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Many sounds of ecological importance, such as communication calls, are characterized by
time-varying spectra. However, most neuromorphic auditory models to date have focused
on distinguishing mainly static patterns, under the assumption that dynamic patterns can
be learned as sequences of static ones. In contrast, the emergence of dynamic feature
sensitivity through exposure to formative stimuli has been recently modeled in a network of
spiking neurons based on the thalamo-cortical architecture.The proposed network models
the effect of lateral and recurrent connections between cortical layers, distance-dependent
axonal transmission delays, and learning in the form of Spike Timing Dependent Plastic-
ity (STDP), which effects stimulus-driven changes in the pattern of network connectivity.
In this paper we demonstrate how these principles can be efficiently implemented in
neuromorphic hardware. In doing so we address two principle problems in the design of
neuromorphic systems: real-time event-based asynchronous communication in multi-chip
systems, and the realization in hybrid analog/digital VLSI technology of neural computa-
tional principles that we propose underlie plasticity in neural processing of dynamic stimuli.
The result is a hardware neural network that learns in real-time and shows preferential
responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The
availability of hardware on which the model can be implemented, makes this a significant
step toward the development of adaptive, neurobiologically plausible, spike-based, artificial
sensory systems.
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1. INTRODUCTION
Hardware implementations of neuromorphic systems (Indiveri
and Horiuchi, 2011) have been successfully used in the past
to implement and characterize biophysically realistic models of
the early sensory processing stages both for the visual domain
(Koch and Mathur, 1996; Liu, 1999; Barbaro et al., 2002; Kramer,
2002; Culurciello et al., 2003; Lichtsteiner et al., 2006; Zaghloul
and Boahen, 2006; Leñero-Bardallo et al., 2010), and the audi-
tory domain (Watts et al., 1992; Toumazou et al., 1994; van
Schaik et al., 1996; Fragnière et al., 1997; van Schaik and Med-
dis, 1999; Wen and Boahen, 2006; Chan et al., 2007; Abdalla and
Horiuchi, 2008). These systems were typically implemented as
single Very Large Scale Integration (VLSI) devices (e.g., as sili-
con retinas, or silicon cochleas), comprising hybrid analog/digital
circuits that faithfully reproduced in real-time the bio-physics
of the neural sensory systems they modeled. The definition of
an event (spike) based communication protocol based on the
Address Event Representation (AER; Deiss et al., 1999; Boahen,
2000) has led to the development of a new generation of more
complex multi-chip neuromorphic sensory systems (Liu et al.,
2001; Choi et al., 2005; Chicca et al., 2007; Folowosele et al.,

2008; Serrano-Gotarredona et al., 2009). However, while it is now
possible to build hardware sensory systems that can react to audi-
tory and visual stimuli, and eventually drive robotic actuators in
real-time (see for example the exciting projects being developed
at the Telluride1 and Capo Caccia Neuromorphic Engineering
workshops2, it still remains a challenge to build real-time sen-
sory processing systems that can learn about the nature of their
input stimuli and perform cognitive tasks, using spikes and spiking
neural networks.

There are two main bottlenecks that have been hindering
progress in this area: one has to do with the practical difficul-
ties of linking real-time asynchronous neuromorphic devices to
each-other to build complex multi-chip systems; and the other is
related to the theoretical and computational challenges in inte-
grating and extracting information from the time-varying signals
representing inputs, outputs, and internal state variables, in these
types of systems.

1http://ine-web.org/workshops/workshops-overview
2http://cne.ini.uzh.ch/capocaccia08/
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The first problem, that of developing real-time interfaces
between the different AER chips to create complex multi-chip
systems, is currently being addressed by developing both custom
real-time hardware solutions (Gomez-Rodriguez et al., 2006; Fas-
nacht et al., 2008; Hofstaetter et al., 2010; Jin et al., 2010; Fasnacht
and Indiveri, 2011; Scholze et al., 2011), as well as software solu-
tions, and principled systematic methods for configuring network
structures and system parameters (Davison et al., 2008; Neftci et al.,
2011, 2012; Sheik et al., 2011).

The second problem is more fundamental. There is, in general,
agreement that cells in primary sensory areas are typically charac-
terized in terms of tuning to particular spectro-temporal features3.
It is not, however, clear what features are encoded, or what neural
mechanisms underlie those feature selectivities, or what devel-
opmental processes lead to the formation of those mechanisms.
Although pursuing these questions has led to remarkable advances
in understanding visual processing in the brain, a corresponding
understanding of auditory processing is still lacking.

Here we present a multi-chip neuromorphic system in which
silicon neurons (Indiveri et al., 2011) dynamically adapt and learn,
forming feature tuning properties that are derived from spectro-
temporal correlations in their input spike trains. The auditory
domain was chosen as the focus for the experiments, where the
importance of dynamic spectro-temporal patterns in the commu-
nication calls of mammals and birds has motivated the study of
cortical sensitivity to frequency sweeps (Godey et al., 2005; Atencio
et al., 2007; Ye et al., 2010) and dynamic ripple noises (Kowalski
et al., 1996; Calhoun and Schreiner, 1998; Depireux et al., 2001;

3As we are addressing auditory stimuli where the spatial dimension is tonotopic we
use the term“spectro-temporal” throughout. This is equivalent to“spatio-temporal”
in other modalities.

Atencio and Schreiner, 2010) as candidates for constituent features
which are sufficiently simple to be parametrized.

The multi-chip neuromorphic system implements a neural net-
work model of the auditory thalamo-cortical system similar to
that described in Coath et al. (2011). We demonstrate that this
system can learn, when repeatedly presented with a specific stimu-
lus, to exhibit a preferential response to such a stimulus. We argue
that the functional principles of this neural network, and of the
thalamo-cortical model (Coath et al., 2011) it is derived from, can
be used to produce spike-based feature extractors and that these
could form the basis of artificial sensory systems using real-time
analog neuromorphic VLSI.

2. MATERIALS AND METHODS
2.1. NETWORK MODEL
The structure of the neural network implemented in hardware is
shown in Figure 1. It comprises three populations of neurons, one
A population and two B populations (B1 and B2), arranged tono-
topically. The A neurons are implemented in software and provide
spikes that represent the input auditory signals.

Each A neuron projects to a B1 and a B2 neuron via excitatory
synapses, the B1 neurons project to B2 neurons via inhibitory
synapses, and the B1 neurons project, via the intermediate C
population, onto their neighboring B2 neurons. The C neurons
implement the propagation delays as described in Section 2.3
and the C to B2 projections are mediated by excitatory plas-
tic synapses which are the loci of the Spike Timing Dependent
Plasticity (STDP) as described in Section 2.4.

The propagation delays (that is the time it takes for a spike
to travel from B1 to reach B2) are proportional to the tono-
topic distance between pre-synaptic and post-synaptic neurons
(see Figure 4). The plastic synapses from C to B2 perform the

FIGURE 1 | Neural network diagram, with one column highlighted

and two neighboring ones in gray, included to indicate lateral

connections. Circles represent neurons from neuronal populations A, B1,
B1, and C. Auditory input signals are produced by the tonotopically
arranged neurons in populations A (implemented in software). The spikes

produced by A are projected onto both populations B1 and B2. Neurons in
B2 also receive inhibitory inputs from B1 neurons, as well as recurrent
excitation from B1 neurons of neighboring units via delay neurons C, and
STDP synapses. The output of the network is represented by the activity
of population B2.
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key task of learning the temporal correlations in the time-varying
stimulus.

When neurons in population A spike, they produce Excita-
tory Post-Synaptic Potential (EPSPs) in the B populations. The
synapses from A to B1 neurons have slightly higher weights than
those that project to the B2 neurons. Therefore, in spite of being
driven by the same A activity, B1 neurons spike slightly before B2

ones. The inhibitory projections are used to ensure that B2 neurons
remain silent as long as the delayed projections are not potenti-
ated. When a stimulus, the (exposure stimulus (ES)), is presented
repeatedly to the network, the B1 neurons fire stereotypically, fol-
lowing the input from A neurons. The delayed feedback reaches
B2 neurons at different times after stimulus onset. The correla-
tion between this delayed feedback and the membrane potential
of B2 neurons causes the plastic synapses to potentiate or depress.
When a pre-synaptic spike reaches the post-synaptic neuron while
its membrane is close to its firing threshold, the synapse is poten-
tiated, otherwise the synapse is depressed. The details of the STDP
update rule are explained in Section 2.4.

Once the network has learned the ES, the output current of the
potentiated STDP synapses overcomes the inhibition reaching B2

neurons and makes them fire; but this is effective only when the
spikes at these synapses arrive before the inhibition takes effect.
This causes the B2 neurons to be active only when the right stimu-
lus ES is presented and therefore, the activity of B2 neurons can be
used as an effective readout. A simple spike count from B2 neurons
is sufficient to discriminate the ES from any other stimuli.

2.2. THE HARDWARE IMPLEMENTATION
The hardware implementation of the network model consists of
a real-time multi-chip setup, as shown in Figure 2. It consists of
three multi-neuron spiking chips and an AER mapper (Fasnacht
and Indiveri, 2011) connected in a serial loop. The multi-neuron

chips were fabricated using a standard AMS 0.35 μm CMOS
process. Two of the three multi-neuron chips (chip–1 and chip–2)
are identical and comprise an array of 128 linear integrate-and-fire
neurons (Indiveri et al., 2006) and 128 × 32 synaptic circuits. Each
neuron in the chip is connected to 2 excitatory, 2 inhibitory, and
28 excitatory plastic synapse circuits.

These chips are also equipped with a synapse multiplexer, which
enables a neuron to redirect synaptic currents from neighboring
rows onto itself. This allows the use of more synapses per neu-
ron, at the cost of using fewer neurons in total. Depending on the
multiplexer configuration it is possible to achieve combinations
of synapse and neuron numbers, ranging from 128 neurons each
with 32 synapses, to 1 neuron with 4096 synapses.

The third multi-neuron chip (chip–3) comprises a two-
dimensional array of 32-by-64 neurons. Each neuron in the chip
is connected to 3 synaptic circuits (2 excitatory, 1 inhibitory).

The excitatory and inhibitory synapse circuits on all three
chips, which implement their temporal dynamics, are based on the
current-mode Differential-Pair Integrator (DPI) circuit proposed
in Bartolozzi and Indiveri (2007). These synapses produce Excita-
tory Post-Synaptic Current (EPSCs) and Inhibitory Post-Synaptic
Current (IPSCs) respectively with realistic temporal dynamics on
the arrival of a pre-synaptic input spike.

The AER mapper allows the implementation of a wide range
of neural network topologies including multi-layer networks and
fully recurrent networks. The topology is defined by programming
a look-up table that the AER mapper reads to route spikes from
source neurons to destination synapses. The network topology of
Figure 1 was obtained by mapping the populations B1 and B2

onto chip–1 and chip–2 respectively. The synapse multiplexers on
chip–1 and chip–2 were configured to have 32 active neurons with
128 input synapses each, 112 of which are plastic. Each neuron in
B1 was connected to a neuron in B2 using three plastic synapses.

FIGURE 2 | Real-time multi-chip setup. The chips are mounted on
custom PCBs (AMDA) which supply bias voltages to the chips. These
biases can be configured via a USB interface connected to the PC
workstation. The AER events are handled by dedicated PCBs equipped

with FPGAs (AEX ; Fasnacht et al., 2008). These events are transmitted
from one board to the other over SATA cables in a serial loop. Events
can also be sent and monitored from a PC workstation via a USB
interface.
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The use of multiple redundant synapses is helpful in reducing the
effect of device mismatch in the plastic synapse circuits by ensuring
that at least a fraction of these synapses exhibit the desired dynam-
ics. Neurons from chip–3 were used to implement the population
C, which implement delayed feedback to B2 neurons.

2.3. DELAYED FEEDBACK
The current hardware does not directly support propagation delays
between neurons. To overcome this limitation, long synaptic and
neuronal time constants are exploited. Given that the weights
associated with the synapses of a neuron are strong enough to
produce a single output spike, the time difference between the pre-
synaptic spike and the post-synaptic spike is considered equivalent
to propagation/transmission delay. Therefore, every projection in
the model that requires a delay is passed through an additional
neuron, referred to as a delay neuron. The delay neurons are labeled
C in Figure 1.

The transmission delay of a delay neuron is a function of
synaptic strength, synaptic and neuronal time constants and fir-
ing threshold. Delays of the order of milliseconds can be achieved
by setting a weak synaptic strength and a long time constant, to
produce a long-lasting small output current. In this configuration,
synaptic circuits are strongly affected by transistor mismatch and
as a result they produce a broad distribution of output currents,
despite sharing global biases. These output currents, integrated by
the post-synaptic neurons, produce output spikes with a broad
distribution of delays from the input spikes. Depending on the
required delay, an appropriate delay neuron is selected and placed
in the network.

Figure 3 shows the distribution of delays across 1070 neurons
on chip–3 for a specific configuration of biases. The delays range
from 0.7 to 8.6 ms with a mean of approximately 2.5 ms. Although
the chip contains 2048 neurons, because of device mismatch, only
a subset of these neurons can be used as delay neurons. The rest of
the neurons either have too strong or too weak synaptic strength,

FIGURE 3 | Histogram of delays of 1070 of the 2048 neurons on CHIP–3

due to mismatch in the hardware. Delays range from 0.7 to 8.6 ms mean
≈2.5 ms. The remaining neurons either fire more than once or not at all.

causing the neurons to fire multiple or no spikes per incoming
spike.

2.4. THE STDP UPDATE RULE
The network model includes excitatory projections from C to B2

which are plastic and exhibit STDP,a spike-based Hebbian learning
rule (Caporale and Dan, 2008). The synaptic weight is incremented
when the pre-synaptic spike arrives before the post-synaptic spike,
and decremented if the order is reversed; hence this rule poten-
tiates those synapses where an apparent cause-effect relationship
predominates over time.

A modified version of the STDP rule is implemented in ana-
log VLSI on the plastic synapses of neuromorphic chips (1, 2)
used in this experiment (Giulioni et al., 2009; Mitra et al., 2009).
The synaptic update rule (Brader et al., 2007) adjusts the synaptic
weight, or efficacy, X upon arrival of a pre-synaptic spike, depend-
ing on the instantaneous membrane potential and the internal
state of the post-synaptic neuron (Fusi, 2003; Brader et al., 2007).
The internal state, C(t ), is putatively identified with the post-
synaptic neuron calcium concentration, driven by firing of the
neuron (Shouval et al., 2002).

The synaptic efficacy, X, is altered according to rules given in
Equation 1. If at the time of arrival of a pre-synaptic spike the
post-synaptic membrane voltage, V (t ), is high (above threshold
θ) and its internal state C(t ) is within the bounds [θ l

up, θh
up], then

the synaptic efficacy is increased by an amount, a. On the other
hand if V (t ) is low (below the learning threshold θ) and C(t )
is within the bounds [θ l

down, θh
down], then the synaptic efficacy is

decreased by an amount b:

X = X + a; if V (t ) > θ and θ l
up < C(t ) < θh

up

X = X − b; if V (t ) ≤ θ and θ l
down < C(t ) < θh

down

(1)

If neither of the conditions is satisfied, then X drifts to one of two
stable states 0 or 1, depending on whether X(t ) is above or below
the threshold, θX:

dX(t )

dt
= α; if X(t ) > θX

dX(t )

dt
= −β; if X(t ) ≤ θX

(2)

The internal state, C(t ), is driven by firing of the neuron and is
governed by:

dC(t )

dt
= −C(t )

τC
+ JC

∑

i

δ(t − ti) (3)

where JC is the amount of calcium contributed by a single spike.

2.5. INPUT STIMULI
Examples of the spiking inputs, which were used as the ES and
probe stimulus (PS) signals, are shown in Figure 5. Figure 5A
illustrates a single linear frequency sweep, while Figure 5B shows
an example of the second class of stimuli (forked), with a diverging
pattern of activity. The stimuli of the second type are essentially
a combination of two frequency sweeps, one increasing and one
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decreasing. We use examples of both types of stimuli with a range
of FM seep velocities. The velocity in each case is given as the num-
ber of channels activated per millisecond, for example Figure 5A
shows an upward sweep with the onset of activity in each chan-
nel separated by 1 ms, hence the velocity is +1.0 ms−1. Downward
sweeps have negative velocities, and in the case of the forked stim-
uli the velocity of the component in the upper half of the is axis is
given.

The differences in the spike patterns in each channel shown
in Figure 5 are systematically introduced to compensate for the
device mismatch effects present in the neurons of population
B1. The calibration method used to generate the appropriate
spike patterns is the same one described in Neftci and Indiveri
(2010).

For all experiments carried out we reset the neurons to their
resting state at the beginning of each trial. Similarly, we set the plas-
tic synapses implementing the delayed projections to their “low”
state (with effectively null synaptic efficacy). Input patterns were
presented 30 times over a period of 3 s. The network “learns” in
a 3-s exposure phase during which it is repeatedly exposed to the
same stimulus – the exposure stimulus ES.

The population of neurons A in this model are the source
of input spikes to the network. This population’s output rep-
resents output of an artificial cochlea (Chan et al., 2007) with
high Q-factor. For experimental simplicity and as a proof of
concept demonstration, we use hypothetical computer gener-
ated cochlear spikes that take the form of spectro-temporal
patterns.

Given the low resolution restrictions of the current arrange-
ment (32 units on the tonotopic axis), we used two relatively simple
classes of stimuli in this study. The first class is defined by linear
frequency sweeps (pure tones with increasing or decreasing fre-
quency over time); the second class comprises stimuli with two
tones whose frequencies diverge or converge over time.

2.6. SPIKE TRAIN METRICS
The dynamics of this network are deterministic (ignoring the very
low noise in the hardware) and can be predicted given the delays in
the connectivity and the input stimulus. While the input to B2 dri-
ves the membrane potential (representing post-synaptic activity),
the delayed feedback from B1 to B2 via C drives the plastic synapses
(pre-synaptic activity). Since both these activities are observable,
a deterministic rule enables us to predict the final synaptic states
after prolonged presentation of a ES.

Since the STDP update rule is essentially Hebbian, a measure
of coincidences in the input spikes from different synapses of a
neuron can help predict whether a synapse is going to potentiate
or depress. We used the spike train metric called the van Rossum
distance (VRD; van Rossum, 2001) to measure the coincidence
between two spike trains. Given two spike trains s1 and s2, VRD is
defined as:

D(s1, s2) =
√∫ ∞

−∞
[g ∗ s1 − g ∗ s2]2dt (4)

where g = g (t ; τ c) is a smoothing function (e.g., a decaying expo-
nential) with time constant τ c. Depending on the time constant

τ c, the distance metric interpolates between a coincidence detec-
tor (small time constant) and a rate difference counter (large time
constant). Given the decay rate set for the synaptic update rule (see
Sec. 2.4) we fixed τ c = 4 ms, so that VRD is small for correlations
that should trigger long term potentiation.

3. RESULTS
We carried out experiments to demonstrate the emergence of fea-
ture sensitivity in the spiking neural network. We characterized
the synaptic connectivity after exposure to ES and compared it
to the predicted connectivity. We then measured the response of
this network by probing with a set of PS that consisted of linear or
forked frequency sweeps as shown in Figure 5 with different veloc-
ities; these results were used to determine the response curve after
exposure. This was done first for the network with linearly distrib-
uted delay profile (see Figure 4), and subsequently with random
delays.

FIGURE 4 | Implemented delayed projections from B1 to B2 neurons in

millisecond. In case of no connection, it is marked as having 0 ms delay
and is shown in blue. The delays were chosen from the ones available in the
hardware implementation and so minor deviations from a pure linear profile
can be observed.

FIGURE 5 | Spike patterns representing the two stimulus classes,

linear and forked. Each dot represents a spike and the rate of sweep, the
velocity, is given as the number of channels activated per millisecond.
(A) Linear frequency sweep at 1.0 ms−1. (B) Forked frequency sweep
where the upper component is 1.0 ms−1.
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3.1. DISTANCE MATRIX AND EMERGENT CONNECTIVITY
We define the distance matrix DM (i, j) as D(sA(i), sC(i, j)) between
the spikes of neuron A in column i, that is, sA(i), and the spikes
of the neuron in population C of column i that was stimulated
by the corresponding neuron B1 in column j, that is, sC(i, j) (see
Figure 1).

Since spikes produced by the A neurons are the ones that
drive the membrane potential of the B2 neurons, the distance
matrix DM (i, j) is tightly linked to the synaptic weight matrix of
the B1 to B2 projections. Specifically, small VRD measures imply
high probability of long term potentiation in the corresponding
synapse.

Linear frequency sweeps at velocity of 5 ms−1 were pre-
sented to the network as ES. Figure 6A shows the correspond-
ing distance matrix DM (i, j). In case of no physical connec-
tion between i and j, we plot the distance D(sA(i), sNULL),
where sNULL is an empty spike train. This can be considered
as a reference distance. Smaller values would represent more
similar spike trains, and greater values more dissimilar ones.
Figure 6B shows the potentiated synapses after stimulus pre-
sentation. As can be seen from the plots, the blue region in
the distance matrix overlaps with the plot showing potentiated
synapses. A similar comparison is made in Figure 8. Therefore
this measure enables us to estimate the resulting connectivity after
exposure.

While the distance, D, acts as a coincidence measure between
two spike trains, a time offset �t in one of the spike trains enables
us to measure their temporal correlation at a time offset τ between
the two. By taking this measure of correlation across a range of val-
ues of �t, one can effectively determine an optimal offset time τ

that corresponds to maximal correlation between the two spike
trains.

In the network described in section 2.1, the delayed projections
do the job of implementing the time offset �t and the plastic
synapses potentiate only if these correlations are above a certain
threshold.

Figure 7 shows the potentiated synapses after exposing the
network to three different velocities of frequency sweeps. For a
negative frequency sweep (decreasing frequency with time) the
synapses below the diagonal are potentiated (Figure 7A) and above
the diagonal otherwise (Figures 7B,C). For 1.2 ms−1 frequency
sweep the mean distance of potentiated synapses from the diagonal
is greater than that for 0.8 ms−1 frequency sweep.

It can be noted that the distance of potentiated synapses from
the diagonal is determined by the velocity of the presented fre-
quency sweep. This is because for a given velocity of frequency
sweep, the optimal time offset �t for maximal correlation between
sA(i) and sC(i, j) is different; only those synapses for which the
transmission delay �t causes maximal correlation between sA(i)
and sC(i, j) potentiate on exposure to a given stimulus.

FIGURE 6 | (A) The distance, D, between spikes produced by neurons in population A and spikes arriving at neurons in population B2 for a network exposed to a
linear frequency sweep at velocity of 1.0 ms−1. (B) Corresponding synaptic weight matrix showing the number of potentiated synapses per projection from B1

to B2 neurons.

FIGURE 7 | Potentiated synapses, or the effective final connectivity from B1 neurons to B2 neurons, after exposing the network to linear frequency

sweeps at velocities (A) −0.8 ms−1 (B) 0.8 ms−1 and (C) 1.2 ms−1.
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FIGURE 8 | A comparison of the distance D to the potentiated synapses, for a network exposed to a forked frequency sweep at velocity 1.0 ms−1. (A)

VRD between the spike trains from A neurons and B1 neurons that reach B2 neurons. (B) Number of potentiated synapses per projection from B1 to B2 neurons.

Therefore the distance matrix DM is effectively a measure of
temporal correlations in the stimulus. If some or all of the neurons
in A were activated simultaneously (corresponding to ∞ ms−1)
the optimal time offset �t for maximal correlation would be 0 ms
or in other words this would enable the model to learn the purely
spectral (or spatial) correlation in the input pattern. As the stim-
ulus velocity decreases, the value of �t for maximal correlation
increases. Since the value of �t between two neurons in the model
depends on their distance of separation, we observe a correspond-
ing change in the pattern of connectivity for different velocities of
input stimulus.

When the network is exposed to a slightly more complex stim-
ulus (the example we investigate is a forked frequency as shown
in Figure 5B) the resulting connectivity is shown in Figure 8. It
should be noted that the connectivity is not just a linear combina-
tion of upward frequency sweep and downward frequency sweep,
but also captures the correlation between the two branches of
sweeps, as predicted by the corresponding distance matrix shown
in Figure 8A.

All of the emergent connectivity matrices in these experiments
emerged from exposure to the ES in an unsupervised manner. As
shown by Figures 6 and 8 the post-exposure network connec-
tivity always matches the area of minimum VRD in the distance
matrix DM.

From this we can conclude that the network is capable of learn-
ing in a way determined by the spectro-temporal correlations in
the stimulus. As the resulting connectivity closely matches the dis-
tance matrix DM, the potentiated synapses should support reliable
network responses to stimuli with spectro-temporal features that
closely match those of the ES. We verified this network property by
measuring the Frequency Modulated (FM) sweep tuning curves,
as described in the following section.

3.2. FM SWEEP TUNING CURVES
After exposing the network to 30 instances of the ES over a
period of 3 s, we disabled synaptic plasticity while keeping all
other network parameters unchanged. This is only necessary in
this experiment because the learning rate of the network is set to

FIGURE 9 | Measured FM sweep tuning curves after exposure to (A)

linear and (B) forked stimulus, for ES velocity 1.0 ms−1 in both cases.

Response of the network is quantified by the number of output spikes from
the population of B2 neurons.

be fast and presentation of any alternative stimulus would alter the
synaptic states rather quickly. In these conditions we measured the
response of the network, i.e., the total number of spikes from B2

neurons, for different velocities of frequency sweeps. In the sim-
plest case, linear sweeps of different velocities are used to measure
the FM sweep tuning curve after training to a linear frequency
sweep. In a second set of experiments forked sweeps of different
velocities are used to measure the FM sweep tuning curve after
training to a forked frequency sweep. These measurements were
used to plot a tuning curve for the network. Figure 9 shows two
tuning curves after learning a linear and forked frequency sweeps
at 1.0 ms−1. The tuning curves show a Gaussian-like profile which
peaks at the velocity of ES. The width of the Gaussian is deter-
mined by the level of learning threshold θ , which is equivalent to
the maximum D(s1, s2) below which the plastic synapses are set to
potentiate and depress otherwise. This width of the tuning curve
can be interpreted as the network’s resilience to variations in the
time course of the stimulus.

Qualitatively similar FM sweep tuning curves were obtained at
different ES velocities for both linear and forked stimuli. This
is shown in Figures 10A,B respectively. As can be noted the
figures display maximal response along their diagonals implying
maximum response to ES and lower response to any other.
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3.3. RANDOM DELAY PROFILE
The results described in the previous section were obtained with
a linear delay profile as shown in Figure 3, i.e., the feedback delay
was proportional to the distance between the B1 and B2 neurons.

But these conditions are not essential for the network to learn
the spectro-temporal features of the ES and selectively respond
to them. When the network is initialized with a random delay
distribution, as shown in Figure 11A, learning potentiates the con-
nections that represent the spectro-temporal correlation in the ES
as described in the previous section. As long as the transmission
delays �t keep the corresponding distances D(sA(i), sC(i, j)) low,
the corresponding synapses potentiate and learn to replicate the
distance matrix DM (i, j).

The resulting network exhibits tuning properties similar to
those observed for a linear delay profile. The connectivity matrix,
after being exposed to forked frequency sweeps at 1.0 ms−1 veloc-
ity is shown in Figure 11B and the sweep tuning curve of this
network is shown in Figure 11C. Note that the tuning curves in
Figures 9B and 11C show a similar performance although the
network has a lower response level with random delay profile,
which is explained by the fact that in the randomly connected
examples only two, not three, synapses were available per B2

neuron.

4. CONCLUSION
The results presented in this work demonstrate, in hardware,
how an implementation of a recurrently connected spiking net-
work is able to learn and selectively respond to the dynamic
spectro-temporal features of stimuli. The model relies on delays,
which might arise from a number of processes including axonal
propagation and spike interaction via intermediate neurons.

In the case of the hardware substrate used to implement the
model there was no provision for the implementation of delays in
the design. We were able to overcome this problem by exploiting
the variation and mismatch of the components in analog VLSI
devices used in the setup.

The stimulus-driven modifications of the network connectiv-
ity result from the interaction between the stimulus itself and the
spike-based plasticity (STDP) rule adopted for the delayed feed-
back connections. After learning, the firing patterns of the neurons
reflect the emergent connectivity, that is more of the neurons fire
during a presentation, and the network is tuned to the stimulus
properties.

As a result, differences in the response of the network induced
by learning can be used to distinguish similar stimuli that
have parametrically different dynamic properties, for example
differences in the direction or speed of an FM sweep.

FIGURE 10 | Measured FM sweep tuning curves after exposure as shown in Figure 9 but for all exposure stimuli. (A) Results for simple linear FM stimuli
and (B) results for forked stimuli.

FIGURE 11 | Connectivity and FM sweep tuning curve of a network with

random transmission delays from B1 neurons to B2 neurons. (A)

Transmission delays from B1 neurons to B2 neurons. (B) The number of

potentiated synapses per projection from a B1 neuron to B2 neuron after
exposure to forked frequency sweeps of velocity 1.0 ms−1. (C) The measured
tuning curve of the network after training.
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Our experiments show, in spiking hardware and in a sensory
context, the emergence of feature sensitivity, and the limitations
imposed by demonstrating these effects in hardware have neces-
sitated the choice of relatively simple stimulus patterns. However
comparable results have also shown that the principles general-
ize to slightly more complex stimuli (Figure 5B) and, in software
modeling work using a similar architecture, to dynamic ripples
(Coath et al., 2011).

We have also demonstrated how the network with a random
profile of transmission delays can exhibit similar behavior. This
is important because random delay profiles imply that there is
no structural necessity for the input neurons to be strictly tono-
topically arranged. Therefore, without loss of generality, the input
stimulus need not necessarily look well arranged as in Figure 5
and could be shuffled to appear as random patterns. By the same
argument the network could also learn correlations in stimuli that
are not so clearly ordered.

4.1. EXPLOITING DEVICE MISMATCH FOR IMPLEMENTING TEMPORAL
DELAYS

In order to implement propagation delays we made use of extra
neurons whose time constants were proportional to the desired
time delay. We were able to select delay neurons with different
time constants by exploiting the mismatch effect in their analog
circuit implementations. The effect of this mismatch is shown
in Figure 3, where we plot the range of delays exhibited by the
neurons. Had there been no mismatch, this would not have been
possible to achieve on a single chip with global/shared bias volt-
ages. Variability can also be found on other model parameters (e.g.,
time constants, injection currents). This opens up the possibility
to explore network dynamics of populations with a distribution
of parameter values, rather than using globally common values.
While mismatch induced noise is often minimized in conventional
analog VLSI design, we try to use it to introduce sources of vari-
ability in the populations of silicon neurons that can model or
reproduce the inhomogeneities present in real neural systems.

4.2. LONG VS SHORT TIME SCALES
Sensory stimuli, and in particular auditory stimuli, contain both
short and long range temporal correlations. The techniques
described in this paper primarily address correlations only over
relatively short time scales, i.e., those in a range from the order
of synaptic or membrane time constants, up to those represented
by the propagation of excitation to adjacent regions. The range of
propagation delays implemented in the network defines the range
of stimulus velocities that could be learnt. Temporal correlations
over a longer time scale could be addressed using many levels
of recurrence between widely separated layers, as is observed in
the mammalian auditory system. Alternatively it could be tack-
led with working memory and neuromorphic implementations of
state machine based approaches (Neftci et al., 2010).

4.3. LIMITATIONS
The network model described in the paper, in its current form,
assumes the stimulus to be dynamic and does not consider sta-
tic stimuli where frequency channels are persistently active. The
learning rule used dictates high probability of LTP in the presence

of highly active inputs. As a result, if such persistent stimuli were
to be presented to this network a large number of synapses would
potentiate to reflect the temporal correlation across different �t
values.

However transient responses, in particular onset responses, are
found at all levels of the auditory system and this could be modeled
with strong synaptic depression at the input synapses of B1 and B2

or as post-synaptic adaptation of neurons in A, thus eliminating
the problems caused by persistent input stimuli.

5. DISCUSSION
It is widely believed to be central to the performance of sensory sys-
tems in vivo that they respond preferentially to those aspects of the
environment in which they operate that are salient. A simple bio-
logical example would be to differentiate a conspecific vocalization
from the background of noise and other non-salient communica-
tion calls. Results suggest that this type of pattern specificity is, at
least in some cases, present in primary cortical areas, e.g., Machens
et al. (2004).

This same property is also an important goal of artificial sen-
sory systems. In both cases this clearly requires some strategy for
encoding salient features of the stimulus within the neural, or
silicon substrate.

We propose that recurrent connectivity, observed throughout
the auditory system, could mediate dynamic feature sensitivity by
exploiting propagation delays. We have developed a computational
model and verified that the emergent properties arise through
the interaction of propagation delays with the spectro-temporal
properties of stimuli and spike-time dependent plasticity.

While the representation of input stimuli in this network is
realized through the pairing of activity at different times and at
different positions on the tonotopic axis, it is not limited to a single
pair. Each neuron in B2, after learning, is connected to more than
one B1 neuron (see Figures 7 and 8B) in most cases. This leads
to the B2 neurons accumulating evidence from the spikes arriving
from more than one B1 neuron. If only a small fraction of the
correlations present in the stimulus match those that have been
learnt by the network, and if the threshold of the B2 neurons was
appropriately tuned (the threshold being the minimum number
of coincident feedback spikes from B1 for B2 neurons to fire), then
these neurons would not fire.

Consequently, we argue that given a large population and dense
connectivity, a reasonable number of learned correlations from ES
can be set as a threshold for the B2 neurons to fire. The higher the
number of such pairings present in a PS, the higher probability
there is of the stimulus being identified as the current one (i.e.,
as ES).

The feature sensitivity represented in the model is not a prop-
erty revealed in the firing rate of an individual neuron, or indeed
in any property of an individual neuron. The model has wide-
spread recurrent connections and as a consequence, the ensemble
response of the network is modified during exposure. Thus the
representation of, and sensitivity to, patterns of activity evolving
over time is a network property of this model. This is espe-
cially interesting because clear examples of such dynamic response
properties are routinely absent for single neuron measurements
in vivo.
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The neuromorphic system we describe here could be used with
real-world stimuli and validated against noise in the stimulus, and
limitations in the system’s state variables (e.g., due to device mis-
match, limited resolution, and signal-to-noise ratio limitations,
bounded synaptic weights, power constraints, etc.).

In further work, we plan to go beyond the demonstration of
emergent sensitivity to a stimulus parameter, by quantifying the
increase in acuity in information-theoretic terms in the presence
of stimulus variation. This will provide a basis for the quantita-
tive comparison of networks, connectivity patterns, and learning
strategies.
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