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Abstract

Context: According to Nottingham grading system, mitosis count plays a 
critical role in cancer diagnosis and grading. Manual counting of mitosis is 
tedious and subject to considerable inter- and intra-reader variations.  Aims: 
The aim is to improve the accuracy of mitosis detection by selecting the color 
channels that better capture the statistical and morphological features, which 
classify mitosis from other objects. Materials and Methods: We propose a 
framework that includes comprehensive analysis of statistics and morphological 
features in selected channels of various color spaces that assist pathologists 
in mitosis detection. In candidate detection phase, we perform Laplacian of 
Gaussian, thresholding, morphology and active contour model on blue-ratio 
image to detect and segment candidates. In candidate classification phase, we 
extract a total of 143 features including morphological, first order and second 
order (texture) statistics features for each candidate in selected channels 
and finally classify using decision tree classifier. Results and Discussion: 
The proposed method has been evaluated on Mitosis Detection in Breast 
Cancer Histological Images (MITOS) dataset provided for an International 
Conference on Pattern Recognition 2012 contest and achieved 74% and 71% 
detection rate, 70% and 56% precision and 72% and 63% F-Measure on Aperio 
and Hamamatsu images, respectively. Conclusions and Future Work: The 
proposed multi-channel features computation scheme uses fixed image scale 
and extracts nuclei features in selected channels of various color spaces. 
This simple but robust model has proven to be highly efficient in capturing 
multi-channels statistical features for mitosis detection, during the MITOS 
international benchmark. Indeed, the mitosis detection of critical importance in 
cancer diagnosis is a very challenging visual task. In future work, we plan to use 
color deconvolution as preprocessing and Hough transform or local extrema 
based candidate detection in order to reduce the number of candidates in 
mitosis and non-mitosis classes.
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INTRODUCTION

Quantitative and qualitative assessment of biological 
objects in histopathological images plays a key role 
in breast cancer prognosis. According to Nottingham 
Grading System,[1] an international grading system 
for breast cancer recommended by the World Health 
Organization, mitosis count is one of the main factors 
in breast cancer grading. Indeed, mitotic count provides 
clues to estimate the proliferation and the aggressiveness 
of the tumor[2] being a critical step in histological grading 
of several types of cancers. In clinical practice, the 
pathologists count mitosis after a tedious microscopic 
examination of hematoxylin and eosin (H and E), stained 
slides at high magnification, usually ×40. The area visible 
in the microscope under a ×40 magnification lens is called 
a high power field (HPF). This mitotic counting process 
is cumbersome and often subject to sampling bias due to 
massive histological images. This results in considerable 
inter‑ and intra‑reader variation of up to 20% between 
central and institutional reviewers in tumor prognosis.[3]

In histopathological image analysis, mitosis detection is a 
difficult task having to cope with several challenges such 
as irregular shaped object, artifacts and unwanted objects 
due to the slide preparation and acquisition. Mitosis 
has four main phases (prophase, metaphase, anaphase 
and telophase) and each phase has a different shape 
and texture. It is also observed that artifacts produce 
objects, which look similar to mitosis. As a result, there 
is no simple way to detect mitosis based on shape and 
pixels values. However, the major problem is the very low 
density of mitosis in a single HPF. It is not unusual to 
have an HPF without any mitosis.

The state of the art indicates some interesting approaches, 
with some issues will be discussed and considered in our 
approach by next: Sertel et al., proposed a computer‑aided 
system using pixel‑level likelihood functions and 2‑step 
component‑based thresholding for mitosis counting 
in digitized images of neuroblastoma tissue slides 
and resulted in 81% of detection rate and 12% false 
positive (FP) rate.[4] Fuzzy c‑mean clustering algorithm 
along with the ultra‑erosion operation in Commission 
Internationale de l’Eclairage (CIE) Lab (CIE; 
L  =  luminance, a  =  red‑green axis, and b  = blue‑yellow) 
color space was used in detection of proliferative nuclei 
and mitosis index in immunohistochemistry images of 
meningioma.[5] Roullier et al., developed a multi‑resolution 
unsupervised clustering driven by domain specific 
knowledge that resulted in more than 70% sensitivity 
and 80% specificity.[6] Weyn et al., performed a limited 
study that explored the ability of wavelet, Haralick, 
and densitometric features to distinguish nuclei from 
low, intermediate and high breast cancer tissue.[7] The 
diagnostic importance of nuclei texture has been widely 
studied,[7‑9] yet recent work exploring nuclei classification 

of meningioma subtype in H and E images via analysis of 
nuclear texture has been limited to one color channel.[8] 
Irshad et al., proposed a texture features based framework 
using red green blue (RGB) color space[9] that resulted 
in 76% F‑measure on MITOS database.[10] Haralick 
features have been previously used in both nuclei and 
global textural analysis for classification of tumor grade in 
numerous cancers.[8,9]

In this study, we address some of the shortcomings in 
previous works, including (1) comprehensive analysis of 
second order statistical features like Haralick features, 
run length (RL) features in various color channels of 
different color spaces rather than a single color space,[4‑7] 
and (2) combining selective statistical features with 
morphological features in order to classify mitosis from 
other nuclei. The main novel contributions of this 
work are: (1) a robust multi‑channel statistical features 
computation of segmented nuclei in various color 
spaces and (2) nuclei features describing both nuclear 
morphology and texture that are able to quantify the 
difference in mitosis and non‑mitosis nuclei. The rest of 
the paper is organized as follows. Section 2 describes the 
proposed framework for mitosis detection. Experimental 
results are presented in section 3. Finally, the concluding 
remarks with future work are given in section 4.

MATERIALS AND METHODS

We propose multi‑channels statistical and morphological 
features combination strategy for mitosis detection in 
H and E, images. The aim is to improve the accuracy 
of mitosis detection by selecting the color channels that 
capture the discriminating features of mitosis from other 
objects. Three main stages are involved in the proposed 
methods as shown in Figure 1.

Color Channels Selection
Initially, we convert RGB images into other color 
spaces like hue saturation value (HSV) (more intuitive 
for human perception), Lab and Luv (uniform color 
separation) and investigate which color channel would 
better capture the pixels and texture information and 
discriminate the mitosis region from other nuclei and 
background. By doing histogram analysis of mitosis region 
and background in all channels of RGB, HSV, Lab and 
Luv color spaces, the selected channels are red (RGB), 
blue (RGB), V (HSV), L (Lab) and L (Luv).

Candidate Detection and Segmentation
In H and E stained images, nuclear and cytoplasm regions 
appear as hues of blue and purple while extracellular 
material have hues of pink. In order to reduce the 
complexities for integrating Laplacian of Gaussian (LoG) 
responses, the RGB images are transformed into a new 
image called blue ratio (BR) image to accentuate the 
nuclear dye.[11]
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where B, R and G are blue, red and green channel of 
RGB, respectively. On BR image, we compute LoG 
responses, which discriminate the nuclei region from the 
background, hence assisting in detection of candidate for 
mitosis. Then, we perform binary thresholding followed 
by morphological processing to eliminate too small 
regions and fill holes and later, we refine the boundaries 
of candidates’ using active contour model. Finally, 
we select candidates by filtering based on the size of 
candidates.

Feature Computation and Classification
For each candidate, we extract two sets of quantitative 
image features, which are morphological and statistical 
features. The five morphological features, computed 
from the mask of each segmented candidate, are area, 
roundness, elongation, perimeter and equivalent spherical 
perimeter. These morphological features reflect the 
phenotypic information of mitosis nuclei. Utilizing pixel 
intensity information of the selected color channels 
including BR image, we extract five first order statistical 
features including mean, median, variance, kurtosis and 
skewness of each segmented candidate. This resulted 
in 30 first order statistical features of candidates. 
Using mask from candidate segmentation, Haralick 
co‑occurrence (HC)[12] and RL[13] matrices are computed 
with 1 displacement vector in four directions (0°, 45°, 90°, 
135°) for all the selected channels. These texture features 
are rotationally invariant. So by making average in all four 
directions, the computed eight HC features and 10 RL 
features are given in Table 1, where g (i, j) is the element 
in cell i, j of a normalized HC and RL matrices, and µt 
and σt are the mean and standard deviation of the row 
and column sums, respectively. This task is repeated for 
each selected channels resulting in 48 HC features and 
60 RL for each candidate.

Conceptually, a large number of descriptive features are 
highly desirable for classification of nuclei as mitosis or 

non‑mitosis. However, we get poor classification results 
when using all extracted features (i.e., 143 features). By 
removing irrelevant and redundant features from the 
data, we can improve both the accuracy of classification 
and performance in terms of computational resource. 
Afterwards, we use consistency subset evaluation 
method[14] to select a subset of features that maximize 
the consistency in the class values. We evaluate the worth 
of subsets of features by the level of consistency in the 
class values using the projection of a subset of features 
from training dataset. The consistency of these subsets 
is not less than that of the full set of features. At last, 
we use these subsets in conjunction with a hill climbing 
search method augmented with backtracking value 5 
which looks for the smallest subset with consistency 
equal to that of the full set of features. This procedure 
achieves 86% reduction in the dimensionality of feature 
set, by selecting only 20 features. The selected features 
contained one morphological feature (equivalent spherical 
perimeter), eight first order statistical features (median 
in BR image, blue and L (Lab) channels, variance in 
BR image and blue channel, Kurtosis in red and blue 
channels, and skewness in the blue channel, five HC 
features (energy in BR image, difference moment in red 
and blue channels, cluster shade and hara‑correlation in 
V (HSV) channel) and six RL features (high grey level 
runs emphasis (HGRE) in BR image and red channel, low 
grey level runs emphasis (LGRE) in red, blue and L (Lab) 
channels and low run low grey level emphasis (LRLGE) 
in L (Luv) channel). The selected feature set is used 
to train decision trees (DT) classifier by specifying 
maximum depth = 10 and number of trees = 10.

RESULTS AND DISCUSSION

We evaluate the proposed framework on MITOS 
dataset,[10] a freely available mitosis dataset. A total of 
five H and E stained breast cancer biopsy cores from five 
patients were scanned using high‑resolution whole slide 
scanners (Aperio and Hamamatsu Systems) at ×40 optical 
magnification in the Pitié‑Salpêtrière Hospital in Paris, 

Figure 1: Framework for mitosis detection
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France. In each slide, the pathologists selected ten HPF. 
A total of 50 HPF images are selected from five whole 
slides. A HPF has a size of 512 µm2  ×  512 µm2 (that 
is an area of 0.262 mm2), which is the equivalent of a 
microscope field diameter of 0.58 mm. Each HPF has a 
digital resolution of 2084 × 2084 pixels. Two senior breast 
cancer oncologists from Pitié‑Salpêtrière hospital have 
provided the ground truth for spatial presence of mitosis 
nuclei. These 50 HPFs contain a total of 326 mitosis. 
The training and testing set consisted of 35 and 15 HPFs 
containing 226 and 100 mitosis, respectively. We 
applied candidate detection stage on all the training set 
images (Aperio and Hamamatsu) and considered those 
candidates as non‑mitosis, which was not mitosis. When 
we used this dataset for training the classifier, then most 
of the classifiers are biased toward non‑mitosis, which 
resulted high number of FPs. We applied synthetic 
minority over‑sampling technique[15] on training dataset 
to increase the number in mitosis class. In addition, 
down sampling was applied on non‑mitosis class, which 
resulted 30% reduction. Table 2 represents the number 
of mitosis and non‑mitosis in Aperio and Hamamatsu 

training set before and after sampling of the training set.

On the Aperio and Hamamatsu testing set, the candidate 
detection stage detects 6238 and 5720 candidates, 
containing 88 and 81 ground‑truth mitosis from a total of 
100 ground‑truth mitosis, respectively. Therefore, among the 
entire candidate mitosis there are 6150 and 5639 non‑mitosis 
in Aperio and Hamamatsu testing set, respectively. The 
candidate detection stage generates a large number of 
non‑mitosis and misses 12 and 19 ground‑truth mitosis 
from the Aperio and Hamamatsu testing set, respectively.

In candidate classification stage, we compare the results 
of these classification methods with ground‑truth 

Table 1:  A list of HC and RL features
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HC: Haralick co-occurrence, RL: Run-length, SRE: Short run emphasis, LRE: Long run emphasis, LGRE: Low grey level runs emphasis, HGRE: High grey level runs emphasis, SRLGE: 
Short run low grey level emphasis, SRHGE: Short run high grey level emphasis, LRLGE: Low run low grey level emphasis, LRHGE: Long run high grey level emphasis, GLNU: Grey 
level non-uniformity, RLNU: Run length non-uniformity

Table 2: Number of mitosis and non‑mitosis in 
the training set

Scanner Before sampling After sampling

Mitosis Non‑mitosis Mitosis Non‑mitosis

Aperio 226 16290 452 11400
Hamamatsu 226 14161 452 9912
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information provided along with the dataset. The metrics 
used to evaluate the mitosis detection of each method 
include: Number of true positives (TP), number of 
FPs, number of false negatives (FN), sensitivity or true 
positive rate, precision or positive predictive value and 
F‑Measure. We evaluate the ability of our multi‑channel 
statistical and morphological features based mitosis 
detection using DT classifier on Aperio and Hamamatsu 
images. A comparison of their classification results is 
presented in Table 3.

When we used all features including statistical and 
morphological with DT classifier, we get very few FPs 
but also not so many TP. As compared with Hamamatsu 
testing set, the experiments on Aperio testing set 
result in better performances in terms of less TP and 
FP as well. Although this paper focuses on combining 
statistical features from different color channels, the 
ability to integrate morphology of nuclei with selective 
statistical features at various color channels is also 
important for mitosis classification. By selecting features 
from a set of statistical and morphological features, 
we improve the classification accuracy and reduce the 
number of FP. By selecting morphological and statistical 
features in selective channels, we achieve higher mitosis 
detection rates and F‑Measure in Aperio images as 
compared to Hamamatsu images. Figure 2 shows 
examples of a detected (green color), undetected (blue 
circle) and mistakenly detected mitosis (yellow) using 
selective statistical and morphological features with DT 
classifier.

CONCLUSION AND FUTURE WORK

An automated mitosis detection framework for 
H and E, images based on different multi‑channel 
statistical features with morphological features has been 
proposed. The candidate detection stage represents 
detection of candidate mitosis using thresholding and 
morphological processing in BR image. Specifically, our 
multi‑channel features computation scheme uses fixed 
image scale and extracts nuclei features in different 
color channels, a highly efficient model for capturing 
texture features for nuclei classification. In future work, 
we plan to use color deconvolution as pre‑processing 

and Hough transform or local extrema based candidate 
detection in order to reduce the number of candidates 
in mitosis and non‑mitosis classes. We also plan to 
investigate other model‑based features computation for 
mitosis detection.
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Table 3: Classification results (GT=100)

Experiments TP FP FN TPR % PPV % F‑measure %

Experiment 1: Aperio images and DT classifier
All features 52 20 48 52 72 60
Selected features 74 32 26 74 70 72

Experiment 2: Hamamatsu images and DT classifier
All features 44 25 57 44 64 52
Selected features 71 56 29 71 56 63

GT: Ground truth, DT: Decision trees, TP:  True positives, FP: False positives, TPR: True positive rate, PPV: Positive predictive value, FN: False negatives

Figure 2: Visual results of mitosis detection framework in Aperio 
and Hamamatsu images. Green region true positives,  yellow region 
false positives and blue circle false negatives
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