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Abstract: The present paper focuses on the fabrication of coatings based on vinyltrimethoxysilane
and the influence of various corrosion media on the coatings produced. Coatings were deposited
on two substrate materials, namely, titanium Grade 2 and titanium alloy Ti13Nb13Zr, by immersion
in a solution containing vinyltrimethoxysilane, anhydrous ethyl alcohol, acetic acid and distilled
water. The obtained coatings were characterized in terms of surface morphology, adhesion to the
substrate and corrosion resistance. As corrosion solutions, four different simulated physiological
fluids, which differed in the contents of individual ions, and a 1 mol dm−3 NaBr solution were used.
The chloride ions contained in the simulated physiological fluids did not lead to pitting corrosion of
titanium Grade 2 and titanium alloy Ti13Nb13Zr. This investigation shows that titanium undergoes
pitting corrosion in a bromide ion medium. It is demonstrated that the investigated coatings slow
down corrosion processes in all corrosion media examined.

Keywords: biomaterials; surface modification; silane coatings; corrosion resistance; simulated
body fluids

1. Introduction

Titanium is a metallic material which is used in many branches of industry [1]. Tita-
nium alloys are used mainly in aviation, motorization and biomedical engineering [2]. The
use of titanium alloys, for instance, in aviation is associated with their valuable proper-
ties that make them stand out against other alloys, e.g., aluminum alloys. An extremely
valuable feature of titanium alloys from the point of view of the requirements imposed
on materials to be used in the aircraft industry is the combination of corrosion resistance,
strength, weight and high-temperature stability [3]. Owing to their high biocompatibility,
low specific gravity, low elasticity module and good corrosion resistance, titanium and
its alloys are used in implantology to substitute for hard tissues [4–9]. Until recently, the
titanium alloy most commonly used for medical purposes has been a titanium alloy with
the addition of aluminum and vanadium—Ti6Al4V [10]. However, studies carried out in
recent years have shown that both aluminum and vanadium exert a negative influence on
the host’s body [11,12]. In medical applications, titanium alloys containing chiefly elements
that are nontoxic and with no allergenic effect, such as niobium, zirconium, tantalum,
molybdenum or tin, are being used more and more often [6,10]. Among the main problems
involved with the use of metallic materials in implantology, the insufficient corrosion
resistance of metals and their alloys is primarily indicated [13–15]. The common methods
employed in corrosion protection include silanization—a modification of the surface with a
silane-based solution [16,17]. Silanes are most commonly used as either coupling agents or
crosslinkers [18]. The bonding between the organic silane agent and the inorganic substrate
involves the following steps: (i) hydrolysis of the oxide groups of the metallic substrate and
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the silane coating to form metal hydroxide and silanol; (ii) formation of a hydrogen bond
between the metal and silane hydroxyl groups; (iii) condensation of the bonded hydroxyl
groups on the substrate and coating surfaces—a Si-O-Me covalent bond is created and
the water molecule is released; (iv) condensation of the silane hydroxyl groups—a Si-O-Si
siloxane bond is formed and the water molecule is released [13,19]. Among the methods
used for depositing coatings on metallic surfaces, electrochemical, chemical and sol–gel
methods are distinguished [20]. Notably, the sol–gel method has received special recog-
nition, which is distinguished by a number of advantages [21]. The process of producing
materials using the sol–gel method is repeatable, and the process temperature is close to
room temperature. A feature that makes the sol–gel method stand out from other methods
is also the low cost of its application—it requires no costly apparatus to be used. Among
other advantages, one can highlight the ability to produce coatings composed of many
components, whose chemical composition is precisely defined, as well as the possibility
of producing hybrid materials. Thanks to the use of the sol–gel method, new materials
based on silicon can be fabricated [22–24]. The sol–gel process consists in the creation of an
oxide network as a result of the processing reaction of the condensation of precursors in a
liquid medium [20,25]. In the sol–gel process, the hydrolysis and coagulation of precursors
take place, resulting in the formation of a sol. Then, the prepared sol is applied to the
material by immersing it in the solution. The application of the sol on the material surface
is followed by the evaporation of the solvent used for producing the sol, or gelation [21].
After being gelated, the coating can also be cured in a stove.

The purpose of the present study was to produce vinyltrimethoxysilane-based coatings
on the substrates of titanium Grade 2 and titanium alloy Ti13Nb13Zr, with the aim of
improving their anticorrosive properties for implantology applications. Creating a totally
ideal medium rendering the environment occurring in the human body is impossible;
however, for the purposes of electrochemical studies aimed at improving the functional
properties of implantable biomaterials, simulated physiological solutions are used, which,
to the highest possible degree, reflect the human body’s environments [10]. From the
chemical point of view, body fluids are electrolytes that differ in their concentrations of
potassium, sodium and calcium cations, and chloride and hydrogencarbonate anions.

2. Materials and Methods

All reagents used were analytically pure. For the production of the coating,
vinyltrimethoxysilane (VTMS) supplied by Sigma Aldrich (St. Louis, MO, USA) anhy-
drous ethanol (EtOH) from Chempur (Piekary Slaskie, Poland) acetic acid (AcOH) from
Chempur and distilled water were used. The volumetric VTMS:EtOH:AcOH:H2O ratio
of the obtained coating was 0.6:0.2:0.06:0.14. The total volume of the solution was 10 cm3,
while the concentration of VTMS was 3.92 mol dm−3. The prepared solution was agi-
tated on a magnetic stirrer for 48 hours at a rotational speed of 1000–1500 rpm at room
temperature [26].

The solution was applied onto the titanium Grade 2 and titanium alloy Ti13Nb13Zr
substrates. The chemical composition of titanium Grade 2 is as follows: Fe—maximum
0.3; O—maximum 0.25; C—maximum 0.08; N—maximum 0.03; H—maximum 0.015;
Ti—balanced. Titanium alloy Ti13Nb13Zr has the following chemical composition: Fe—
maximum 0.25; O—maximum 0.15; C—maximum 0.08; N—maximum 0.05; H—maximum
0.012; Nb—12.5–14.0; Zr—12.5–14.0; Ti—balanced. For electrochemical tests, samples
in the form of 5 mm-diameter cylinders were prepared, which were set in polymethyl
methacrylate frames using epoxy resin. Prior to the coating application, each sample was
mechanically wet polished using abrasive papers with a grit size of up to 2000. After
polishing, all samples were rinsed with distilled water and degreased with acetone. The
prepared solution was applied to the prepared samples using the dip coating method. The
sample immersion time was 20 min, after which the samples were taken out of the solution,
with the excess solution being removed with filter paper. Then, the samples were placed in
a desiccator to be thoroughly dried.
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Coated samples were analyzed in a 1 mol dm−3 NaBr solution that causes pitting
corrosion of titanium and its alloys, and in simulated physiological fluids: (i) Ringer’s
fluid, (ii) Hank’s fluid, (iii) simulated body fluid and (iv) artificial saliva. The chemical
composition of the physiological fluids is shown in Table 1.

Table 1. Chemical composition of physiological fluids.

Ringer’s
Fluid [10]

Hank’s
Fluid [27]

Simulated
Body Fluid [28]

Artificial Saliva
Solution [29]

NaCl 8.6 g dm−3 8 g dm−3 8.035 g dm−3 0.4 g dm−3

KCl 0.3 g dm−3 0.4 g dm−3 0.225 g dm−3 0.4 g dm−3

CaCl2 0.243 g dm−3 0.14 g dm−3 0.292 g dm−3 0.6 g dm−3

NaHCO3 – 0.35 g dm−3 0.355 g dm−3 –
KH2PO4 – 0.06 g dm−3 – –

MgCl2·6H2O – 0.1 g dm−3 0.311 g dm−3 –
Na2HPO4·2H2O – 0.06 g dm−3 – –

MgSO4·7H2O – 0.06 g dm−3 – –
K2HPO4·3H2O – – 0.231 g dm−3 –

Na2SO4 – – 0.072 g dm−3 –
((HOCH2)3CNH2) – – 6.118 g dm−3 –
HCl (1 mol dm−3) – – 39 ml dm−3 –
NaH2PO4·2H2O – – – 0.26 g dm−3

KSCN – – – 0.3 g dm−3

Na2S·9H2O – – – 0.005 g dm−3

urea – – – 1 g dm−3

Microstructural examination was carried out with a KEYENCE VHX 7000 digital
microscope (Keyence, Mechelen, Belgium) and an Olympus GX41 optical microscope
(Olympus, Tokyo, Japan). Profilometric examination was conducted with a SENSOFAR
profilometer (Sensofar, Barcelona, Spain). The topography of the coatings and their compo-
sition were analyzed using a JEOL JSM-6610 LV scanning electron microscope with an EDS
X-ray microanalyzer (Jeol, Tokyo, Japan). The characteristics of the coatings were examined
with the use of an IRAffinity—1S FTIR SHIMADZU (Kyoto, Japan) spectrophotometer.
The adhesion of the coatings to the substrate was tested by the pull-off method, using
ScotchTM adhesive tape (ScotchTM Brand, St. Paul, MN, USA). The test involved a sequence
of sticking the tape on and then pulling it off the test sample 5 times.

The corrosion behaviors of the biomaterials are shown with potentiodynamic and
chronoamperometric curves. Measurements were taken using a CH Instruments
660 measuring station (CH Instruments, Austin, TX, USA) comprising three electrodes:
(i) working electrode—the selected titanium substrate; (ii) auxiliary electrode—a platinum
electrode; and (iii) reference electrode—a calomel electrode. A potential range from −1.5 to
+3.0 V was used for each sample. Potentials were measured with respect to the saturated
calomel electrode (SCE).

3. Results and Discussion
3.1. Characterization of the VTMS Coating

After producing the coatings, a morphology analysis was performed both on the
titanium Grade 2 substrate (A) and on the titanium alloy Ti13Nb13Zr substrate (B), as
shown in Figure 1. The structure of the metal substrate visible in the photographs is
indicative of the transparency of the coating produced. An important asset of the coating
is its homogeneity, as well as the absence of cracks and discontinuities on its surface.
Moreover, the coating surface is characterized by high gloss.
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Figure 1. Structure of the VTMS coating on the Ti Gr 2 (A) and Ti13Nb13Zr (B) substrates. Photos
were taken with a KEYENCE VHX digital microscope.

Figure 2 shows the surface of a coating deposited on titanium Grade 2 (A) and titanium
alloy Ti13Nb13Zr (B). The photographs confirm that the applied coating uniformly covers
the entire surface of the substrate. Furthermore, no significant differences in coating
thickness were noticed on the coated surface. The surface of the VTMS coating deposited
on both materials was smooth, uniform and compact.
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Figure 2. VTMS coating on the Ti Gr 2 (A) and Ti13Nb13Zr (B) substrates. Photos were taken with a
JEOL JSM-6610 LV scanning electron microscope.

3.2. Thickness and Surface Roughness of the VTMS Coating

Figure 3 shows the cross-section of the produced coating deposited on titanium Grade
2 (A) and titanium alloy Ti13Nb13Zr (B). The presence of the coating was confirmed on the
entire sample surface. The thickness of the coating, measured in different locations on the
surface, ranged from 10 to 14 µm.

Figure 4 illustrates the profile of the obtained VTMS coating deposited on titanium
alloy Ti13Nb13Zr (A) and the uncoated substrate (B). The recorded profile shows that the
coating uniformly covers the surface of titanium alloy Ti13Nb13Zr. Both the photographs
and the profile confirm that the coating is free of any cracking and its surface roughness is
negligible (0.26 µm), which is a huge asset from the point of view of the corrosion resistance
of biomaterials. The coating thickness, as measured on the profile base, is about 10 µm.
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Figure 4. Profile of the VTMS coating (A) deposited on titanium alloy Ti13Nb13Zr in relation to the substrate without the
coating (B), recorded with a SENSOFAR profilometer.

In addition, the coat thicknesses were measured using a DT-20 AN 120 157 m (ANTI-
CORR, Gdansk, Poland). Taking into consideration the two substrate materials, recorded
thickness values ranged from 9.5 to 16.7 µm, which was also confirmed by examination
conducted with a scanning electron microscope and a profilometer.
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3.3. Chemical Composition of the VTMS Coating

The chemical composition of the produced coating was analyzed with a scanning elec-
tron microscope equipped with an EDS-type X-ray microanalyzer. The chemical analysis of
the coating revealed the presence of silicon (Si) in the amount of 27.9 wt%. For comparison
purposes, the chemical analysis also took into account carbon and oxygen, the contents of
which were 41.3 and 30.8 wt%, respectively.

3.4. Characterization of the Structure of the VTMS Coating

The structures of the coatings deposited on titanium Grade 2 and titanium alloy
Ti13Nb13Zr were analyzed using Fourier transform infrared spectroscopy (FTIR). Figure 5
shows FTIR spectra obtained for the VTMS coating on the titanium Grade 2 (a) and
titanium alloy Ti13Nb13Zr (b) substrates. For both substrate materials, peaks occur at
identical wavenumber values; the only difference shows up in their absorbance. The
spectra of the VTMS coating show characteristic C-H stretching bands for the following
wavenumbers: 3028, 2951 and 2844 cm−1 [30]. Bands recorded at the wavenumbers
1597 and 1408 cm−1 relate to the non-conjugate C=C bond. The peak revealed for the
wavenumber 1275 cm−1 occurs due to the bending of the C-H bond [31]. The bands
occurring in the range 975–1200 cm−1 are most likely associated with the stretching of the
Si-O bond in the Si-O-Si or Si-O-C group [30,32]. As for the peak recorded at 961 cm−1,
it indicates the stretching of either Si-O or Si-O-C in the Si-O-CH3 group [31]. The band
occurring for the wavenumber 888 cm−1 is likely to originate from the Si-O-Ti bond [33].
The spectrum considered in [30] suggests that the peak recorded for the wavenumber
748 cm−1 may be associated with the C-H bond. In turn, the bands for wavenumbers from
400 to 700 cm−1 most probably originate from the stretching vibration band of Ti-O-Ti [33].
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3.5. Adhesion of the VTMS Coating to the Substrate

The use of ScotchTM adhesive tape enabled an assessment of the adhesion of the VTMS
coating to the substrate. Both on the Ti Gr2 substrate and on the Ti13Nb13Zr substrate, the
coating exhibited very good adhesion to the substrate.

3.6. Corrosion Resistance Tests in a Bromide Ion Medium

For the VTMS coatings deposited on the Ti Gr 2 and Ti13Nb13Zr substrates, and
for the same samples with no coating (model samples), potentiodynamic polarization
curves were recorded in the potential range from −1.5 to +3.0 V in a 1 mol dm−3 NaBr
solution. Figure 6 shows curves recorded for Ti Gr 2, while Figure 7 shows curves obtained
for Ti13Nb13Zr. The recorded potentiodynamic curves confirm that the VTMS coating
provides anodic and barrier protection for both the Ti Gr 2 and Ti13Nb13Zr substrates. The
corrosion potential of the coating for both titanium Grade 2 and titanium alloy Ti13Nb13Zr
shifts by approximately 0.53 V towards positive values. The recorded graphs show that
titanium alloy Ti13Nb13Zr is characterized by greater corrosion resistance, as the corrosion
potential of the uncoated titanium alloy Ti13Nb13Zr is −0.64 V, whereas that of Grade 2 is
−1.13 V. When analyzing the samples covered with the VTMS coating, it can be noticed
that the corrosion potential of titanium alloy Ti13Nb13Zr is −0.11 V, while that of Grade 2
is −0.60 V. Moreover, for both substrate materials, a reduction in cathodic current densities
by two orders of magnitude and anodic current densities by three orders of magnitude
occurred.
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Figure 6. Potentiodynamic polarization curves analyzed in 1 mol dm−3 NaBr solution for Ti Gr 2
with the microstructure of the uncoated substrate (A) and substrate after removing the VTMS coating
(B,C) after corrosion tests. A and B were taken with the GX41 Olympus optical microscope, whereas
C was taken with a JEOL JSM- 6610 LV scanning electron microscope.
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Figure 7. Potentiodynamic polarization curves analyzed in 1 mol dm−3 NaBr solution for Ti13Nb13Zr
with the microstructure of the uncoated substrate (A) and substrate after removing the VTMS coating
(B,C) after corrosion tests. A and B were taken with the GX41 Olympus optical microscope, whereas
C was taken with a JEOL JSM-6610 LV scanning electron microscope.

The analyses of the structure and the potentiodynamic polarization curves confirm
that both titanium Grade 2 and titanium alloy Ti13Nb13Zr not covered with a coating
underwent pitting corrosion. The applied VTMS coating provided protection for titanium
Grade 2 and titanium alloy Ti13Nb13Zr against pitting corrosion. To verify the resistance
of the coating to pitting corrosion, the chronoamperometric method was employed. This
method consists in recording variations in current density as a function of time after
applying a potential to the working electrode. The pitting initiation potential, as seen in
Figure 6, was +1.7 V. The measurements were performed in a 1 mol dm−3 NaBr solution.
The recorded chronoamperometric curves are shown in Figure 8. It follows from the
analysis of the chronoamperometric curves that the produced coating provided excellent
corrosion protection to the substrate, as the current density stayed at a constant level for
about 12 days. No pitting corrosion was observed during that time.

3.7. Corrosion Resistance Tests in a Chloride Ion Medium

For each coating, potentiodynamic curves were recorded in the potential range from
−1.5 to +3.0 V in corrosion media simulating physiological fluids. Each of the solutions
had a different chloride ion concentration. The tests were conducted in several solutions
to consider the behavior of the coatings in the presence of different ions occurring in
the human body. Thanks to this, a broad view of the influence of cations and anions
on the produced coating was acquired. The composition of Ringer’s solution included
the cations of sodium, potassium and calcium, and chloride anions. The composition of
Hank’s fluid was extended by the presence of magnesium cations and hydrogencarbonate
[HCO3

−], dihydrogenphosphate (V) [H2PO4
−], hydrogenphosphate (V) [HPO4

2−] and
sulphate (VI) [SO4

2−] anions. As compared with Ringer’s solution, the composition of
artificial saliva was extended by the dihydrogenphosphate (V) anion and the sulphate
anion, as well as by components such as potassium rhodanate and urea. The solution that
is most commonly used in electrochemical tests and, at the same time, contains the highest
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concentration of chloride ions and the broadest spectrum of components is simulated body
fluid (SBF). In addition to the ions contained in Ringer’s solution, it contains magnesium
cations and hydrogencarbonate, hydrogenphosphate (V) and sulphate (VI) anions, but it is
also distinguished by the presence of tris(hydroxymethyl)aminomethane and hydrogen
chloride.

Table 2 shows the corrosion solutions used while considering the concentrations of
chloride ions that they contain.Materials 2021, 14, x FOR PEER REVIEW 9 of 14 
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Table 2. Chloride ion concentration in individual simulated body fluids.

Corrosive
solution

Ringer’s
Solution

Hank’s
Solution

Simulated
Body Fluid

Artificial Saliva
Solution

Concentration
of chloride ions 0.16 mol dm−3 0.15 mol dm−3 0.19 mol dm−3 0.02 mol dm−3

Figure 9 illustrates the corrosion behaviors of the VTMS coating on the titanium Grade
2 substrate, whereas Figure 10 depicts the corrosion behavior of the same coating on the
titanium alloy Ti13Nb13Zr substrate, as dependent on the corrosion solution used. Despite
the presence of chloride ions in the corrosion solutions, no pitting corrosion was found. The
best shift in corrosion potential was obtained for the coating measured in the artificial saliva
solution; however, the artificial saliva contained the lowest chloride ion concentration, as
compared to the other solutions. The smallest shift in corrosion potential was obtained
for the coating deposited on titanium Grade 2 and titanium alloy Ti13Nb13Zr, measured
in Hank’s solution. In view of the above, the values of the corrosion potential shift were
determined for the coating in the artificial saliva solution as compared to Hank’s solution.
On the titanium Grade 2 substrate, a shift in corrosion potential by +1.23 V occurred,
whereas on the titanium alloy Ti13Nb13Zr substrate, the corrosion potential was shifted by
+1.09 V. The greatest reduction in current densities, both anodic and cathodic, was obtained
for a sample with the coating deposited on titanium Grade 2 analyzed in Ringer’s solution,
while the smallest was obtained for a sample in Hank’s solution. In the case of titanium
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alloy Ti13Nb13Zr, the greatest reduction in cathodic current densities was obtained for a
sample analyzed in Ringer’s solution, while that of anodic current densities was obtained
for a sample examined in the artificial saliva solution. Considering it contained the highest
concentration of chloride ions, the best results were obtained for the simulated body fluid.
Figure 11 depicts the structure of the titanium Grade 2 substrate (after the removal of
the coating) upon completion of corrosion tests in the simulated physiological fluid. The
photographs confirm that no pitting corrosion of the metal substrate occurred.
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4. Conclusions

Coatings based on vinyltrimethoxysilane were produced on the substrates of titanium
Grade 2 and titanium alloy Ti13Nb13Zr using the sol-gel method. The dip coating method
was employed for their application on the substrate surface. The concentration of the main
component of the coatings—vinyltrimethoxysilane—was 3.92 mol dm−3.

The investigation carried out and the analysis conducted allow us to draw the follow-
ing practical conclusions:

• The application of vinyltrimethoxysilane on titanium Grade 2 and titanium alloy
Ti13Nb13Zr substrates resulted in the formation of highly adhesive coatings which
protected the material against corrosion in various media.

• The obtained coatings did not show any cracks and discontinuities and were
homogeneous.

• The coating produced by the sol–gel method uniformly covered the substrate surface
and did not show large differences in thickness. The thickness of the obtained coating
ranged from 9.5 to 16.7 µm.

• The performed examination showed a low degree of surface roughness of the obtained
coating, which makes it extremely attractive from the point of view of corrosion
resistance. Too high a surface roughness of coatings favors the development of pitting
corrosion on the surface of biomaterials, especially in hollows or depressions where
the coating is the thinnest.

• FTIR spectroscopy revealed the following bonds to be present in the coating: C-H,
C=C, Si-O, Si-O-C, Si-O-Ti and Ti-O-Ti.

• Corrosion resistance tests were carried out in a solution containing bromide ions, as
well as in simulated physiological solutions in the presence of chloride ions. As shown
by the investigation, the VTMS coatings applied to the substrates of titanium Grade 2
and titanium alloy Ti13Nb13Zr offered corrosion protection.

• The vinyltrimethoxysilane-based coatings stabilized the corrosion potential within the
passive state (anodic protection) and provided barrier protection.
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• Corrosion tests carried out in a sodium bromide solution showed no pitting corrosion.
• The recorded chronoamperometric curves confirmed the resistance of the coating to

pitting corrosion. Tests carried out in simulated physiological solutions demonstrated
that the vinyltrimethoxysilane-based coating produced by the sol–gel method, as pro-
posed in this paper, significantly enhanced the corrosion resistance of the investigated
materials, which confirms its effectiveness and potential for being applied in medicine,
for example, in implantology.

• Based on the obtained results of tests for, among others, surface roughness and
corrosion resistance, it can be stated that VTMS coatings can be used for covering knee
or hip implants.
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