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Abstract: Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse 

engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a 

promising way to characterize the global scenario of regulatory relationships between regulators and their 

targets. In this review, we summarize and categorize the main frameworks and methods currently available 

for inferring transcriptional regulatory networks from microarray gene expression profiling data. We over-

view each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, 

and possible improvements and extensions are also clarified and commented. 
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1. INTRODUCTION 

 Transcriptional regulation plays crucial roles in protein 
synthesis and its dynamical responses to internal and exter-
nal signals, such as development processes and environmen-
tal stimuli [1, 2]. The temporal and spatial levels of mRNA 
and ultimately protein abundance are actually controlled by 
transcriptional regulations in a cell [3]. A regulation system 
consisting of genes, RNAs, proteins, and other molecules 
constructs the complicated regulatory interactions during 
sequentially transcriptional, post-transcriptional, translation-
al and post-translational processes, which structure into mul-
tiplex networks [4]. A transcriptional regulatory network 
generally refers to regulatory activities between regulators, 
e.g. transcription factors (TFs), and their targets, e.g. genes 
[1, 5]. A gene’s transcription will be initialized or terminated 
by the TF proteins binding to its promoter region generally at 
the 5’ upstream of the transcription start site. To some de-
gree, the final expression abundance is mainly determined by 
the activation or repression of their regulatory relationships 
[2, 6, 7]. Without distinguishably considering the physical 
regulations, a gene regulatory network refers to a collection 
of gene-gene interactions corresponding to such regulatory 
relationships through their products, and the interactions in 
gene regulatory network denote this kind of regulations. In 
contrast, a transcriptional regulatory network represents the 
physical bindings and direct regulatory interactions between 
regulators and their targets [8]. It contains more concrete and 
specific regulatory information between TFs and genes. 
From a systematic perspective, genome-wide transcriptional 
regulatory networks in cells control gene expression  
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dynamically and precisely in response to biological context 
specificities [9]. 

 Identifying transcriptional regulatory networks is of par-
amount importance from deciphering transcriptional mecha-
nisms to uncovering potential drug targets [10, 11]. Various 
network reconstruction methods have been proposed and 
they can be generally categorized as ‘bottom-up’ and ‘top-
down’ methods. The traditional gene knockout experiments 
can be categorized as bottom-up methods, which firstly iden-
tify the detailed regulations between TFs and targets individ-
ually, and then summarize all these regulations to form a 
regulatory network. The genetic relationships between genes 
can be detected from the effected genes after knocking out 
some gene [12-14]. And a global gene regulatory network 
can be built up after collecting these experimentally identi-
fied genetic interactions. Alternatively, top-down methods 
refer to the emerging systems biology approaches of identi-
fying the global regulatory interactions systematically and in 
parallel. They firstly acquire many potentially regulatory 
interactions and then validate each of them by additional 
experiments. For instance, ChIP-Seq technology makes the 
genome-wide identification of protein-DNA interactions 
possible [15, 16]. The regulatory elements of DNA-binding 
proteins such as TFs are identified from massively parallel 
sequencing [17]. A genome-wide regulatory network is then 
drafted from these identifications. The details of TF-target 
binding event in specific conditions are often checked by 
further experiments [18]. Microarrays are another type of 
systematic expression monitoring technologies, which 
measures the amount of mRNA produced during transcrip-
tion by hybridization [19, 20]. The reconstruction or infer-
ence of regulatory network from microarray gene expression 
data is often called a reverse engineering process, which 
backwardly reasons the regulatory system from its observa-
tional behavior [21]. Recently, the reverse engineering of 
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transcriptional control network from microarray data be-
comes very popular to revealing genome-wide regulations 
[21-25]. Numerous computational strategies have been pro-
posed to reconstruct large-scale gene regulatory relationships 
from expression profiles [26-29]. Several papers [30-33] 
have summarized and compared the available strategies from 
different perspectives. For instance in [30], Emmert-Streib 
and colleagues presented a systematic overview and compar-
ison study of the network inference methods. They concep-
tually categorized the existing methods from statistical learn-
ing perspective. In this review, we focus on these available 
computational methods by highlighting their assumptions, 
advantages, weaknesses, possible improvements and future 
research directions individually. 

 Computational methods of inferring transcriptional regu-
latory networks from expression data are highly motivated 
by the availability of genome-wide expression profiling data 
[34-37]. The activities of gene regulation are closely related 
to gene expression levels [6, 38]. Gene expression profiles of 
time series or perturbations indicate the dynamics and differ-
ences of genes and then imply the causal regulatory possibil-
ities between them. Moreover, the individual gene pairs be-
tween regulators and target genes should also be considered 
with cooperative and systematic perspectives, such as co-
regulations, competitive regulations of activators and re-
pressors, and indirect genetic regulations [9, 37, 39]. A glob-
al transcriptional regulatory network is embedded with high 
interacting affinities between regulators and targets, which 
can be learned from transcriptomic data. And the details of 
individual regulatory events are hypothesized to be validated 
by further experiments [13, 40]. The top-down method gen-
erates a global view of regulatory relationships in form of 
network illustrating the context-dependent scenario of regu-
lations. Existing computational methods of inferring regula-
tory networks are all to formulate the regulations into certain 
models with these measured expression values [23, 26, 27]. 

 In this review, we firstly formulate the reverse engineer-
ing of transcriptional regulatory networks from transcriptom-
ic profiles into a general framework, and then review the 
major available strategies developed to address this problem, 
e.g., correlation-based methods, Boolean network methods, 
Bayesian network methods, differential equation methods, 
and knowledge-based methods of integrating and evaluating 
prior regulations. We focus on introducing the assumptions 
and main ideas behind these strategies and their approxima-
tions in the modeling of regulatory systems. Then the current 
research directions and alternatives of deciphering regulatory 
network from expression data are discussed. A brief vision of 
reconstructing transcriptional regulatory networks from high-
throughput expression profiling dataset is then concluded. 

2. FRAMEWORK OF REVERSE ENGINEERING 

 The surge of microarray technologies provides unprece-
dented opportunities to measure genome-wide gene expres-
sion simultaneously [19]. Various strategies have been de-
veloped to infer the regulatory architectures from their corre-
sponding gene expression profiles for transforming experi-
mental data into regulatory knowledge [22]. The inferred 
networking linkages represent the regulatory relationships 
among these measured genes. 

 (Fig. 1) illustrates the general framework of the reverse 

engineering of transcriptional regulatory networks from gene 

expression data. Essentially, transcriptional regulatory net-

work reconstruction is to identify physical and genetic regu-

latory relationships between TFs and target genes from their 

expression profiles. Without distinguishing the difference 

between TF and its own gene, gene regulatory network is 

often used as an approximation to the transcriptional regula-

tory system. Since the abundance of TF protein is often not 

available, it is approximated by its gene’s expression. Specif-

ically, a transcriptional regulatory system is represented by a 

network, whose nodes refer to regulators and target genes 

and whose edges indicate their regulatory interactions. As 

shown in (Fig. 1A), from microarray gene expression data, 

such as profiles of time-series physiological processes or 

perturbation experiments of gene knockout or RNA inter-

face, we reversely engineer the network structures and pa-

rameters, e.g., regulatory logic, causality and strength, from 

the measured gene expressions by developing models and 

algorithms. The measured genes are those nodes in the regu-

latory network, and the linkages and related parameters can 

be identified from the patterns underlying the gene meas-

urements. The regulatory network and expression data are 

often represented by regulatory matrix A  and expression 

matrix X , respectively, i.e., 
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where entry
pqa is the regulatory interactions between the p -

th gene and the q -th gene (1 ,p q n ), and entry
ijx rep-

resents the gene expression value of the i -th gene 

(1 i n ) at the j -th experiment (1 j m ). It is noted 

that j refers to a sample or a time point with specific pheno-

type meaning. The process of reverse engineering is to de-

termine the unknown elements of matrix A from the known

X , which is a reverse strategy for reconstructing the under-

lying regulatory relationships of the system. 

 As illustrated in (Fig. 1B), there are four levels of clarity 

for the elements of A , which answer different questions 

about the regulatory parameters respectively. Suppose there 

are two genes, 
1G and

2G . From the available gene expres-

sion data X , Level I inference is to determine whether there 
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is a regulatory connection between
1G and

2G  from data X . 

Let 
12a  and 

21a represent the regulatory interactions from
1G  

to
2G  and that from

2G  to
1G , respectively. Level I is to de-

termine whether 
12, 21 0a a or= . The binary decision ma-

kings build the fundamental architecture of these regulations 

from gene expression data. Then, when we identify the caus-

al influence from the regulator of TF
1G to its target gene

2G , 

Level II inference determines the edge direction and causali-

ty in the regulatory network, i.e.,
12 210, 0a a = . In certain 

conditions or states, TF might activate or repress the tran-

scription of a target gene, and the concentration of the target 

is then increased or decreased accordingly. The edge orienta-

tion underlying the Level  regulatory relationship contains 

the type information of activation and repression, i.e.,

12 210, 0a a> = when
1G activates

2G , and 
12 210, 0a a< =

when
1G represses

2G . More specifically, when we identify 

the regulation strength from
1G  to

2G in the Level IV infer-

ence, such as 
12 211.76 0.63a or a= = , it provides con-

crete regulatory weight of its transcriptional dynamics. Level 

I inference is to reconstruct gene regulatory interactions, 

while the other inference levels contain more detailed infor-

mation about transcriptional regulatory interactions, such as 

regulator and target, activation and repression, and concrete 

regulatory strength. The strong or weak regulation can then 

be relatively assessed when all the real numbers of regulato-

ry strengths are determined. (Fig. 1C) shows the direct mod-

eling of the regulation in an isolated gene pair and in a sim-

ple regulatory system respectively. The left graph refers to 

the regulation between
1G and

2G , while the right one shows 

the direct causality from
1G to

2G and the indirect influence 

transferring from
3G . When the system contains a large 

number of genes, it is apparent that they are needed to be 

modeled in a systematic manner. 

 The intrinsic difficulties of transcriptional regulatory 

network reverse engineering come from several sources. 

Mathematically, one difficulty is the so-called curse of di-

mensionality, i.e., n m>>  in the formation of expression 

matrix X . For intensive cost, there are often a few samples 

( m ) of microarray that have been experimented, while thou-

sands of genes ( n ) have been tested simultaneously in each 

experiment [41]. From the statistical learning perspective, it 

is hard to infer a reliable solution of gene regulations from 

expression data [27]. Moreover, genome-wide regulatory 

networks tend to be sparse [34-36, 42], all of which result in 

the high likelihoods to achieve false positive regulations or 

low likelihoods to achieve false negative regulations [34-36]. 

Biologically, gene regulation is a complicated physiological 

process that contains some important steps, such as TF selec-

tively binds to the upstream of the transcription start sites of 

certain genes to initialize the transcription. Thus, we often 

model the regulatory system by simplifying some mecha-

nisms, such as cooperation or competition of the TF regula-

tors [43]. Furthermore, the real environment of gene regula-

 

Fig. (1). The general framework of reverse engineering transcriptional regulatory networks. (A) The framework of inferring regulatory net-

work from gene expression profiles. There are various sample types of gene expression data, such as condition-specific, perturbation and 

time series data. A reverse engineering algorithm takes the input of the gene expression profiles and outputs the inferred gene regulatory 

relationships in form of a network. (B) The interrelated four levels of regulatory parameter information should be determined in the reverse 

engineering. The algorithm addresses the gene regulatory questions at one or several combined levels. (C) The regulatory pair and system in 

the modeling. The decision-making of regulatory relationship of an individual pair is in an isolated manner. However, the regulatory system 

consists of complicated regulations of combination and cooperation, such as the indirect regulation from gene G1 to gene G2 conditioned 

upon gene G3, which needs to be modeled in a systematic manner. 
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tion is very dynamic with respect to temporal and spatial 

features. For example, the up-regulation of one gene encod-

ing a TF can sequentially affect its downstream targets and 

some regulations can only take place in particular cell types 

[44, 45]. 

 The reconstructed regulatory network is a graphical rep-
resentation of transcriptional topology of both trans- and cis-
regulations [46]. The static network structure is usually not 
efficient to describe the three-dimensional regulatory con-
texts in cells [47]. Moreover, the epigenetic regulations, such 
as DNA methylation [48], histone modification and nucleo-
some positioning [49], strongly influence transcriptional 
concentrations [50]. miRNAs are also regarded as crucial 
regulators in the post-transcriptional regulations [51]. The 
multiplex, hierarchical, heterogeneous regulatory processes 
are intensely cooperative to generate gene expression levels 
of mRNA abundance detected by microarray. At the same 
time, the microarray technique of measuring gene expression 
is still in its maturing period. The sample preparation, such 
as cell numbers [52], as well as data preprocessing alterna-
tives including probeset design, background correction and 
normalization [53, 54], highly affect the quantitatively meas-
ured values. Furthermore, the cognate mRNA level is used to 
represent TF activity in the reverse engineering. The abun-
dance mismatch between mRNA and protein also interfere 
with the inference of the regulation system [55]. These ob-
stacles challenge the perfect reconstruction of regulatory 
relationship from expression data. 

 To address these difficulties of reverse engineering regula-
tory networks, numerous efforts have been devoted and many 
substantial regulations have been discovered by in silico 
methods and validated by traditional experiments [30-33, 56]. 
An international competition named DREAM (Dialogue for 
Reverse Engineering Assessments and Methods) has been 
initialized to catalyze the quantitative modeling of transcrip-
tional network inferences [57, 58]. For evaluating the recon-
struction performances, several types of measures have often 
been utilized, e.g., general statistical measures, functional con-
sistency measures and network-based measures [30]. For 
widely-used statistical measures, the evaluations are often 
implemented by opening the expression profiling dataset and 
blinding the benchmarked network structure. After the tran-
scriptional regulatory interactions are inferred from the data by 
some proposed method, the assessments are performed by 
comparing the identification results with the benchmarked 
network [23]. Compared to true regulations, these measures 
are employed to evaluate the predictions, e.g., sensitivity, 
specificity, accuracy, F-measure, and Matthews correlation 
coefficient [30, 59]. The tradeoffs between sensitivity and 
specificity are often presented by the receiver operating char-
acteristic (ROC) curve. The area under the ROC curve (AUC) 
is often calculated for assessment [60]. Currently, many meth-
ods for reverse engineering regulatory networks have been 
available [22, 27, 30]. Instead of introducing them 
individually, we categorize them into several main streams of 
strategies and introduce their main ideas and philosophies. 

3. EXISTING METHODS 

 Due to the difficulties mentioned above, the transcrip-
tional regulatory network inferences are far from accurate 

and perfect [61], and almost all available methods have their 
own advantages and drawbacks [27, 61]. We summarize 
them into the following five categories, namely correlation-
based methods, Boolean network methods, Bayesian net-
work methods, differential equation methods, and integrative 
prior knowledge-based methods. 

3.1. Correlation-based Methods 

 The first endeavor to identify the regulatory relationships 

in thousands genes measured in microarray is to investigate 

their pairwise correlations. If gene X  highly coexpresses 

with geneY , that is to say, when gene X ’s expression grows 

up, gene Y ’s expression grows up or down simultaneously, 

then the association between the two genes can be detected 

and modeled by some methods. The regulation can be in-

ferred according to their transcriptional dependence. For 

multiple genes, clustering is often employed to identify the 

coexpressed genes [62, 63]. The genes in the same clusters 

or groups characterize similar expression patterns during 

physiological processes. They are often assumed to be regu-

lated by the same or related TFs. Two correlation measures 

are widely used to detect the associated gene pairs, i.e., cor-

relation coefficient [64] and mutual information [65]. 

 The most popular linear correlation between two varia-

bles is Pearson’s correlation coefficient (PCC). Suppose gene

X and geneY have a series of m  measurements
iX  and 

iY , 

where 1,2,...,i m= , then the PCC r between X and Y  is 

estimated by the sample correlation coefficient, i.e., 

1 1

2 2

1 1

( )( ) ( )( )

( 1)
( ) ( )

m m

i i i i

i i
XY

m m
X Y

i i

i i

X X Y Y X X Y Y

r
m S S

X X Y Y

= =

= =

= =

, 

where X andY are the sample means of X andY , and
XS  

and
YS are the sample standard deviations of X andY . 

WGCNA (Weighted Gene Coexpression Network Analysis) 

is a representative method of building the gene coexpression 

regulatory network by employing PCC [66]. (Fig. 2) shows 

its general framework [67]. Firstly, a clustering method such 

as hierarchical clustering is implemented to group thousands 

of genes into some clusters. In each cluster, the highly coex-

pressed genes are linked by correlation values. For example, 

when 
XYr exceeds a defined threshold such as 0.8XYr > , a 

functional linkage between X andY is created in the result-

ing coexpression network. After the pairwise functional im-

plications between any two genes are identified, a genome-

wide network is built up. The simplicity underlies the meth-

od that makes it popular to analyze gene expression data, 

especially to build gene coexpression relationships [68]. Be-

yond the linear correlation metric of PCC, some rank-based 

correlations such as Spearman’s correlation are also em-

ployed to detect the relationship between genes [69]. These 

correlations replace gene expression values to their relative 
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ranks and then calculate the correlation coefficient between 

the two ranking lists. 

 Mutual information (MI) is often employed to measure 

the non-linear gene expression associations between pairs of 

genes [65, 70]. Generally, MI is an information-theoretic 

measure of the mutual dependence between two random var-

iables. For two genes X andY , it is defined as  

,

( , )
( , ) ( , ) log

( ) ( )
i j

i j

i j

X X Y Y i j

p X Y
I X Y p X Y

p X p Y
=

, 

where two gene expression values construct two vectors, in 

which the elements ( 1,2,..., ), ( 1,2,..., )i jX i m Y j n= = de-

note their expression values in different samples respective-

ly. ( )ip X and ( )jp Y are the marginal probabilities of each 

discrete value
iX in X and 

jY  in Y , respectively. ( , )i jp X Y  

is the joint probability of 
iX  and 

jY . High MI value 

indicates that there may be a close relationship between the 

two genes, while low MI value implies their independence 

[60]. 

 MI has been widely used to identify transcriptional regu-
latory relationships from gene expression data [71]. The 
quick and accurate estimation of MI is a crucial step in the 
reverse engineering because computing pairwise MI is non-
trivial and quite time-consuming [72]. Similar to the PCC-
based framework shown in (Fig. 2), the available approaches 
compute the pairwise MI between all gene pairs and con-
struct an association matrix. RN (Relevant Network) chooses 
the gene pairs when its MI value exceeds a given threshold 
of significant value [65, 70]. ARACNE (Algorithm for the 
Reconstruction of Accurate Cellular Networks) implements 
the data processing inequality on each connected gene triplet 
to remove the least significant edge in the MI relevant net-
works [73]. CLR (Context Likelihood of Relatedness) trans-
forms the MI values into z-scores and connects the genes by 
employing a background sensitive estimator [74]. MRNET 
(Maximum Relevance Network) is built on the MI-based 
mRMR (minimum redundancy maximum relevance) feature 
selection method [75]. MINET presents a software package 
of MI estimators for inferring large-scale transcriptional reg-
ulatory networks [76]. By implementing these MI-based 
methods, some important transcriptional regulations have 
been revealed and validated [77, 78]. 

 Unlike PCC and MI, maximum information correlation 
(MIC) is proposed to detect the strength of any type of linear 
or nonlinear correlations between genes [79]. MIC adopts 
binning as a scheme to apply MI to calculate the association 
between gene variables. It is defined as 

2

( , )
( ; ) max

log (min( , ))X Y B

I X Y
MIC X Y

X Y<
=

, 

where ( , )I X Y  is the MI of X andY . X , Y are the num-

bers of X bins and Y bins divided, and the total number of 

bins X Y is constrained to be less than some number B . 

MIC defaults
0.6B M= and M is the sample size [79]. Alt-

hough the effectiveness of MIC is controversial [80], it de-

votes an effort to identifying diverse types of gene relation-

ships and indicates the importance of an association metric 

to identify genetic relationships [81]. 

 The correlation or coexpression is a fundamental strategy 
to identify the regulatory relationships at the former Level
and Level IV inferences (Fig. 1) and should be improved to 
be more reasonable in the reverse engineering [82]. Although 
it is found that the genes in the same grouped clusters tend to 
have similar functions, these genes might have no direct in-
teractions with each other, and there is no any information to 
distinguish causal regulators and responsive targets. The 
built network is not directed (Level II) and without the cau-
sality of functional linkages (Level ) [83], though it can be 
determined by additional information, such as annotated TFs 
[77]. Moreover, the clustering methods such as hierarchical 
clustering are highly dependent on the threshold chosen to 
cut the hierarchical tree (dendrogram). The number of clus-
ters and chosen distance metrics also highly affect the result-
ing networks [81]. It is often assumed that there is modulari-
ty property in coexpression regulatory networks, which 
means dense connections between the genes within the same 
modules but sparse connections between genes in different 
modules [68]. The clusters form the building blocks of ge-
nome-wide regulatory networks. The linkages between these 
modules are often omitted in these available methods [84]. 
These functional linkages indicate the crosstalk and func-
tional cooperation between these modules upon certain con-
ditions [67, 85-87]. 

 Another important issue of this type of methods is the 

isolated modeling of individual gene pairs as shown in (Fig. 

 

Fig. (2). The framework of building gene coexpression regulatory network [67]. (A) The array data. (B) The correlation analysis of these 

genes. (C) Pairwise gene correlation matrix. The bold numbers are those over a defined threshold 0.80. (D) The built gene coexpression net-

work. 
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1C). The regulatory effect from 
1G  to 

2G  can also be trans-

ferred from 
3G . The indirect regulations highly bias the in-

ferred results [88, 89]. We should consider the degree of as-

sociation with the removal of the effects from indirect regu-

lations by controlling one or several other genes. Partial cor-

relation coefficient can be employed to quantify the associa-

tion between two genes when conditioning on other gene or 

genes [88]. For instance, conditioning on a gene or gene set

Z , partial correlation
XY Zr between gene X and geneY is to 

measure the exact correlation between the parts of X andY
that have no relationship with Z . The order of partial corre-

lation coefficient is determined by the number of conditioned 

genes. Obviously, the mentioned PCC is the zeroth-order 

partial correlation coefficient. Theoretically, it can be raised 

to any arbitrary order. The first-order and second-order par-

tial correlation is defined as 
2 2(1 )(1 )

XY XZ YZ
XY Z

XZ YZ

r r r
r

r r
=  and 

2 2(1 )(1 )

XY Z XQ Z YQ Z

XY ZQ

XQ Z YQ Z

r r r
r

r r
= , 

respectively. In practice, it is difficult to calculate high-order 
partial correlation coefficient because of the curse of dimen-
sionality. It is often estimated by developing some specific 
computation techniques in the reverse engineering of regula-
tory networks [89]. 

 Similarly, conditional mutual information (CMI) 

measures the conditional dependency between two genes 

given other gene or gene set. The CMI of genes X andY
given Z is defined as 

  

I ( X
i
,Y

j
| Z

k
) = p( X

i
,Y

j
,Z

k
) log

p( X
i
,Y

j
| Z

k
)

p( X
i
| Z

k
) p(Y

j
| Z

k
)Xi X , Yj Y , Zk Z

 
 CMI has been applied to reconstruct genome-wide regu-
latory networks [90-92]. The recently proposed MIC is also 
expected to be extended to calculate the conditional and par-
tial versions for detecting more delicate and meaningful as-
sociations between genes [93]. 

 Based on CMI, we proposed a reverse engineering meth-

od [60] by utilizing path consistency algorithm [94] to re-

move the edges with conditional independent correlation 

from the network. (Fig. 3) shows the general framework of 

our PCA-CMI method. The main idea of PCA-CMI is to 

eliminate the edges with independent correlations recursive-

ly, i.e., from low to high order independent correlation until 

there is no edge that can be removed. Firstly, we began with 

a complete graph, in which all the possible regulations 

among these genes are contained. Secondly, for adjacent 

gene pair i  and j , we calculated MI ( , )I i j , i.e., zeroth-

order CMI. We removed the edges between genes i  and j  if 

they have low or zero MI values. Thirdly, for adjacent gene 

pair i  and j , we computed the first-order CMI ( , | )I i j k

conditioned on their adjacent gene k . We removed the edge 

between them if they have low or zero CMI. The next step is 

to identify higher order CMI until there are no more adjacent 

edges to be eliminated [60]. Since it is also time-consuming 

to calculate CMI [60, 90], in our proposed algorithm, with 

the assumption of Gaussian distribution, CMI is estimated 

with Gaussian kernel probability density estimator [56].  

 From a regulatory system perspective, linear regression 

methods identify the associations among genes comprehen-

sively [95, 96]. Compared to the former correlation or partial 

correlation based methods, the regression methods model 

each gene by multiple predictors. They associate the expres-

sion of one gene to all the genes in the whole system and 

then identify these predictors by variable selection. So the 

cooperative regulatory relationships among genes can be 

identified simultaneously. Let Y denote a gene and 

1 2( , ,..., )rR X X X=  be the gene set potentially regulate 

gene Y . Their relationship is modeled by a linear function, 

i.e., 
0

1

r

j j

j

Y X
=

= + . The ordinary least squares, partial 

least squares and maximum likelihood methods can then be 

used to estimate the parameters of the linear system [97, 98]. 

Under the parsimony assumption, a regulatory network tends 

to be sparse [34, 36, 42]. Some variable selection method 

such as LASSO [99] and elastic net [100] are often em-

ployed to recognize the crucial regulators by the regulariza-

tion techniques [101]. Specifically, LASSO minimizes the 

residual sum of squares subject to a bound on the
1L -norm of 

the coefficients, i.e.,  

( )
1

ˆ arg min ( ) ( ) ,
r

T

lasso
R

Y X Y X= +

 

where 0> and 
1

1

.
r

j

j=

=  Obviously, some coefficients 

may be shrunken to zero and the global linkages (coeffi-

cients) between these genes can be then inferred. We can 

find that the causal relationships or directions between these 

genes are embedded in the regression model. Regression 

combined with variable selection formulates the regulations 

into a systems biology approach to reconstructing the under-

lying genetic interactions from expression profiles. Appar-

ently, regression-based methods achieve a sparse regulatory 

network and perform the four levels of regulation inferences 

shown in (Fig. 1B). For time course expression data, the vec-

tor autoregressive model is also employed to specify the 

gene expression value by a linear regression of those of ear-

lier time points [97]. Similarly, Granger causality is modeled 

to learn time-lagged regulatory networks from time-course 

gene expression data [102, 103].  

3.2. Boolean Network Methods 

 One of the main-stream strategies to reverse engineering 
transcriptional regulatory networks is based on Boolean net-
works. Boolean models treat the genes in a regulation system 
as logical elements [104]. It assumes that a single gene can 
be represented by a Boolean variable denoting whether it is 
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expressed or not. The wiring of an element to one another 
corresponds to functional linkages between genes, and the 
Boolean rules determine the result of a regulatory signaling 
transduction given a set of input values [105, 106]. Boolean 
network provides a simple decision-making model of de-
scribing the regulatory mechanisms in a transcriptional sys-
tem [104, 107, 108]. 

 Specifically, a Boolean network is a directed graph

( , )G V F , where the set 
1 2{ , ,..., }nV X X X=  of nodes rep-

resenting genes. (Fig. 4A) shows a simple example. For each 

node 
iX V , {1,2,..., }i n , a Boolean function 

1 1 2( ,..., ) { , ,..., }
ki i i i nf f X X F f f f= = is associated with it 

individually. The inputs of
if are from the specified parent 

nodes
1
,...,

ki iX X in V to each node
iX . The variable

iX is 

Boolean and its value is often denoted as 0 or 1 which corre-

sponds to the logical value True or False respectively. The 

logic operators ‘AND’, ‘OR’, and ‘NOT’ are employed to 

define the Boolean operations in these genes [107]. At any 

given time t , an expression pattern of V names a state of a 

Boolean network, i.e.,
1 2( ) ( ( ), ( ),..., ( ))nS t X t X t X t= . The state 

at time point 1t +  is determined by Boolean functions F
from the state ( )S t , i.e., 

11( ) ( ( ),..., ( ))
kt i i t i t iS X f S X S X

+
= . 

The states of all nodes are updated according to their respec-

tive Boolean functions and all states’ transitions together 

correspond to a state transition of the regulatory network. 

 For representing the state transition, it is convenient to 

build a corresponding wiring diagram ' ' '( , )G V F of a Boolean 

networkG as shown in (Fig. 4B) [106, 109]. For each node 

iV V , let 
1
,...,

ki iV V be the parent nodes of 
iV in ( , )G V F . 

By introducing an additional node 
'

iV , we link an edge from 

ji
V (1 j k ) to 

'

iV . Then ' ' '

1 1{ ,..., , ,..., }n nV V V V V= in the 

resulting network. Apparently, the expression pattern of the 

additional node set 
' '

1{ ,..., }nV V is determined by 

1

' ( ,..., )
ki i i iV f V V= individually and corresponds to the regu-

latory network state at the next time point. If we regard the 

expression patterns of the set 
1{ ,..., }nV V as the input of F , 

the expression patterns of 
' '

1{ ,..., }nV V  are the output as 

shown in (Fig. 4C). 

 The reverse engineering of a Boolean network is to infer 

the Boolean functions F at these nodes from expression data. 

When F is known, the underlying network topology of regu-

lations can be built spontaneously. An exhaustive search is to 

try out all Boolean functions on all 
n

k
 combinations of k

out of n genes. It is known to be an NP-complete problem 

and takes exponential time in the inference [105, 106]. So it 

is often tractable by employing certain computational tech-

niques to avoid exponentially searching a consistent network 

structure with the observational data. When multiple network 

structures are found to be consistent with the gene expres-

sion data, more scoring metrics and assumptions can be de-

fined to select one suitable regulatory architecture [26, 110]. 

 Boolean network is a fundamental model of genetic sys-
tem which identifies the network structure from a systematic 
perspective. It fulfills the Levels  II inferences of 
gene regulatory networks. The dynamic property and the 
simplicity in understanding and analyzing make it an attrac-
tive model of regulatory network reverse engineering. How-
ever, the binary and synchronous (i.e., the state of all genes 
updates to the next one at the same time) assumptions are not 
consistent with the true biological system [111]. To address 
these limitations, the discretization strategies and Boolean 
models have been extended in various ways to make them 
more biologically realistic and computationally tractable 

 

Fig. (3). The reverse engineering diagram of PCA-CMI (path consistency algorithm based on conditional mutual information) [60]. 
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[26]. With the availability of gene expression data with larg-
er sample size and higher quality, there have been approach-
es to introducing stochasticity to these models, such as prob-
abilistic Boolean networks [112-114] in which the state tran-
sition diagram is stochastic. The generalized Boolean net-
work models also try to cope with the shortcomings by ena-
bling more sophisticated forms of logical update which al-
lows asynchronous transition of elements [115]. 

3.3. Bayesian Network Methods 

 Definition. Bayesian network is a directed acyclic graph 
(DAG) representing a set of random variables and their joint 
probability distribution together with the family of condi-
tional probabilities induced by the graph [116, 117]. 

 Bayesian network is a typical probabilistic graphical 

model of causal inference in statistics. The general idea of 

learning Bayesian network structure from data is to evaluate 

each network structure with respect to the given data by de-

fining a scoring function and to identify the optimal one ac-

cording to the score [118]. The structure represents the con-

ditional independence of these variables that facilitate their 

joint distribution to be decomposed. The graph G is often 

assumed to follow the Markov property that each gene
iX  is 

independent of its non-descendents, given its parents in G . 

By applying the chain rules of probability and the properties 

of conditional independency, the joint distribution on genes

1 2, , ..., nX X X can be uniquely represented by the product 

form 
1 2

1

( , ,..., ) ( | { })
n

n i i

i

P X X X P X parent X
=

= , 

where { }iparent X is the set of parents of 
iX  inG . In this 

way, each Bayesian network specifies the joint probability 

distribution over all genes down to the conditional distribu-

tions of the genes
iX  given their parents. As shown in (Fig. 

5A), gene D is dependent on gene A and gene E, and inde-

pendent on the other gene or genes. The global network 

probability is determined by the dependence structure be-

tween multiple interacting components. 

 The graphical representation consists of two distinct parts 

in reverse engineering transcriptional regulatory networks. 

The first component ( , )G V E is a DAG representing the 

causal relationships of regulations (i.e., edges of set E ) 

among a set of genes (i.e., nodes of set V ). An edge exists 

from gene A to gene B if and only if A is a direct regulator of 

B. The second component is a set of parameter , which 

describes a conditional probability distribution of each gene, 

given its parent regulators. Taken together, the two compo-

nents specify a probability distribution over the set of genes 

in V , i.e., the network structure of regulations. Often, 

Bayesian scoring metric is derived to evaluate the posterior 

probability of a graph G  given the gene expression data D , 

i.e., 

( : ) log ( | )

( | ) ( )
log

( )

log ( | ) log ( ) ,

S G P G

P G P G

P

P G P G C

=

=

= + +

D D

D

D

D  

whereC is a constant which can be ignored [119]. In a 

Bayesian network framework, the calculation of the log mar-

ginal likelihood log ( | )P GD  involves the probability of the 

data over all possible parameters  assigned to G . It is an 

NP-hard problem to select the maximum scored network 

structure given the data [117, 118]. Thus, the most probable 

network structure is generally implemented by approximat-

ing the posterior probabilities of the regulatory combinations 

heuristically [37, 118]. Bayesian network model becomes 

appealing for modeling causal relationships between these 

genes by selecting the most likely causalities in form of a 

DAG [9, 29, 119]. Some techniques have been developed to 

narrow down the search space to a tractable size. As an as-

sumption, the basic form of Bayesian network cannot handle 

cyclic regulations and the temporal dynamic regulatory rela-

tionships [117]. Other alternatives have been proposed to 

extend the applicability of Bayesian network modeling, such 

as dynamic Bayesian network [120-124], module network 

[84] and state-space model [121, 125]. 

 Based on the framework of Bayesian network, dynamic 

Bayesian network (DBN) introduces the time concept and 

models a stochastic temporal process of a set of random var-

iables over time series [121-123]. It has been employed to 

describe the qualitative nature of the dependencies that exist 

between genes in a temporal process. The structure of a 

 

Fig. (4). An example of Boolean network. (A) A Boolean network . (B) The corresponding wiring graph of . (C) The logic 

operations and state transition table. The possible input at time point  and the corresponding output at time  are listed in the table. 

Boolean network models the regulatory relationships in the logical operating scheme [106]. 
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DBN is assumed to perform regulatory functions over dis-

crete time points indexed by {1,......, }t T . Similar to the 

assumptions in Bayesian network, let 
1( ,..., )t t t T

nX X X=
be the gene expression vector of n  genes at time t . For the 

time points {1,..., ,..., }t T , under the first-order Markovian 

assumption, i.e., 1tX + is independent of 
'tX  for 

't t<  given 
tX , we thus have  

1 1

1 1

( ,..., ,..., ) ( ) ( | { })
T n

t T t t

i i

t i

P X X X P X P X parent X
= =

=

 

in the time-course gene expression data [123]. As illustrated 
in (Fig. 5B), the underlying acyclic graph in Bayesian net-
work can now be permitted to contain cycles. DBN model 
can explore the general network structure of gene regulations 
and overcome the shortcomings of the acyclic assumption 
and static network structure in Bayesian network learning 
models. A more complicated time-varying DBN model of 
describing the time-evolving network structures underlying 
the time series is also developed [126]. 

3.4. Differential Equation Methods 

 Differential equation formalisms including ordinary and 
partial differential equations have been widely used to de-
scribe and simulate dynamical systems in science and engi-
neering. The powerful mathematical methods have been im-
plemented to model the biochemical systems of metabolic 
processes and kinetic dynamics of genetic regulation processes 
[25, 26]. The regulatory interactions in form of network are 
revealed by the differential and functional relations between 
the time-dependent concentration variables [36, 127]. Here, 
we mainly introduce the ordinary differential equation (ODE) 
models in modeling transcriptional regulatory network. Partial 
differential equation (PDE) models contain the similar frame-
work as ODE with more dynamic dimensions beyond the time 
in ODE [26]. ODE models directly consider the time differen-
tiation and then the dynamics and causal relationships can be 
simultaneously identified in the four inference levels (Fig. 1) 
of reverse engineering regulatory network. 

 In ODE models, the change rate of gene expression of a 
component in a regulatory system is modeled as a function 

of the concentrations of all the components. Mathematically, 
the general ODE model can be formulated as 

( , , )
dX

F t X
dt

=
, 

where
1( ) ( ( ),..., ( ))T

nX X t X t X t= = represents the gene ex-

pression values of genes 1,...,n  
at time point 

0 0, [ , ], 0t t t T t T < . The causal effects of gene expres-

sions are embedded in the ODE system [128, 129]. Function

F describes the relationship between the first order deriva-

tive of X and the concentration of genes in the regulatory 

system. It is a linear or nonlinear function that describes the 

relationships between the change rate concentration of genes 

and their causal regulators. Specifically, a linear ODE model 

can be written as 

0

1

( ), 1,...,
n

i
i ij j

j

dX
X t j n

dt =

= + =

, 

where 
0i
 is the intercept and 

, 1,...,{ }ij i j n=
= denotes the 

regulation effects of genes in the regulatory system on the 

rate of expression change of the i -th gene. 

 The problem of network reconstruction from data is then 

transformed to identify the parameters in the ODE system. 

Traditionally, the least squares method and likelihood-based 

methods are implemented to find these parameters [27, 34]. 

Various techniques have also been employed to evaluate 

them [41, 130]. However, these methods are not effective for 

reverse engineering genome-wide regulatory networks. We 

and Lu et al. [128, 129] proposed an integrative pipeline to 

address the problem by introducing a two-step paradigm to 

identify these parameters effectively. The first step is to fit 

the mean curves of the gene expressions and then to estimate 

the derivative value idX

dt
respectively, i.e., ' *ˆ ( )ik i ky M t= ,

*ˆ ( )jk j kz M t= , , 1,..., ; 1,...,i j n k m= = , where 'ˆ
iM is estimated 

continuously from the mean curve, 
*

kt  is one of the m set 

time points in range
0[ , ]t T . Thus, the regulatory system be-

comes the following pseudo-regression model, i.e., 

 

Fig. (5). The graphical representation of Bayesian network and dynamic Bayesian network. (A) An example of a Bayesian network. By re-

cursive decomposition, the joint probability distribution of the network is . 

The conditional independence simplifies the conditional probability distributions of these nodes in the decomposition. (B) The graphical 

representation of a dynamic Bayesian network (DBN). The static and dynamic representations are shown respectively. Assuming the tem-

poral regulations are from time  to , cyclic structures are apparently permitted in the DBN framework. 
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0

1

n

ik i jk jk ik

j

y z
=

= + + , 

where
ik

is the error term of estimation. Based on the parsi-

mony assumption, the second step is to conduct the variable 

selection and estimation procedure by a regularization 

framework, such as LASSO [99] and SCAD [131], to shrink 

the variables as optimally as possible. The regulatory net-

work is then reconstructed from the data when we identify 

the parameters of the formulated linear regression system. 

Original methods [128, 129] include a clustering procedure 

to divide these genes into groups with similar expression 

profiles, which helps to build a genome-wide network and 

simultaneously avoid the identifiability problem [132]. 

 ODE is a directed network model and the dynamic fea-

ture of regulations is automatically and naturally quantified. 

In ODE models, gene regulations are modeled by derivative 

equations, which quantify the change rate of gene expression 

of one gene (dependent variable) in the system as a function 

of expressions of all related genes (independent variables) 

that refer to its regulators. In a transcriptional regulatory sys-

tem, it is TFs that regulate the gene transcriptional processes. 

The abundance of TF proteins is the real independent varia-

bles. We usually have no such information and simply use 

the TF genes’ expression as approximation. Under such as-

sumption, the reverse engineering of regulatory network be-

comes inferring the parameters of some specified functions 

such as the former linear function from gene expression data 

[128]. According to the differences between a mathematical 

modeling perspective and a statistical perspective lying in 

the network inference [133], ODE is to model the regulatory 

system but not to directly infer the regulatory network. The 

derivation equations are firstly assumed to describe the func-

tional relationships among genes and their products. Then, 

the statistical techniques such as parameter estimation and 

variable selection are implemented to infer the regulatory 

architectures [128]. The resulting nonzero regulatory linkag-

es construct a regulatory network. Time delay of the activa-

tion and self-degradation can also be flexibly integrated in 

the dynamical system by introducing certain terms in the 

differential equations, such as t , where  denotes a 

time delay and ( )i iX t  for the i -th gene’s self-regulation 

[26]. Compared to the former regression methods of model-

ing the mRNA concentrations of individual components in 

the system, ODE describes the derivatives of their concentra-

tions. The strategies of parameter estimation are similar to 

each other. 

3.5. Knowledge-based Methods 

 With the essential difficulties in the reverse engineering 
of regulatory networks, purely data-driven method is very 
difficult to identify genuine transcriptional regulations. It is 
hard to promise the effectiveness and efficiency of the re-
verse engineering only from gene expression profiles [22, 
27, 134]. There are urgent requirements to develop novel 
methods that can utilize expression data in some alternative 
manners. At the same time, various prior knowledge of gene 

regulations from literature and genomic datasets can provide 
additional functional linkage information between genes, 
such as documented regulations [135, 136], TF binding se-
quence motifs in promoter region [45], ChIP-Seq data of 
protein-DNA binding [137] and protein-protein interactions 
[59]. These prior knowledge can be integrated together with 
gene expression data to identify transcriptional regulatory 
networks. Theoretically, the resolution space can be nar-
rowed down to improving the identification significantly 
[138-140]. So it guides the inference in right direction and 
helps remove false positives in the predictions [141, 142]. 
Knowledge-based methods fall into two subcategories, the 
combination of prior knowledge and the evaluation of prior 
knowledge. We review them individually as follows. 

3.5.1. Combining Prior Knowledge 

 The combination of prior knowledge is often implement-
ed on the former reviewed reverse engineering methods. 
Bayesian network is one of the rational models to integrate 
prior knowledge in a principled manner to increase the infer-
ence reliability [140, 142]. According to the Markov as-
sumption, the probability of a network structure can be de-
composed as 

( )
1

( ) | { }
n

i i

i

P G P X parent X
=

= , 

where { }iparent X is the parents of
iX  in the DAG. The 

probability of a local regulatory structure 

( )| { }i iP X parent X  is then calculated according to the 

structural knowledge priors, 

( )
( ) ( )

| { } ( ) ( )
i i

i i i i

Y parent X Y parent X

P X parent X P Y X P Y X=

. 

 The decomposition facilitates to incorporate the prior 

knowledge about regulatory structure into the network infer-

ence. Various techniques have been proposed to calculate 

these probabilities, i.e., ( )iP Y X and ( )iP Y X , as ac-

curately and effectively as possible. Following a framework 

of statistical physics, [139] and [143] proposed an energy 

function to introduce the prior knowledge from multiple 

sources into the reverse engineering of regulatory network. 

Their main idea is to express the available prior knowledge 

in terms of network energy. Specifically, the prior 

knowledge about the regulatory relationship between gene i  

and gene j is represented by , [0,1]ij ijp p . Network ener-

gy of a network is then defined on the biological prior 

knowledge matrix. Then, a prior distribution over network 

structures is obtained by means of a Gibbs distribution [139]. 

The parameter of this distribution represents the weight as-

sociated with the prior knowledge relative to the gene ex-

pression profiles. In this way, the prior knowledge is inte-

grated into a Bayesian network framework to learn the regu-

latory network structure. They achieved higher performance 

of inference in both simulated and real data [139, 143]. 

 Based on an ODE model, we proposed a method of lin-
ear programming (LP) to integrate prior knowledge in the 
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reverse engineering of regulatory network [138]. The main 
idea is to build an LP model to minimize the association 
gap between gene expression data and network structure 
with constraints of the priori of regulatory relationships, 
and then to solve the LP to obtain the integrated regulatory 
network. 

 Specifically, given an experiment with n  genes and m

samples, the gene expression matrix is ( )ij n mx=X , where

ijx is the expression level of the i -th gene in the j -th sam-

ple. We employed an ODE model to quantify the rate of 

change of gene expression as a function of the expression of 

other genes [138]. Due to the unclear structures of regulatory 

system and data scarcity [41, 95, 138], we used the simplest 

linear additive models: 

.

1

( ) ( ) ( ) ( ) ( ),
n

i i i ij j i i

j

X t X t a X t b t t
=

= + + +

 

for 1,2,...,i n= , where the state variable ( )iX t is the mRNA 

concentrations of gene i  at time point t , 
i
 is the self-

degradation coefficient, 
ib  is the external stimuli, which is 

set to 0 when there is no external input, and i  represents 

the error and noise. ija describes the type and strength of the 

effect of gene j on gene i , whose positive, zero or negative 

values indicate the activation, naught or repression regulato-

ry relationships between them respectively. For simplicity, 

we set 0ib = . Hence, the equations can be described as: 

.

( ) ( ) ,X t X t= +  

where ( ) , 1,..., .nX t R t m=  After we approximated idX

dt
by 

( 1) ( )i i iX X t X t

t t

+
=  and neglected the error part, the line-

ar additive model becomes 

( ) ( ),X t X t= A  

where 1,..., 1t m= . Instead of solving the equations by sin-

gular value decomposition (SVD) technique [41, 95, 127, 

138], we derived a sparse regulation network [36, 56] based 

on an LP model. At the same time, more and more prior 

knowledge of gene regulatory network can be obtained from 

various sources. For example, if we know that gene i and 

gene j  are interactive with the rule that i  activates j , such 

priori should be guaranteed in the inference procedure and 

the inferred network should contain such information as “ i  

activates j ”.  

 In our LP model [138], the objective function is to mini-
mize the number of gene connections to realize the sparse-
ness of the inferring network, and the constraints are the lin-
ear additive equations and the prior knowledge of some local 
network structures. The model is described as 

.

( )

. .

n n

n n n m n m

Min F

s t X X=

A

A
 

There are n n  variables
n nA and n m  constraints. It is 

equivalent to solve a canonical LP: 

1 2

1 2

1 2 1 2

( , )

. .

0, 0 ( ).

Min F

s t X X X=

=

A A

A A

A A A A A  

 Clearly, there are 2n n variables and n m constraints. 

In the canonical form, the linear objective function can be 

defined as: 

1 2 1 1 2 2( ) ( , ) .F F C C= = +A A A A A  

 The sparseness and the prior knowledge for regulatory 

network are represented in the objective function and in the 

constraints of the LP model, respectively. When we let 
1C

=1 and 
2C =1, the objective function becomes 

1 2

1 1 1 1

.
n n n n

ij ij

i j i j

a a
= = = =

+

 

 Hence, a sparse regulatory network is achieved from 

gene expression data by minimizing these regulatory 

strength coefficients with the constraints of the prior 

knowledge about the gene relationships. Generally, there are 

three kinds of the prior knowledge about the functional rela-

tionship between gene i and gene j ; i  activates/represses j  

( /i j i j
+

), i  has no any relationship with j ( i j ), 

and i has some relationship with j , but unclear of positive 

or negative regulation (
?i j ). These prior knowledge are 

reflected in the constraints by the defined rules. If gene i  is 

an activator of gene j  ( i j
+

), we set 1 2 0ij ija a > as a 

constraint in our LP model. Conversely, if gene i  represses 

gene j  ( i j ), we set 2 1 0ij ija a > . If gene i  has no any 

relationship with gene j  ( i j ), we set 1 2 0ij ija a = as a 

constraint. If it is unclear which one is an activator or re-

pressor (
?i j ), we set the constraint as 1 2 0ij ija a+ > and 

1 2 0ij ija a+ < . By solving the two LP models with the two 

constraints respectively, we selected the sparser solution as 

the inferred network [138]. 

3.5.2. Evaluating Prior Regulations 

 Due to the complexity of gene regulation and the difficul-
ty of network inference from expression profiles, reverse 
engineering cannot easily identify genuine regulatory rela-
tionships [27, 134]. An amount of knowledge about gene 
regulations has been deciphered by decades of endeavors 
[41, 144]. Alternatively, we can evaluate the knowledge-
based gene regulations documented in literature and data-
bases and filter out the activated regulations in certain bio-
logical conditions and phenotypes. The screening evaluation 
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procedure provides direct evidence for highlighting the con-
dition-specific regulatory network in biological system [91, 
134, 144]. Based on the available or predefined regulatory 
networks, the consistency between architecture and expres-
sion are measured, and the most rational network structure 
with the expression data can be revealed [145, 146]. In the 
evaluation strategy, each of the reference networks is as-
sessed by measuring the correspondence between network 
structures and gene expression profiles. The comparison of 
matching significance in these knowledge-based regulatory 
networks can identify the responsive regulatory networks of 
certain conditions and phenotypes. 

 Network structure determines the regulatory functionality 
and robustness [147, 148]. The new ‘forward-like’ engineer-
ing of matching network structure with gene expression data 
provides more alternatives to investigate the regulatory rela-
tionships. The original paper in this direction was published 
in [144]. The authors proposed a Gaussian graphical model 
to represent the causal relationships of regulatory network 
architecture and defined a graph consistency probability to 
measure the goodness of fitting between network and data. 
However the directed acyclic graph assumption limits its 
generality and applicability. Collaborating with the senior 
author of the original work, we introduced a DBN model to 
handle general regulatory networks [134]. Specifically, by 
recursive factorization, the joint probability distribution of a 
certain directed network architecture is represented as a 
product of the individual density functions conditioned on 
their parent variables [134, 144], i.e. 
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 Although the binary regulatory relationship between gene 

i and gene j  is available in the priori, the details of activa-

tion ( i j
+

), repression ( i j ), no regulation ( i j ), as 

well as the Level of regulatory strength are unknown, 

especially in specific conditions. So we employed a quadrat-

ic programming (QP) to calculate the likelihood value by 
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 The constraints in the QP represent the regulatory 

strength between i and j . Based on the log-likelihood value, 

the significance of a network architecture was evaluated by a 

random sampling process [134, 145, 146]. For each regulato-

ry network, we randomly generated N (e.g. 2000) networks 

by rewiring the same number of regulations in the nodes of 

the evaluating network. An empirical p-value is calculated to 

evaluate its statistical significance, i.e., 

{ ( ) ( )}The number of L R L G
p value

N

>
=

, 

where R is a random network, ( )L is the maximum log-

likelihood value of the random network R  and the evaluat-

ing networkG . The evaluation provides a powerful alterna-

tive to identify responsive regulatory networks in certain 

dynamics of environment and condition [134]. 

 Apparently, the knowledge-based regulatory relationships 
among these genes are not complete and the reference network 
library should be as complete as possible. To the ends, [149] 
and [150] have developed methods to integrate inference and 
evaluation in the same framework by completing the gene 
network with modifications so that the resultant network 
achieves more consistency with the gene expression data. The 
missing regulations can be identified from initial incomplete 
prior network. Due to the difficulties of pure data-driven infer-
ence of regulatory network, the alternatives of combining prior 
knowledge and evaluating prior gene regulations show prom-
ising research directions to investigate transcriptional regulato-
ry network from gene expression data [134]. 

4. DISCUSSION AND CONCLUSION 

 In this review, we summarized the state-of-the-art meth-
ods of reverse engineering transcriptional regulatory net-
works from gene expression data and categorized them into 
several general frameworks, i.e., correlation-based methods, 
Boolean network methods, Bayesian network methods, dif-
ferential equation methods and knowledge-based methods. 
(Table 1) lists these strategies and their typical methods. 
Some methods implement hybrid models and employ several 
computational techniques to reversely engineer regulatory 
networks [41, 83]. These methods such as REVEAL [105], 
BC3NET [151] and GENIE3 [152] can be classified into 
multiple categories. For simplicity, we only categorized



Reverse Engineering of Gene Regulatory Networks Current Genomics, 2015, Vol. 16, No. 1    15 

Table 1. Some available strategies and their representative methods for inferring regulatory networks from gene expression pro-

files. Their supporting websites and original publications are also shown. Some R packages (http://cran.r-project.org) for 

Bayesian learning and differential equation parameter identification are also shown. In each category, the methods are or-

dered alphabetically. 

Category Method Website Reference 

Correlation-based methods 

ANOVA http://www2.bio.ifi.lmu.de/˜kueffner/anova.tar.gz [155] 

ARACNE http://wiki.c2b2.columbia.edu/califanolab/ index.php/Software/ARACNE [56, 73] 

CLR http://cran.r-project.org/web/packages/parmigene [74] 

C3NET http://cran.r-project.org/web/packages/c3net/index.html [71] 

GLMNET http://cran.r-project.org/web/packages/glmnet/ [99, 100] 

grangerTlasso http://www.biostat.washington.edu/~ashojaie/ [103] 

MINET http://cran.r-project.org/web/packages/minet/ [76] 

MRNET http://penglab.janelia.org/proj/mRMR/ [75] 

ParCorA http://www.comp-sys-bio.org/software.html [88] 

PCA-CMI http://csb.shu.edu.cn/subweb/grn.htm [60] 

Relevance Network http://buttelab.stanford.edu/start [65, 70] 

Schafer and Strimmer http://strimmerlab.org/software.html [89] 

Simone http://cran.r-project.org/web/packages/simone/ [156] 

Stuart et al. http://cmgm.stanford.edu/~kimlab/multispecies/ [64] 

WGCNA http://labs.genetics.ucla.edu/horvath/ CoexpressionNetwork/Rpackages/ WGCNA [66, 68] 

Boolean network methods 

Akutsu et al. http://www.bic.kyoto-u.ac.jp/takutsu/members/takutsu/ [106, 109] 

Antelope http://turing.iimas.unam.mx:8080/AntelopeWEB/content/about.jsp [157] 

BoolNet http://cran.r-project.org/web/packages/BoolNet [158] 

BooleSim https://github.com/matthiasbock/BooleSim [159] 

Handorf and Klipp http://code.google.com/p/libscopes/wiki/Paper2011 [160] 

Modent http://acgt.cs.tau.ac.il/modent/ [161] 

REVEAL Not available [105] 

Shmulevich et al. http://shmulevich.systemsbiology.net/ [112, 113, 115] 

Bayesian network methods 

ARTIVA http://cran.r-project.org/web/packages/ARTIVA/index.html [162] 

BC3NET http://cran.r-project.org/web/packages/bc3net/index.html [151] 

Beal et al. http://www.cse.buffalo.edu/faculty/mbeal/ [125] 

BNFinder http://bioputer.mimuw.edu.pl/software/bnf [163] 

BNLEARN http://cran.r-project.org/web/packages/bnlearn [164] 

BNT http://code.google.com/p/bnt/ [120] 

Frideman et al. http://www.cs.huji.ac.il/labs/compbio/expression/ [117, 119] 

GeneNet http://cran.r-project.org/web/packages/GeneNet [83] 

G1DBN http://cran.r-project.org/web/packages/G1DBN/index.html [165] 

GlobalMIT https://code.google.com/p/globalmit [166] 

Module network http://ai.stanford.edu/~erans/module_nets/ [84] 

TESLA http://sailing.cs.cmu.edu/tesla/index.html [126] 

SSM http://www.chems.msu.edu/groups/chan/ssm.zip [167] 
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(Table 1) contd…. 

Category Method Website Reference 

Differential equation methods 

Chen et al. Not available [127] 

deSolve http://cran.r-project.org/web/packages/deSolve [168] 

D'haeseleer et al. Not available [95] 

D-NetWeaver https://cbim.urmc.rochester.edu/software/d-netweaver/ [128, 129] 

GRNInfer http://doc.aporc.org/wiki/Software [41] 

Inferelator http://bonneaulab.bio.nyu.edu/software.html [154] 

Tegner et al. http://www.bu.edu/bme/people/primary/collins/ [34, 36] 

TRNInfer http://www.sysbio.ac.cn/cb/chenlab/software.htm [153] 

Wahde and Hertz http://www.nbi.dk/~hertz/ [169] 

Knowledge-based methods 

Banjo http://www.cs.duke.edu/~amink/software/banjo [142] 

BNP http://research.bioe.bilgi.edu.tr/bnp/ [170] 

Greenfield et al. http://bonneaulab.bio.nyu.edu/software.html [171] 

Hill et al. http://mukherjeelab.nki.nl/DBN [172] 

Linear programming http://doc.aporc.org/wiki/Software [138] 

Liu et al. http://doc.aporc.org/wiki/Software [134] 

Network energy Not available [139, 143] 

Network Screening http://www.molprof.jp/~horimoto/ [144] 

PLASSO http://nba.uth.tmc.edu/homepage/liu/pLasso [173] 

Miscellaneous methods 

GENIE3 http://homepages.inf.ed.ac.uk/vhuynht/software.html [152] 

Neural network http://www.me.chalmers.se/~mwahde [174] 

Petri net http://dnagarden.hgc.jp/en/doku.php/software [175] 

Supervised learning http://cbio.ensmp.fr/sirene [176, 177] 

TIGRESS http://cbio.ensmp.fr/tigress [178] 

 
them into one of them. For instance, REVEAL also employs 
mutual information technique beyond Boolean network, so it 
can also belong to correlation-based methods. In (Table 1), 
some methods such as TRNInfer [153] and Inferelator [154] 
reconstruct the four levels of transcriptional regulatory rela-
tionships, while others such as PCA-CMI [60] and WGCNA 
[68] generally identify gene regulations without direction 
information. 

 After the emergence of high-throughput microarray tech-
niques, great efforts have been undertaken to infer transcrip-
tional regulatory networks from gene expression profiles. 
Because of the complexity of gene regulations, it is still a 
challenging task to infer genome-wide regulatory networks 
from expression data by mathematical modeling [179]. Vari-
ous computational methods have been proposed to interpret 
gene expression data and decipher the regulation mechanism 
of controlling gene expression. The reviewed methods are 
very useful for providing the quantitative models of harness-
ing the perturbation and time series of gene expression da-
tasets and identifying the causal relationship of transcrip-

tional regulations. In turn, the endeavors of coupling the reg-
ulatory interaction between genes imply the paramount im-
portance of gene regulations in the study of genomics and 
genetics. It is difficult to assess these methods and select the 
best one that supersedes all the others by defining some 
benchmark standards [23]. The details and assumptions in 
the modeling of real regulation systems as well as the gene 
expressions in specific conditions and phenotypes determine 
the superiority of each method. The simple model as Boole-
an network can reveal critical implications in transcriptional 
regulation systems [107]. 

 Besides the methods reviewed above, some other meth-
ods such as supervised learning [176, 177], feature selection 
[152, 178], neural network [174] and Petri net [175] methods 
have also been proposed to address the problem of learning 
transcriptional regulatory network from gene expression da-
ta. Most of these miscellaneous methods are heuristic for 
mining the relationship between genes from expression pro-
files. The availability next generation sequencing (NGS) 
technologies, e.g., RNA-Seq [180], can generate tran-
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scriptomic data of higher quality. Theoretically, these re-
viewed methods can be extended easily to reverse engineer-
ing transcriptional regulatory networks from RNA-Seq data. 
At the same time, identification of the causal regulatory 
mechanism of gene expression dynamics from gene expres-
sion data is constrained from the assumptions and approxi-
mations in the models. For instance, time delay between the 
activation of a TF and its downstream target genes widely 
exists in the regulatory relationships, which has not been 
well considered in the available methods [123, 181]. Also, 
the dynamics of regulation has not been modeled sufficient-
ly, i.e., the regulation strength between TF and targets are 
always time-varying with temporal features [126]. The re-
viewed methods can be extended to integrate these important 
regulatory features into the models of causal regulatory rela-
tionships between genes. The reverse engineering methods 
will become more and more sophisticated for modeling tran-
scriptional regulatory systems as comprehensively as possi-
ble. 

 Beyond utilizing gene expression data, an important re-
search direction in building transcriptional regulatory net-
work is to predict the interaction between TF protein and 
DNA by machine learning methods. Currently, one of the 
most important problems in the predictions is how to effec-
tively formulate a biological sequence with a discrete model 
or a vector, yet still keep considerable sequence order infor-
mation. All the existing operation engines, such as covari-
ance discriminant (CD) [182, 183], neural network [184], 
support vector machine (SVM) [185, 186], random forest 
[187], conditional random field [188], nearest neighbor (NN) 
[189]; OET-KNN [190], Fuzzy K-nearest neighbor [191, 
192], ML-KNN algorithm [193], and SLLE algorithm [183], 
can only handle vector but not sequence samples. However, 
a vector defined in a discrete model may completely lose all 
of the sequence-order information [194]. To avoid complete-
ly losing the sequence-order information for proteins, the 
pseudo amino acid composition or Chou’s PseAAC was pro-
posed [194, 195]. Ever since the concept of PseAAC was 
proposed in 2001 [194], the approach of representing pro-
tein/peptide sequences has been widely used in all the areas 
of computational genomics [196]. Moreover, the concept of 
PseKNC (Pseudo K-tuple Nucleotide Composition) was in-
troduced to deal with DNA/RNA sequences in computational 
genomics, such as for identifying nucleosome positioning 
[182] and predicting recombination spots [197]. The devel-
opment of PseAAC for protein sequences and PseKNC for 
DNA sequences will highly facilitate the prediction of tran-
scriptional regulatory interactions between TF protein and 
DNA only from sequence information [187, 198, 199]. 

 The challenges of reverse engineering are not only from 
the information availability, but also from the complexity of 
regulation system [200]. The measured gene expression lev-
els are not merely determined by the activity of its transcrip-
tional regulators. Post-transcriptional regulations (microRNA 
silencing [51]) as well as epigenetic modifications (DNA 
methylation [48] and histone modification [201]) on the gene 
sequences also highly affect the levels of gene expression. 
The sequential and combinatorial regulations of gene expres-
sion among epigenetic factors, TFs, microRNAs should be 
considered systematically in reverse engineering regulatory 
systems when these genomic datasets are available [202]. In 

the future, the heterogeneous regulatory system with multi-
ple genetic and epigenetic factors should be modeled to inte-
grate transcriptional and post-transcriptional regulations. The 
integration of genomics, transcriptomics, proteomics da-
tasets, such as ChIP-Seq, protein-binding motifs, gene ex-
pression, miRNA abundance, ratios of DNA methylation and 
chromatin modification, and prior knowledge of regulation, 
from multiple levels and various aspects of gene regulations 
provides a possible solution to reconstruct context-specific 
gene regulations [47]. The networks inferred from various 
levels can crossly validate each other for accurately identify-
ing gene regulations underlying the whole system. Further-
more, the contradicted identifications in these inferences 
should be analyzed carefully. They might be caused by the 
noisy datasets, unrevealed regulatory mechanisms, and spe-
cific phenotype associations. Reverse engineering of tran-
scriptional regulatory networks by integrating multiple da-
tasets is a very important research direction [41, 153]. Con-
sistent regulatory relationships at multiple levels shed a bril-
liant light on the gene expression dynamics in response to 
various internal signals and external stimuli. 

 In conclusion, a genome-wide inference of transcriptional 
regulatory networks from gene expression data provides a 
promising way to decipher the large-scale causal regulatory 
relationships among genes. Model-based computational 
methods of harnessing genomic data facilitate the discovery 
and revolutionize the research of gene regulation. We sum-
marized the advantages and commented on the improvement 
possibilities of addressing the disadvantages of these meth-
ods individually. The assumptions of modeling the spatial 
and temporal gene regulations will become more and more 
reasonable with the accumulation of knowledge about gene 
regulations. The models will also become more and more 
close to the real complexity of gene regulation when we ob-
tain better gene expression data with enough sample size and 
dedicated experiment design, multilevel biological process-
es, higher quality of expression signals, and systematic per-
spectives. Knowledge-based methods of integrating existing 
priori and gene expression seem to be powerful and flexible 
to decipher the genuine transcriptional control circuits in 
regulatory systems. 
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