goals of this study were
(1) to determine whether observed variation in GSP and
GSP expressed as a percentage of total serum albumin
(%GA) is influenced by genetic factors (i.e., heritability),
(2) to determine whether GSP and %GA are correlated with
cardiometabolic risk factors (i.e., pleiotropy), and (3) to
localize areas of the genome that harbor positional candi-
date genes likely to influence GSP and %GA trait variation
(i.e., genetic linkage). The genetics of GSP and %GA and
the relationships of these measures with cardiometabolic
traits were assessed in a large family-based cohort from
rural Nepal.

2. Materials and Methods

2.1. Study Population. The Jirel Family Studies began in 1987
and focused on the Jirel population of eastern Nepal.
Approximately 2,500 members of the Jirel population have

participated in prior studies including anthropological inves-
tigations [16, 17], assessments of population structure [18,
19], genetic epidemiology studies of susceptibility to parasitic
worm infections [20, 21], genetic studies of growth and
development [22, 23], and investigations of the genetics of
ocular disease [24]. The long running research conducted
in the region has resulted in the collection of extensive gene-
alogical information on the Jirel people. All individuals who
have previously participated in research studies belong to a
single extended multigenerational pedigree, which makes
this cohort an extremely powerful resource for genetic stud-
ies [25]. The data and samples used for this study are part
of an ongoing project investigating the genetic epidemiology
of ocular traits and ocular disease [24]. All procedures were
conducted in accordance with ethical standards and were
approved by the University of Texas Rio Grande Valley
Institutional Review Board and the Nepal Health Research
Council. Informed consent was obtained from all individuals
participating in the study.

2.2. Phenotype Data Collection

2.2.1. Cardiometabolic Trait Measurements

(1) Blood Pressure. A single systolic blood pressure (SBP)
and diastolic blood pressure (DBP) reading was
recorded from individuals in a seated position using
the Welch Allyn Connex ProBP digital blood
pressure device (Welch Allyn Inc., Skaneateles Falls,
NY, USA).

(2) Body Mass Index (BMI). Height was measured using
a mobile stadiometer (Seca, Chino, CA, USA), and
weight was measured using an analog weight scale
(Seca). BMI was calculated as weight in kilograms
divided by the square of height in meters.

(3) Lipid Panel. Total cholesterol (TC), high-density
lipoprotein cholesterol (HDLC), and low-density
lipoprotein cholesterol (LDLC) concentrations were
determined from nonfasting serum samples using
the ACE® Cholesterol, HDLC, and LDLC reagent
packages, respectively, and run on the ACE Axcel®
Clinical Chemistry System (Alfa Wassermann Diag-
nostic Technologies, LLC., West Caldwell, NJ, USA)
in the South Texas Diabetes and Obesity Institute
(STDOI) phenotyping laboratory, Brownsville,
Texas. Briefly, a sample volume of 3μL for each of
the TC, HDLC, and LDLC assays was used and assay
parameters such as assay-specific reagent volumes,
incubation times, reaction wavelengths, and bichro-
matic correction wavelengths were preset on the
ACE Axcel® instrument by the manufacturer.

2.2.2. GSP and %GAMeasurements.GSP concentrations were
determined from nonfasting serum samples using the
Diazyme Glycated Serum Protein assay kit (Diazyme Labora-
tories Inc., Poway, CA, USA) and run on the ACE Axcel®
Clinical Chemistry System (Alfa Wassermann) in the STDOI
phenotyping laboratory, Brownsville, Texas. Briefly, a sample

2 Journal of Diabetes Research



volume of 10μL was added to 200μL of Diazyme’s Reagent 1
(containing proteinase K) and incubated at 37°C for 5 minutes
to digest the GSP into low molecular weight glycated protein
fragments (GPF). Following this incubation, 50μL of Dia-
zyme’s Reagent 2 (containing fructosaminase) was added to
the GPF solution to catalyze the oxidative degradation of
GPF to yield protein fragments or amino acids, glucosone,
and hydrogen peroxide (H2O2). The released H2O2 is mea-
sured as a colorimetric end-point reaction, and absorbance
between 546nm and 600nm is proportional to the concentra-
tion of glycated serum proteins. A two-point calibration step
was also performed, in duplicate, at readings of 0μmol/L
(blank) and 485μmol/L. The Diazyme GSP assay exhibits a
linear range of 21.0 to 1,354.0μmol/L and has no significant
interference from ascorbic acid, bilirubin, conjugated biliru-
bin, glucose, hemoglobin, triglycerides, or uric acid [26].

To calculate %GA (i.e., the amount of glycated serum
albumin expressed as a percentage of the total circulating
serum albumin), we also measured total serum albumin with
the ACE® Albumin Reagent package run on the ACE Axcel®
Clinical Chemistry System (Alfa Wassermann). Briefly, a
sample volume of 3μL was used and serum albumin assay
parameters such as assay reagent volume, reaction wave-
length, and bichromatic correction wavelength was preset
on the ACE Axcel® instrument by the manufacturer. GSP
values (μmol/L) were converted to %GA by applying the
following equation recommended by Diazyme [26]:

%GA = GSP μmol/L × 0 182 + 1 97
total serum albumin g/dL + 2 9 1

2.3. Genome-Wide Genotypes. Jirel DNA samples were geno-
typed using Illumina’s Human660W-Quad v1 BeadChip
(Illumina Inc., San Diego, CA, USA) containing ~550,000
SNP loci. A total of 200 ng of genomic DNA for each sample
was processed according to Illumina’s Infinium HD Assay
Ultra protocol. BeadChips were imaged on Illumina’s iScan
System with iScan Control Software (v.3.2.45). Normaliza-
tion of raw image intensity data, genotype clustering, and
individual sample genotype calls was performed using
Illumina’s GenomeStudio software (v2010.2), Genotyping
Module (v1.7.4). Illumina’s predefined genotype cluster
boundaries were used to denote SNP genotype cluster
positions (Human660W-Quad_v1_H.egt). Genotype assay
quality control measures were assessed with Illumina’s inter-
nal assay performance metrics.

2.4. Statistical Methods

2.4.1. Heritability Estimates. To estimate the heritability of
measured traits including GSP and %GA, we used a variance
component approach as implemented in SOLAR [27]. Here,
we estimate the narrow sense heritability,

h2 = σ2
a

σ2a + σ2e
, 2

by partitioning the observed phenotypic variance (σ2p) into its
additive genetic and environmental components. In its most

simplistic form, the observed covariance matrix of a quanti-
tative trait in a pedigree of arbitrary size (n) is modeled as

Ω = 2Φ× σ2
a + In × σ2e , 3

where Ω is the n × n covariance matrix, 2Φ is the n × n
coefficient of relationship structuring matrix, σ2

a is the var-
iance in the observed trait due to additive genetic effects, In
is the n × n identity structuring matrix for an implied
individual-specific environmental component, and σ2

e is
the variance in the observed trait due to random (unmea-
sured) individual-specific environmental effects.

Age, age2, sex and their interactions, and BMI were
included as covariates in the additive genetic models. Varia-
tion in serum storage conditions (time, temperature) may
impact protein glycation [11, 28]. Therefore, serum storage
time, defined as the number of days in ultralow temperature
(<-80°C) storage from the sample collection date until the
assay date, was included as an additional covariate. For any
traits that exhibited a departure from a normal distribution,
an inverse normal transformation was applied to correct
these distribution errors before reanalyzing the trait(s).

2.4.2. Quantitative Bivariate Analysis.Using the kinship coef-
ficients among family members, the correlation between two
traits can be partitioned into its additive genetic and random
environmental components [29]. Therefore, the magnitude
of the genetic covariance (i.e., pleiotropy) between the glycated
serum protein traits and cardiometabolic traits (blood
pressure, BMI, and lipid panel) was assessed by employing a
bivariate quantitative genetic analysis procedure as imple-
mented in SOLAR. This procedure quantifies the overall rela-
tionship between the two tested traits (phenotypic correlation
(ρp)) by evaluating the magnitude of both the additive genetic
(ρg) and random environmental (ρe) correlations where

ρp = ρg × h2A × h2B + ρe × 1 − h2A × 1 − h2B ,

4

where h2A and h2B denote heritability estimates for traits “A”
and “B,” respectively. In this framework, the likelihood of
models that constrain the additive genetic (ρg) correlation
between the traits (A and B) to zero is compared to the
likelihood of a model that allows for the additive genetic
correlation between the traits to be estimated. These pleiot-
ropy analyses highlight whether two traits are influenced by
a common set of genes (ρg = −1 or 1; complete pleiotropy),
overlapping but nonidentical sets of genes (−1 < ρg < 0 or
0 < ρg < 1; incomplete pleiotropy), or unique sets of genes
(ρg = 0; no pleiotropy).

2.4.3. Genotype Cleaning. PREST-plus v4.09 [30] was used
to confirm known pedigree relationships and identify possi-
ble sample swap errors. Genotype-based sex checks and
variant filtering to include autosomal variants only and a
95% call rate per person were performed using PLINK
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v1.90b3m [31]. A total of 479,686 clean autosomal SNPs
were available for the analysis.

2.4.4. Genome-Wide Linkage Analysis. Genotype array data
was analyzed with IBDLD v3.33 [32], using methodology
previously described [33], to generate chromosome-wide
empirical kinship estimates and to calculate multipoint esti-
mates of identity-by-descent (MIBD) at 1 cM intervals
across autosomal chromosomes. Using SOLAR, empirical
kinship estimates and MIBDs were employed in a variance
component approach to conduct a genome-wide linkage
scan of GSP and %GA to identify genomic regions (quanti-
tative trait loci (QTLs)) harboring genes that influence the
variation observed in these glycated serum protein metrics.
Our genetic linkage analyses were conducted in a subset of
Jirel individuals with genome-wide genotype data available
(n = 1,087). Age, age2, sex and their interactions, and BMI
and serum storage time were included as covariates in our
linkage analysis models.

2.4.5. Measured Genotype Association Analysis. The classical
measured genotype approach for association analyses [34,
35], as implemented in SOLAR [36], was used to analyze
variant genotype data within the 1-LOD (95% confidence)
interval of significant QTL signal(s). To ensure robust statisti-
cal testing, autosomal SNPs with five or more observed copies
were prioritized for QTL-specific association analyses
(471,074 SNPs out of a total of 479, 686 clean SNPs). Similar
to our linkage analyses, pedigree-based kinships were used
for our association analyses, and age, age2, sex and their inter-
actions, and BMI and serum storage time were included as
covariates in our measured genotyped association models.

3. Results

Phenotypic data were available from 1,800 individuals (55%
female) from the single extended multigenerational Jirel
pedigree. The mean (SD, range) age is 42.4 (16.6, 18 to
88) years, and a summary of the cardiometabolic traits is
presented in Table 1.

3.1. Glycemic Trait Heritability Estimates. In the Jirel pedi-
gree, the heritability estimates of both GSP (h2 = 0 159, p =
1 15 × 10−5, SE = 0 044) and %GA (h2 = 0 152, p = 3 39 ×
10−5, SE = 0 044) were significant, indicating that variation
in GSP and %GA is influenced by additive genetic factors
in this population.

3.2. Glycemic Trait Pleiotropy with Cardiometabolic Risk
Factors. We performed a quantitative bivariate analysis to
assess the direction and strength of the phenotypic correlation
between GSP or %GA and cardiometabolic traits in the Jirel
pedigree (Table 2). The most significant result was a positive
correlation between GSP and TC (ρp = 0 144, p = 1 78 × 10−9).
SBP exhibited a significant positive correlation with both GSP
(ρp = 0 089, p = 2 08 × 10−4) and %GA (ρp = 0 066, p =
0 0062). Other significant (p < 0 01) positive correlations were
observed for GSP with DBP and LDLC. The only significant
(p = 1 12 × 10−5) negative correlation was observed for %GA

withHDLC. There was evidence to suggest that common genetic
loci, in addition to unique genetic loci, may influence the
variation observed in GSP and TC in the Jirel pedigree
(ρg = 0 351, p = 0 025).

3.3. Glycemic Trait Linkage and Association. For GSP, we
identified a significant QTL (LOD=3.18) on chromosome
11 at 123 cM (119,235,404 bp) (Figure 1). For %GA, we
identified a suggestive QTL (LOD = 2 01) on chromosome
4 at 197 cM (186,584,255 bp).

To interrogate our significant GSP QTL further, we per-
formed a measured genotype association analysis for all
SNPs within the 1-LOD (95% confidence) interval (118-
125 cM; 116,094,471-120,456,605 bp). Two SNPs satisfied
our QTL-specific Bonferroni-corrected significance criterion
(p < 5 87 × 10−5; 852 SNPs with 5 or more copies of the rarer
variant) (Figure 2). The first SNP (rs10790184; p = 1 00 ×
10−5; β = 0 202) is an intronic variant in the DSCAML1
(DS cell adhesion molecule like 1) gene, and the second
SNP (rs8258; p = 2 10 × 10−5; β = 0 194) is a 3′UTR variant
in the CEP164 (centrosomal protein 164) gene. The
rs10790184 (MAF = 0 478) and rs8258 (MAF = 0 408) SNPs
are both common and explain approximately 1.86% and
1.78% of GSP variation in the Jirel pedigree, respectively.

4. Discussion

In this study, we set out to assess the genetics of GSP and
%GA, which are possible alternative or complementary
measures of glycemia. Standard practice to measure blood
sugar levels is to test FG and/or HbA1c but not GSP or
%GA. Feasibly, GSP or %GA could be used for historical
samples or in situations where measuring FG is impracticable
(environmental conditions may complicate maintaining a
12-fast) or when HbA1c results are spurious due to condi-
tions (e.g., anemia) that may be unknown to both the patient
(research participant) and the clinician (researcher).

To test the genetics of GSP and %GA, we utilized a
cohort from rural Nepal (the Jirel population). All individ-
uals of the Jirel population belong to a single extended
multigenerational pedigree which makes this cohort an
extremely powerful resource for genetic studies [25, 37].
We observe that GSP and %GA levels are significantly heri-
table and additive genetic factors account for approximately
16% and 15% of the total phenotypic variation, respectively.
Our significant GSP heritability estimate is, however, in con-
trast to a study of nondiabetic monozygotic (MZ) and dizy-
gotic (DZ) twins, which did not support genetic factors
influencing GSP variability [38]. These contrasting results
may be due to the power of the two samples and differences
in the overall genetic structure of the two family-based
cohorts. A greater number of higher degree relationships
(as there are in the Jirel pedigree) are likely to further mini-
mize the confounding of shared environmental signals with
genetic signals. Other factors that may explain the different
results between our study and the twin study by Cohen
et al. include age- and sex-specific differences, as well as
the ethnic diversity between the two study populations.
The average age of our study is 42.4 years compared to
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54.0 and 49.9 years for the MZ and DZ twin samples,
respectively; our study included both males and females
compared to the female-only twin study; and the Jirels of
Nepal are of South Asian origin whereas the female twins
were likely of Caucasian ancestry.

Perturbations in cardiometabolic trait homeostasis are
key risk factors in numerous disease outcomes, for example,
hyperglycemia and diabetes [39], dyslipidemia and coro-
nary heart disease [40], and hypertension and stroke [41].
Collectively, measures of these cardiometabolic traits that
exceed clinical thresholds constitute metabolic syndrome.
Therefore, the direction of our observed phenotypic corre-
lations between the glycated serum protein traits and lipid
traits (positive correlation with TC and LDLC, negative
correlation with HDLC) and blood pressure traits (positive
correlation) is a likely observation, especially in individuals
at a high risk of metabolic syndrome or any other cardio-
vascular disease-related event. However, our glycated serum
protein-cardiometabolic trait correlation data are not in full
agreement with a small number of other studies that have
tested similar correlations [7, 8, 42]. It is difficult to deduce
whether this discordance is real or artefactual given the

limited number of studies that have investigated correla-
tions between glycated serum protein traits and cardiomet-
abolic traits at this stage.

Our result demonstrating significant linkage for GSP is
of considerable interest. Our linkage region (11q23.3) sits
within an area on chromosome 11q that has been previously
linked to type 2 diabetes (T2D). The chromosome 11qter
region was initially linked to T2D in a cohort of Pima
Indians [43] and has subsequently been replicated in two
independent cohorts of Caucasian families [44, 45] and a
cohort of Mexican American families [46]. Additionally,
there are several promising positional candidate genes
within the GSP QTL that lend further support to our find-
ing. The TREH (trehalase) gene encodes an enzyme that
hydrolyses trehalose, a disaccharide formed from two glu-
cose molecules, and the activity of this enzyme in plasma
has been found to be higher in diabetic patients compared
to nondiabetic patients [47]. In the ARHGEF12 (Rho gua-
nine nucleotide exchange factor 12) gene, a functional SNP
(rs148969251) was identified to associate with insulin sensi-
tivity in nondiabetic patients [48]. The rs148969251 SNP,
however, was not present on the Illumina Human660W-
Quad v1 BeadChip. Several other promising positional can-
didate genes include C2CD2L (C2CD2 like), a gene whose
function has been shown to regulate insulin secretion from
beta cells [49, 50]; C1QTNF5 (C1q and TNF related 5), a
gene suggested to have a role in the development of T2D
[51]; and BACE1 (beta-secretase 1), a gene that has been
shown to have a role in glucose homoeostasis in a mouse
knockout model [52]. How these genes and/or genetic vari-
ants may impact levels of GSP and/or regulation of serum
protein glycation remains to be determined.

A recent genome-wide association (GWA) study sup-
ports the role of additive genetic factors to influence GSP
variation [53]. Here, two genome-wide significant loci were
associated with serum fructosamine in white and black
cohorts of unrelated individuals, respectively. The serum
fructosamine GWA signal in the black population was for
an intergenic SNP (rs2438321) on chromosome 11 at
98,500,410 bp [53]. The distance between the GWA signal
identified by Loomis et al. [53] and our GSP QTL is
approximately 17.6 megabases and therefore likely repre-
sents two independent signals.

We acknowledge that our study is not without its limi-
tations. The single blood pressure measurements are poten-
tially inflated: “white-coat hypertension.” An average of
multiple measurements would be a better sampling strategy
and would provide a more robust measure. Also, we are

Table 1: Descriptive statistics for cardiometabolic traits in the Jirel pedigree.

Blood pressure Anthropometry Lipid traits Glycemic traits
SBP (mm Hg) DBP (mm Hg) BMI (kg/m2) TC (mg/dL) HDLC (mg/dL) LDLC (mg/dL) GSP (μmol/L) %GA (%)

Mean 132.1 84.0 22.3 176.7 51.8 103.3 353.5 18.5

SD 20.9 10.7 3.7 49.9 18.3 38.7 92.0 4.7

Min. 89 52 14.1 47.0 8.0 17.0 70.5 6.1

Max. 248 140 38.8 409.0 141.0 294.0 797.2 49.1

SD: standard deviation; Min: minimum; Max: maximum.

Table 2: Phenotypic and genetic correlations between the glycated
serum protein metrics and cardiometabolic traits measured in the
Jirel pedigree.

Trait pairs
Phenotypic correlation Genetic correlation∗

ρp (SE) p value ρg (SE) p value

GSP-SBP 0.089 (0.024) 2 08 × 10−4 -0.027 (0.166) 0.872

GSP-DBP 0.067 (0.024) 0.0056 -0.053 (0.161) 0.742

GSP-BMI 0.047 (0.024) 0.052 0.017 (0.122) 0.891

GSP-TC 0.144 (0.024) 1 78 × 10−9 0.351 (0.149) 0.025

GSP-HDLC -0.019 (0.024) 0.424 -0.177 (0.161) 0.273

GSP-LDLC 0.096 (0.024) 8 05 × 10−5 0.263 (0.136) 0.057

%GA-SBP 0.066 (0.024) 0.0062 -0.069 (0.177) 0.689

%GA-DBP 0.020 (0.024) 0.402 -0.140 (0.172) 0.407

%GA-BMI 0.006 (0.024) 0.796 -0.002 (0.128) 0.988

%GA-TC 0.035 (0.024) 0.148 0.289 (0.163) 0.077

%GA-HDLC -0.106 (0.024) 1 12 × 10−5 -0.238 (0.166) 0.162

%GA-LDLC -0.021 (0.024) 0.382 0.072 (0.146) 0.623

SE: standard error. ∗Additive genetic heritability estimates (h2: 0.149 to
0.536) for all cardiometabolic traits were significant (p values: 1 15 × 10−4
to 1 14 × 10−42).
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Figure 1: Genome-wide linkage (a) and chromosome-specific linkage (b) plots for the significant GSP QTL on chromosome 11. Dashed red
line: significant linkage (LOD ≥ 3 0). Dashed blue line: suggestive linkage (2 0 ≤ LOD < 3 0).
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unaware of any diseases (e.g., hyper- and hypothyroidism)
that may perturb normal albumin metabolism, which may
impact the accurate measurement of glycated serum
protein levels.

5. Conclusion

We have demonstrated that observed variation in glycated
serum protein is significantly influenced by additive genetic
factors and identify a novel QTL for this glycemic biomarker.
The glycated serum protein QTL overlaps with an area of the
q-arm of chromosome 11 that has previously been linked to
T2D, and several positional candidate genes in this region
have been shown to regulate insulin sensitivity and secretion.
We also show glycated serum protein traits are correlated
with other cardiometabolic traits, which suggests these mea-
sures of short-term glycemic control are a novel biomarker
for dyslipidemia and hypertension; however, additional stud-
ies are warranted to confirm or refute this possibility. Mea-
suring glycated serum proteins can also be conducted from
frozen blood (serum), which facilitates retrospective glycemic
studies utilizing archived samples.
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