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Abstract Organisms often exhibit behavioral or phenotypic diversity to improve population

fitness in the face of environmental variability. When each behavior or phenotype is individually

maladaptive, alternating between these losing strategies can counter-intuitively result in population

persistence–an outcome similar to the Parrondo’s paradox. Instead of the capital or history

dependence that characterize traditional Parrondo games, most ecological models which exhibit

such paradoxical behavior depend on the presence of exogenous environmental variation. Here we

present a population model that exhibits Parrondo’s paradox through capital and history-

dependent dynamics. Two sub-populations comprise our model: nomads, who live independently

without competition or cooperation, and colonists, who engage in competition, cooperation, and

long-term habitat destruction. Nomads and colonists may alternate behaviors in response to

changes in the colonial habitat. Even when nomadism and colonialism individually lead to

extinction, switching between these strategies at the appropriate moments can paradoxically

enable both population persistence and long-term growth.

Introduction
Behavioral adaptation and phenotypic diversity are evolutionary meta-strategies that can improve

a population’s fitness in the presence of environmental variability. When behaviors or phenotypes

are sufficiently distinct, a population can be understood as consisting of multiple sub-populations,

each following its own strategy. Counter-intuitively, even when each sub-population follows a los-

ing strategy that will cause it to go extinct in the long-run, alternating or reallocating organisms

between these losing strategies under certain conditions can result in meta-population persis-

tence, and hence, an overall strategy that wins (Williams and Hastings, 2011). Some examples

include random phase variation (RPV) in bacteria across multiple losing phenotypes (Wolf et al.,

2005; Kussell and Leibler, 2005; Acar et al., 2008), as well as the persistence of populations

that migrate among sink habitats only (Jansen and Yoshimura, 1998; Roy et al., 2005;

Benaı̈m and Schreiber, 2009).

These counter-intuitive phenomena are reminiscent of Parrondo’s paradox, which states that

there are losing games of chance which can be combined to produce a winning strategy

(Harmer and Abbott, 1999). The existence of a winning combination relies on the fact that at least

one of the losing Parrondo games exhibits either capital-dependence (dependence upon the current

amount of capital, an ecological analog of which is population size) or history-dependence (depen-

dence upon the past history of wins or losses, or in an ecological context, growth and decline)

(Parrondo et al., 2000; Harmer and Abbott, 2002). There have been many studies exploring the

paradox (Cheong and Soo, 2013; Soo and Cheong, 2013, Soo and Cheong, 2014; Abbott, 2010;

Flitney and Abbott, 2003; Harmer et al., 2001), including a multi-agent Parrondo’s model based

on complex networks (Ye et al., 2016) and also implications to evolutionary biology (Cheong et al.,

Tan and Cheong. eLife 2017;6:e21673. DOI: https://doi.org/10.7554/eLife.21673 1 of 18

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.21673
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


2016; Reed, 2007; Wolf et al., 2005; Williams and Hastings, 2011). However, many biological

studies which have drawn a connection to Parrondo games do not necessarily utilize capital-depen-

dence or history-dependence in their models (Williams and Hastings, 2011). Furthermore, models

of reversal behavior in ecological settings generally rely upon the presence of exogenous environ-

mental variation (Jansen and Yoshimura, 1998; Roy et al., 2005; Benaı̈m and Schreiber, 2009;

Wolf et al., 2005; Kussell and Leibler, 2005; Acar et al., 2008; Levine and Rees, 2004). Without

exogenous variation, the paradoxes do not occur. The broader applicability of Parrondo’s paradox

to ecological systems thus remains under-explored.

This lacuna remains despite the abundance of biological examples that exhibit history-dependent

dynamics. The fitness of alleles may depend on the presence of genetic factors and epigenetic fac-

tors in previous generations (Reed, 2007). More generally, the fitness of any one gene can depend

on the composition of other genes already present in a population, enabling the evolution of com-

plex adaptations like multicellularity through ratcheting mechanisms (Libby and Ratcliff, 2014).

Such mechanisms have recently been shown to help stabilize these complex adaptations

(Libby et al., 2016). In ecological contexts, the storage effect can ensure that gains previously made

in good years can promote persistence in less favorable times (Warner and Chesson, 1985;

Levine and Rees, 2004). Species-induced habitat destruction or resource production can also have

time-delayed effects on population growth, resulting in non-linear phenomena like punctuated evo-

lution (Yukalov et al., 2009, Yukalov et al., 2014).

In this paper, we present a biologically feasible population model which exhibits counter-intuitive

reversal behavior due to the presence of history-dependent and capital-dependent dynamics. Unlike

most other studies, these dynamics do not rely upon the assumption of exogenous environmental

variation. In our model, we consider a population that exists in two behaviorally distinct forms: as

eLife digest Many organisms, from slime molds to jellyfish, alternate between life as free-

moving “nomadic” individuals and communal life in a more stationary colony. So what evolutionary

reasons lie behind such stark behavioral diversity in a single species? What benefits are obtained by

switching from one behavior to another?

Tan and Cheong have now developed a mathematical model that suggests an intriguing

possibility: under conditions that would cause the extinction of both nomadic individuals and

colonies, switching between these life strategies can enable populations to survive and grow – a

counter-intuitive phenomenon called Parrondo’s paradox.

Parrondo’s paradox says that it is possible to follow two losing strategies in a specific order such

that success is ultimately achieved. For example, slot machines are designed to ensure that players

lose in the long run. What the paradox says is that two slot machines can be configured in such a

way that playing either slot machine will lead to financial disaster, but switching between them will

leave the player richer in the long run.

Most studies of similar phenomena suggest that switching between two ‘losing’ lifestyle

strategies can only improve the chances of survival if the environment keeps changing in

unpredictable ways. However, Tan and Cheong’s model shows that this unpredictability is an

unnecessary condition – paradoxes also occur when organisms form colonies that predictably

destroy their habitat.

The basic mechanism for survival is elegant. The organism periodically exploits its habitat as part

of a colony, then switches to a nomadic lifestyle to allow the environment to regenerate. Through

mathematical analysis and simulations, Tan and Cheong confirm that this strategy is viable as long as

two conditions hold: that colonies grow sufficiently quickly when environmental resources are

abundant; and that colonists switch to a nomadic lifestyle before allowing the resource levels to dip

dangerously low.

The results produced by Tan and Cheong’s model help to explain how behavior-switching

organisms can survive and thrive, even in harsh conditions. Further work needs to be done to adapt

this general model to specific organisms and to investigate the possible evolutionary origins of

behavior-switching lifestyles.
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nomads, and as colonists. Numerous organisms exhibit analogous behavioral diversity, from slime

moulds (amoeba vs. plasmodia) (Baldauf and Doolittle, 1997) and dimorphic fungi (yeast vs.

hyphae) (Bastidas and Heitman, 2009) to jellyfish (medusae vs. polyps) (Lucas et al., 2012) and

human beings. One model organism which exhibits this sort of behavior, to which our study might

apply, is the amoeba Dictyostelium discoideum (Annesley and Fisher, 2009).

Nomads live relatively independently, and thus are unaffected by either competition or co-opera-

tion. Under poor environmental conditions, they are subject to steady extinction. Colonists live in

close proximity, and are thus subject to both competitive and co-operative effects. They may also

deplete the resources of the habitat they reside in over time, resulting in long-term death. However,

if these organisms are endowed with sensors that inform them of both population density and the

state of the colonial habitat, they can use this information to switch from one behavior to another.

Significantly, we find that an appropriate switching strategy paradoxically enables both population

persistence and long-term growth – an ecological Parrondo’s paradox.

Population model
Two sub-populations comprise our model: the nomadic organisms, and the colonial ones. In a similar

vein to habitat-patch models, organisms that exist in multiple sub-populations can be modelled as

follows:

dni

dt
¼ gi nið Þþ

j

X

sijnj�
j

X

sjini (1)

where ni is the size of sub-population i, gi is the function describing the growth rate of ni in isola-

tion, and sij is the rate of switching to sub-population i from sub-population j. Population sizes are

assumed to be large enough that Equation 1 adequately approximates the underlying

stochasticity.

Nomadism
Let n1 be the nomadic population size. In the absence of behavioral switching, the nomadic growth

rate is given by

g1 n1ð Þ ¼�r1n1 (2)

where r1 is the nomadic growth constant. Nomadism is modelled as a losing strategy by setting

�r1 < 0, such that n1 decays with time. In the context of Parrondo’s paradox, nomadism corre-

sponds to the ‘agitating’ strategy, or Game A. Importantly, competition among nomads, as well as

between nomads and colonists, is taken to be insignificant, due to the independence of a nomadic

lifestyle.

Colonialism
Colonial population dynamics will be modelled by the well-known logistic equation, with carrying

capacity K, but with two important modifications.

Firstly, the Allee effect is taken into account. This serves two roles: it captures the cooperative

effects that occur among colonial organisms, and it ensures that the growth rate is negative when

the population falls below a critical capacity A. Let n2 be the colonial population size. In the absence

of behavioral switching, the colonial growth rate is given by

g2 n2ð Þ ¼ r2n2
n2

min A;Kð Þ
� 1

� �

1�
n2

K

� �

(3)

where r2 is the colonial growth constant. Setting r2>0, we have a positive growth rate when A<n2<K,

and a negative growth rate otherwise. The min A;Kð Þ term ensures that when K<A, g2 is always zero

or negative, as would be expected.

Secondly, the carrying capacity K changes at a rate dependent upon the colonial population size,

n2, accounting for the destruction of environmental resources over the long run.

The rate of change of K with respect to t is given by
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dK

dt
¼ a�bn2 (4)

where a>0 is the default growth rate of K, and b>0 is the per-organism rate of habitat destruction.

An alternative interpretation of this equation is that K, the short-term carrying capacity, is depen-

dent on some essential nutrient in the environment, and that this nutrient is slowly depleted over

time at a rate proportional to bn2.

Let n� ¼ a
b
, the critical population level at which no habitat destruction occurs. dK

dt
is zero when

n2 ¼ n�, positive when n2<n
*, and negative when n2>n

*. n* can thus also be interpreted as the long-

term carrying capacity. Clearly, if the long-term carrying capacity n�<A, the only stable point of the

system becomes n2 ¼ 0. Under this condition, colonialism is a losing strategy as well.

Note that g2 increases as K increases, and that K increases more quickly as n2 decreases. In the

context of Parrondo’s paradox, colonialism can thus serve as a ‘ratcheting’ strategy, or Game B,

because the rate of growth is implicitly dependent upon the colonial population in the past. Another

way of understanding the ‘ratcheting’ behavior is through the lens of positive reactivity

(Williams and Hastings, 2011; Hastings, 2001, Hastings, 2004). In the short-term, n2 ¼ A is a posi-

tively reactive equilibrium, because small upwards perturbations of n2 away from A will result in rapid

growth towards K before a slow decrease back down towards A.

Behavioral switching
Organisms are able to detect the amount of environmental resources available to them, and by

proxy, the carrying capacity of the population. Thus, they can undergo behavioral changes in

response to the current carrying capacity.

Here, we model organisms that switch to nomadic behavior from colonial behavior when the car-

rying capacity is low (K < L1), and switch to colonial behavior from nomadic behavior when the carry-

ing capacity is high (K > L2), where L1 � L2 are the switching levels. Let rs > 0 be the switching

constant. Using the notation from Equation 1, switching rates can then be expressed as follows:

s12 ¼
rs if K < L1

0 otherwise

�

s21 ¼
rs if K > L2

0 otherwise

�

(5)

A variety of mechanisms might trigger this switching behavior in biological systems. For example,

since the nomadic organisms are highly mobile, they could frequently re-enter their original colonial

habitat after leaving it, and thus be able to detect whether resource levels are high enough for recol-

onization. It should also be noted that the decision to switch need not always be ‘rational’ (i.e. result

in a higher growth rate) for each individual. Switching behavior could be genetically programmed,

such that ‘involuntary’ individual sacrifice ends up promoting the long-term survival of the species.

Reduced parameters
Without loss of generality, we scale all parameters such that a ¼ b ¼ 1. Equation 4 thus becomes:

dK

dt
¼ 1� n2 (6)

Hence, n� ¼ a
b
¼ 1. All other population sizes and capacities can then be understood as ratios with

respect to this critical population size. Additionally, since b¼ 1, r1, r2 and rs can be understood as

ratios to the rate of habitat destruction. For example, if r2 � 1, this means that colonial growth

occurs much faster than habitat destruction. Time-scale separation between the population growth

dynamics and the habitat change dynamics can thus be achieved by setting r1; r2 � 1. Similarly,

the separation between the behavioral switching dynamics and the population growth dynamics can

be achieved by setting rs � r1; r2.

Results
Simulation results revealed population dynamics that could be categorized into the following

regimes:
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1. Without behavioral switching (rs ¼ 0)
a. Extinction for both sub-populations
b. Extinction for nomadic organisms, survival for colonial organisms

2. With behavioral switching (rs > 0)
a. Extinction for both sub-populations
b. Survival through periodic behavioral alternation
c. Long-term growth through strategic alternation

Importantly, there were conditions under which both sub-populations would go extinct in the

absence of behavioral switching (regime 1a), but collectively survive if behavioral switching was

allowed (regime 2b), thereby exhibiting Parrondo’s paradox. The following sections describe the

listed regimes in greater detail, with a focus upon the regimes involved in the paradox. Figures gen-

erated via numerical simulation are provided as examples of behavior within each regime.

Extinction in the absence of switching
As described earlier, both nomadic and colonial behaviors can be modelled as losing strategies

given the appropriate parameters. Simulations across a range of parameters elucidated the condi-

tions which resulted in extinction for both strategies. Figure 1a shows an example when both strate-

gies are losing, resulting in extinction, while Figure 1b shows an example where only the colonial

sub-population survives.

It is clear from Equation 2 that the growth rate of the nomadic population n1 is always negative,

because of the restriction that r1 > 0. Hence, nomadism is always a losing strategy.

However, the conditions under which colonial behavior is a losing strategy are more complicated.

Complex dynamics occur when the critical capacity A is just below 1 that can result in either survival

or extinction. Nonetheless, it can be shown that when A > 1, extinction occurs (as in Figure 1a), and

that survival is only possible when A is significantly less than 1 (as in Figure 1b). That is:

A>1 colonial extinction guaranteedð Þ (7)

A<1 colonial survival possibleð Þ (8)

The intuition behind this is straightforward. Suppose that initially, A < n2 < K, so that the growth

rate is positive. When A < 1, the colonial population n2 increases until it reaches the carrying capacity

K, following which they converge in tandem until stabilizing at the critical population size, n2 ¼K ¼ 1.

However, when A > 1, n2 ¼K ¼ 1 is no longer a stable equilibrium, since dn2=dt < 0 when n2 < A,

resulting in the eventual extinction of the population. For a formal proof, refer to Theorem A.3.

Figure 1. In the absence of switching, (a) eventual extinction for both strategies vs (b) survival for the colonial

strategy. Initial conditions for both are n1 ¼ 2, n2 ¼ 2, K ¼ 5. Shared parameters are rs ¼ 0, r1 ¼ 1, r2 ¼ 10. For (a),

A ¼ 1:001. For (b), A ¼ 0:5.
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Survival through periodic alternation
We now restrict our analysis to the case where A > 1. Under this condition, both nomadism (Game

A) and colonialism (Game B) are losing strategies when played individually. Paradoxically, it is possi-

ble to combine these two strategies through behavioral switching such that population survival is

ensured, thereby producing an overall strategy that wins.

Simulation results over a range of parameters have predicted this paradoxical behavior, and also

elucidated the conditions under which it occurs. Figure 2a is a typical example where the population

becomes extinct, even though it undergoes behavioral switching, while Figure 2b is a typical exam-

ple where behavioral switching ensures population survival.

Conceptually, this paradoxical survival is possible because the colonial strategy, or Game B, is his-

tory-dependent. In particular, the colonial growth rate dn2=dt is dependent upon the carrying capac-

ity K, which in turn is dependent upon previous levels of n2. Behavioral switching to a nomadic

strategy decreases the colonial population size, allowing the resources in the colonial environment,

represented by K, to recover. Switching back to a colonial strategy then allows the population to

take advantage of the newly generated resources. Because switching occurs periodically, as can be

seen in Figure 2b, it should be noted that the organisms need not even detect the amount of

resources present in the environment to implement this strategy. A biological clock would be suffi-

cient to trigger switching behavior.

The exact process by which survival is ensured can be understood by analysing the simulation

results in detail. In the nomadic phase, the colonial population n2 is close to zero, the nomadic popu-

lation n1 undergoes slow exponential decay, and the carrying capacity K undergoes slow linear

growth. K increases until it reaches L2, which triggers the switch to colonial behavior.

The population thus enters the colonial phase. If the colonial population n2 exceeds the critical

capacity A at this point, then n2 will grow until it slightly exceeds the carrying capacity K. Subse-

quently, n2 decreases in the tandem with K until K drops to L1, triggering the switch back to the

nomadic phase. However, if n2 < A when the colonial phase begins, the colonial population goes

extinct, as can be seen in Figure 2a. Hence, a basic condition for survival is that n2 � A at the start

of each colonial phase.

This implies that, by the end of the nomadic phase, n1 needs to be greater by a certain amount

than A as well. Otherwise, there will be insufficient nomads to form a colony which can overcome the

Allee effect. Under the reasonable assumption that the rate of behavioral switching is much faster

than either colonial or nomadic growth (rs � r1; r2), it can be shown more precisely that at the end of

the nomadic phase, n1 needs to be greater than a critical level B, which is related to A by the

equation:

A¼ B� 1�Bð ÞW0

B

1�B
exp

B

1�B

� �

(9)

Figure 2. Behavioral switching which results in (a) extinction vs (b) survival. Initial conditions for both are n1 ¼ 2,

n2 ¼ 2, K ¼ 5. Shared parameters are rs ¼ 1000, r1 ¼ 1, r2 ¼ 10. For (a), L1 ¼ 3, L2 ¼ 4:5. For (b), L1 ¼ 3, L2 ¼ 4.
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A full derivation is provided in the Appendix (Theorem A.4). Here, W0 xð Þ is the principal branch of

the Lambert W function. Qualitatively speaking, B is a function of A on the interval 1;¥ð Þ that

increases in an exponential-like manner, and that approaches 1 when A does as well. Thus, B� A, as

expected.

The greater the difference between the switching levels, the longer the nomadic phase will last,

because it takes more time for K to increase to the requisite value for switching, L2. And the longer

the nomadic phase lasts, the more n1 will decay. If, at the end of the nomadic phase, the value that

n1 decays to happens to be less than B, then the population will fail to survive. It follows that there

should be some constraint on the difference between the switching levels L1 and L2.

Under the same assumption that rs � r1; r2, such a constraint can be derived:

L2 < L1 þ
1

r1
ln
L1 þW0 �L1e

�L1ð Þ

B
(10)

Survival is ensured given the following additional condition:

There exists t� � t0:n2 t�ð Þ ¼K t�ð Þ � L1 (11)

where t0 marks the start of an arbitrary colonial phase, and t� marks the time of intersection between

n2 and K during that phase. In other words, n2 has to grow sufficiently quickly during the colonial

phase such that it exceeds both K and L1 before switching begins. This can be seen occurring in

Figure 2b. In accordance with intuition, numerical simulations predict that this occurs when the colo-

nial growth constant is sufficiently large r2 � r1ð Þ, as can be seen in the Figures. (The Figures also

show that r1 close to 1, but this is not strictly necessary.) Collectively, Equations 10–11 are sufficient

conditions for population survival. Mathematical details are provided in the Appendix (Theorems A.5

and A.6).

Note that Equation 10 contains an implicit lower bound on L1. Since L2 � L1 by stipulation, we

must have ln L1 þW0 �L1e
�L1ð Þ½ � > ln B for survival. The following bound is thus obtained:

L1 >
BeB

eB� 1
(12)

On the other hand, under the assumptions made, there is no upper bound for L1, and hence no

absolute upper bound for L2 either. This suggests that given a sufficiently well-designed switching

rule, K can grow larger over time while ensuring population survival. Such a rule is investigated in

the following section.

Long-term growth through strategic alternation
Suppose that, in addition to being able to detect the colonial carrying capacity, nomads and colo-

nists are able to detect or estimate their current population size. This might happen by proxy, by

communication, or by built-in estimation of the time required for growth or decay to a certain popu-

lation level. The following switching rule then becomes possible:

When n2 ¼K; dn2=dt > 0; set L1 ¼K; L2 ¼¥

When n1 ¼ B; dn1=dt < 0; set L2 ¼K
(13)

That is, L1 is set to the carrying capacity K whenever n2 rises to K, resulting immediately in a

switch to nomadic behavior, and that L2 is in turn set to K whenever n1 falls to B, resulting in an

immediate switch to colonial behavior.

This switching rule is optimal according to several criteria. Firstly, by switching to nomadic behav-

ior just as n2 reaches K, it ensures that dn2=dt � 0 for the entirety of the colonial phase. As such, it

avoids the later portion of the colonial phase where K and n2 decrease in tandem, and maximizes

the ending value n2. Consequently, it also maximizes the value of n1 at the start of each nomadic

phase.

Furthermore, by switching to colonial behavior right when n1 decays to B, the rule maximizes the

duration of the nomadic phase while ensuring survival. This in turn means that the growth of K is

maximized, since the longer the nomadic phase, the longer that K is allowed to grow.
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In fact, this switching rule is a paradigmatic example of how Parrondo’s paradox can be achieved.

It plays Game A, the nomadic strategy, for as long as possible, in order to maximize K and hence

the returns from Game B. And then it switches to Game B, the colonial strategy, only for as long as

the returns are positive (dn2=dt > 0), thereby using it as a kind of ratchet.

Suppose that K grows more during each nomadic phase than it falls during each colonial phase.

Then the switching rule is not just optimal, but it also enables long-term growth. Simulation results

predict that this can indeed occur. Figure 3a shows long-term growth of K from t ¼ 0 to t ¼ 10,

while Figure 3b shows that with the same initial conditions, this continues until t ¼ 300 with no signs

of abating. Together with K, the per-phase maximal values of n1 and n2 increase as well.

In the cases shown, long-term growth is achieved because K indeed grows more during each

nomadic phase than it falls during the subsequent colonial phase. As can be seen from Figure 3a,

this is, in turn, because the nomadic phase lasts much longer than the colonial phase, such that the

amount of environmental destruction due to colonialism is limited. Simulation results predict that

this generally occurs as long as the colonial growth rate is sufficiently large (r2 � r1).

An interesting phenomenon that can be observed from Figure 3b is how the nomadic population

size n1, which peaks at the start of each nomadic phase, eventually exceeds the carrying capacity K,

and then continues doing so by increasing amounts at each peak. This is, in fact, a natural conse-

quence of the population model. When n2 grows large, the assumption that switching is much faster

than colonial growth starts to break down. This occurs even though rs � r2, due to the increasing

contribution of the n2
A
� 1

� �

factor in Equation 3.

The result is that when a large colonial population begins switching to nomadism, a significant

number of colonial offspring are simultaneously being produced. These offspring also end up switch-

ing to a nomadic strategy, resulting in more nomadic organisms than there were colonial organisms

before. A particularly pronounced example of this is shown in Figure 4.

However, this same phenomenon also introduces a limiting behavior to the pattern of long-term

growth. As Figure 5 shows, when the same simulation as in Figure 3a and b is continued to

t ¼ 1000, peak levels of n1, n2 and K eventually plateau around t ¼ 650.

This occurs because sufficiently high levels of n2 cause a qualitative change in the dynamics of

behavioral switching. Normally, switching to nomadic behavior starts when K falls below L1, and

ends when K rises above it again. K rises towards the end of the switch, when n2 levels fall below

the critical level of n� ¼ 1. But when n2 is sufficiently large, the faster production of colonial offspring

drags out the duration of switching, as seen in Figure 4. The higher levels of n2, combined with the

longer switching duration, causes an overall drop in K by the end of the switching period. Because

the increase in K during the subsequent nomadic phase is unable to overcome this drop, K stops

increasing in the long-run.

Nonetheless, it is clear that significant long-term gains can be achieved via the optimal switching

rule. Under the conditions of fast colonial growth and even faster switching (rs � r2 � r1 ’ 1, as in

Figures 3a–5), these gains are several orders of magnitude larger than the initial population levels, a

Figure 3. Long-term growth through strategic alternation. Initial conditions are n1 ¼ 0, n2 ¼ 2, K ¼ 5. Parameters

are A ¼ 1:001, L1 ¼ 3, L2 ¼ 4, rs ¼ 1000, r1 ¼ 1, r2 ¼ 10.
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huge departure from the long-term extinction that occurs in purely colonial or nomadic populations.

Figure 4. Zoomed-in portion of Figure 5 that shows the mechanism behind the spikes in n1. When n2 is large,

switching takes longer, causing a drop in K, and a large increase in n1.

Figure 5. Long-term growth through strategic alternation, up to t ¼ 1000. Initial conditions are n1 ¼ 0, n2 ¼ 2,

K ¼ 5. Parameters are A ¼ 1:001, rs ¼ 1000, r1 ¼ 1, r2 ¼ 10.
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Limiting behavior eventually emerges, but this is to be expected in any realistic biological system.

Survival and growth under additional constraints
Our proposed model is convenient for the functional understanding of growth and survival, and can

be easily modified for a variety of applications. Additional constraints can be imposed under which

survival and long-term growth are still observed. For example, in many biological systems, the

dynamics of habitat change might occur on a slower timescale than both colonial and nomadic

growth (i.e. r1; r2 � 1). Figure 6 shows the simulation results when this timescale separation exists

(r1 ¼ 10, r2 ¼ 100 for (a), r1 ¼ 100, r2 ¼ 1000 for (b)). It can clearly be seen that survival is still possible

under such conditions.

Another practical constraint that can be imposed is limiting the growth of the carrying capacity to

some maximal value Kmax, capturing the fact that the resources in any one habitat do not grow infi-

nitely large. This can be achieved by modifying Equation 6 as follows:

dK

dt
¼ 1� n2ð Þ 1�

K

Kmax

� �

(14)

Figure 6 already takes this constraint into account, showing that survival through periodic alterna-

tion is achievable under both bounded carrying capacity and slow habitat change, as long as the

maximum carrying capacity is sufficiently high (Kmax ¼ 20). As Figure 7 shows, even long-term growth

is possible, under both fast habitat change (Figure 7a) and slow habitat change (Figure 7b). In both

cases, the carrying capacity K converges towards a maximum value as it approaches Kmax.

Discussion
The results presented in this study demonstrate the theoretical possibility of Parrondo’s paradox in

an ecological context. Many evolutionary strategies correspond to the strategies that we have

termed here as ‘nomadism’ and ‘colonialism’. In particular, any growth model that is devoid of com-

petitive or collaborative effects is readily captured by Equation 2 (nomadism), while any logistic

growth model which includes both the Allee effect and habitat destruction can be described using

Equations 3 and 4 (colonialism). Many organisms also exhibit behavioral change or phenotypic

switching in response to changing environmental conditions. By incorporating this into our model,

we have demonstrated that nomadic-colonial alternation can ensure the survival of a species, even

when nomadism or colonialism alone would lead to extinction. Furthermore, it has been demon-

strated that an optimal switching rule can lead to long-term population growth.

The switching rules which lead to survival and long-term growth are analogous to the periodic

alternation between games that produces a winning expectation in Parrondo’s paradox. If one views

the carrying capacity K as the capital of the population, then it is clear that Equation 5 is a capital-

Figure 6. Survival through periodic alternation under slow habitat change. Parameters for (a) are rs ¼ 10000,

r1 ¼ 10, r2 ¼ 100;L1 ¼ 3, L2 ¼ 3:083. For (b), rs ¼ 100000, r1 ¼ 100, r2 ¼ 1000;L1 ¼ 3, L2 ¼ 3:008. Shared parameters

are Kmax ¼ 20, A ¼ 1:001.
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dependent switching rule. By setting the appropriate amounts of capital at which switching should

occur, survival and growth can be achieved. Survival is achieved by ensuring that Game A, or nomad-

ism, is never played beyond the point where extinction is inevitable, that is, the point where n1 falls

below the critical level B. Long-term growth is additionally achieved by ensuring that Game B, or

colonialism, is only played in the region where gains are positive, that is, when A < n2 < K such that

dn2=dt > 0. The history-dependent dynamics of Game B are thus optimally exploited.

Several limitations of the present study should be noted. Firstly, the study only focuses on cases

where nomadism and colonialism are individually losing strategies, despite the abundance of similar

strategies that do not lose in the real world. This is because assuming individually losing strategies in

fact leads to a stronger result – if losing variants of nomadism and colonialism can be combined into

a winning strategy, it follows that non-losing variants can be combined in a similar way too (see The-

orem A.7 in the Appendix).

Secondly, the population model does not encompass all variants of qualitatively similar behavior.

For example, many other equations can be used to model the Allee effect (Boukal and Berec,

2002). Nonetheless, our proposed model is general enough that it can be adapted for use with

other equations and be expected to produce similar results. Even the presence of the Allee effect is

not strictly necessary, since the colonial population might die off at low levels because of stochastic

fluctuations, rather than because of the effect. Theorem A.7 in the Appendix also demonstrates that

paradoxical behavior can occur even without the Allee effect causing long-term death of the colonial

population.

Thirdly, though it is trivially the case that pure nomadism and pure colonialism cannot out-com-

pete a behaviorally-switching population, a more complex analysis of the evolutionary stability of

behavioral switching is beyond the scope of this paper. Finally, spatial dynamics are not accounted

for in this study. Exploring such dynamics is a goal for future work.

Materials and methods
Numerical simulations were performed using code written in MATLAB (Source code 1) that relied

on the ode23 ordinary differential equation (ODE) solver. ode23 is an implementation of an explicit

Runge-Kutta (2,3) pair of Bogacki and Shampine. Simulations were performed with both behavioral

switching turned off (rs ¼ 0) and turned on (rs > 0). The accuracy of the simulation was continually

checked by repeating all results with more stringent tolerance levels, ensuring that the final simu-

lated parameters did not change significantly (by less than 1%). Both the relative error tolerance and

absolute error tolerance were determined to be 10-9.

In the case of complex switching rules like Equation 13 that required modifying differential equa-

tion parameters at specific time points, the Events option of MATLAB’s ODE solvers was used to

Figure 7. Long-term growth through strategic alternation with a bounded carrying capacity. Initial conditions are

n1 ¼ 0, n2 ¼ 2, K ¼ 5, shared parameters are A ¼ 1:001. For (a), Kmax ¼ 20, rs ¼ 1000, r1 ¼ 1, r2 ¼ 10 (fast habitat

change). For (b), Kmax ¼ 7:5, rs ¼ 10000, r1 ¼ 10, r2 ¼ 100 (slow habitat change).
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detect when these points occurred. After each detection, the parameters were automatically modi-

fied as per the switching rule, and the simulation continued with the new parameters.

Broad regimes of model behavior were observed by running simulations across a wide range of

parameters and initial conditions. General trends and conditions observed within each regime were

formalized analytically, the details of which can be found in the Appendix. In these derivations, rea-

sonable assumptions were made in order to make the model analytically tractable. In particular, it

was assumed that the rate of behavioral switching was much faster than the rates of either colonial

or nomadic growth (rs � r1; r2), and that colonial growth rates were in turn much faster than the rate

of habitat destruction (r2 � 1). Initial conditions corresponding to unstable equilibria (e.g.

n2 ¼ K ¼ 1 < A) were avoided as unrealistic.

Conclusion
Our comprehensive model captures both capital and history-dependent dynamics within a realistic

ecological setting, thereby exhibiting Parrondo’s paradox without the need for exogenous environ-

mental influences. The possibility of an ecological Parrondo’s paradox has wide-ranging applications

across the fields of ecology and population biology. Not only could it provide evolutionary insight

into strategies analogous to nomadism, colonialism, and behavioral diversification, it potentially also

explains why environmentally destructive species, such as Homo sapiens, can thrive and grow

despite limited environmental resources. By providing a theoretical model under which such para-

doxes occur, our approach may enable new insights into the evolution of cooperative colonies, as

well as the conditions required for sustainable population growth.
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Appendix 1

Switching dynamics

Appendix 1—figure 1. An example of switching from colonialism to nomadism. t1 marks the start

of the switch, t2 marks the end. Other parameters are A ¼ 1:001, rs ¼ 1000, r1 ¼ 1, r2 ¼ 10.

Appendix 1—figure 2. An example of switching from nomadism to colonialism. t1 marks the start

of the switch, t2 marks the end. Other parameters are A ¼ 1:001, rs ¼ 1000, r1 ¼ 1, r2 ¼ 10.

Lemma A.1

Let t1 and t2 respectively be the start and end of a period of switching from sub-population i to sub-

population j. Then either of the following must hold:

Tan and Cheong. eLife 2017;6:e21673. DOI: https://doi.org/10.7554/eLife.21673 14 of 18

Research article Computational and Systems Biology Ecology

https://doi.org/10.7554/eLife.21673


Z t2

t1

1� n2 tð Þdt¼ 0 (A1)

ni t2ð Þ ¼ 0 (A2)

Proof. Switching to nomadism begins when K falls below L1 and stops when it rises above L1

again. Similarly, switching to colonialism begins when K rises above L2 and stops when it falls below

L2 again. In both cases then:

DK ¼

Z t2

t1

dK

dt
dt¼

Z t2

t1

1� n2 tð Þdt¼ 0

Alternatively, before K rises or falls back to the appropriate level, ni may go extinct, prematurely

ending the switch, in which case ni t2ð Þ ¼ 0.

Theorem A.1 (Colonialism to nomadism)

Let x be the colonial population at the end of a colonial phase, and y be the colonial population at

the start of the subsequent nomadic phase. Assuming that switching is much faster than colonial

growth (rsn2 � g2 n2ð Þ), y can be expressed in terms of x2 as

y¼�W0 �xe�xð Þ (A3)

where W0 is the principal branch of the Lambert W function. Let z be the nomadic population at the

start of the subsequent nomadic phase. If switching is also much faster than nomadic growth

(rsn1 � g1 n1ð Þ), and if the nomadic population is 0 before switching, we have

z¼ xþW0 �xe�xð Þ (A4)

Note that z is an increasing function of x, and that z converges to x as x grows larger.

Proof. Since rsn2 � g2 n2ð Þ, we have dn2=dt ¼ �rsn2. Hence, n2 tð Þ decays exponentially from x to y

over a duration of 1

rs
ln x=yð Þ. Substituting n2 tð Þ into Equation A1 and solving, we have

x� ln x¼ y� ln y

This means that �x and �y are both solutions to the equation C¼wew, where C is some constant.

The roots of this equation are given by the Lambert W function. Since x > y and both are real num-

bers, �x must lie on the W�1 branch, while �y lies on the principal W0 branch. Equation A3 follows.

For Equation A4, if rsn1 � g1 n1ð Þ, all the new nomadic organisms must have switched over from

colonialism. It follows that z ¼ x� y. This completes the proof.

Theorem A.2 (Nomadism to colonialism)

Let x be the nomadic population at the end of a nomadic phase, and y be the nomadic population

at the start of the subsequent colonial phase. Assuming that switching is much faster than both

nomadic and colonial growth (rsn1 � g1 n1ð Þ; rsn2 � g2 n2ð Þ ), and that the colonial population is 0

before switching, y can be expressed in terms of x as

y¼ 1� xð ÞW0

x

1� x
e

x
1�x

� �

(A5)

for x > 1. If x� 1, then y¼ 0, i.e., the nomads go extinct during switching. Let z be the colonial popu-

lation at the start of the subsequent colonial phase. We have

z¼ x� 1� xð ÞW0

x

1� x
e

x
1�x

� �

(A6)

for x > 1, and z¼ x otherwise. Note that in the first case, z is an increasing function of x.
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Proof. By our assumptions, we have dn1=dt ¼ �rsn1 and dn2=dt ¼ rsn1. Hence, n1 tð Þ decays expo-

nentially from x to y over a duration of 1

rs
ln x=yð Þ, and n2 tð Þ increases correspondingly from 0 to

x� yð Þ. Substituting n2 tð Þ into Equation A1 and solving, we have

1� xð Þ ln x� ln yð Þþ x� yð Þ ¼ 0

Suppose that x > 1, y can be expressed in terms of x using the principal branch of the Lambert W

function, and Equation A5 follows. If x� 1, then there is no way to satisfy Equation A1 because n2

will not exceed 1 during the switching period. It follows that n1 must go extinct, in which case y¼ 0.

The results for z follow since z¼ x� y. This completes the proof.

Extinction and survival
Theorem A.3 (Colonists go extinct when A > 1)

When A > 1, pure colonialism leads to extinction in the long run (limt!¥n2 tð Þ ¼ 0), assuming initial

conditions are not set to the unstable equilibrium n2 ¼ K ¼ 1<A.

Proof. There are three possible equilibria for n2, at which dn2=dt ¼ 0 : n2 ¼ 0, n2 ¼ A, and n2 ¼ K

(refer to Equation 3). However, when n2 ¼ A > 1 or n2 ¼ K > 1, we have dK=dt ¼ 1� n2 < 0: K

decreases until n2 < K, which implies dn2=dt < 0: n2 then decreases until n2 < A, which implies con-

vergence to 0 as t ! ¥.

Similarly, if n2 ¼ K < 1, then dK=dt > 0, such that n2 < K < 1 < A an infinitesimal moment later,

which then leads to extinction. This leaves only n2 ¼ 0 and n2 ¼ K ¼ 1 as equilibria, the latter of

which is unstable to small perturbations of n2 towards zero. This completes the proof.

Theorem A.4 (Survival imposes a lower bound on n1)

For survival to occur, n1 tNð Þ > B is a necessary condition, where tN denotes the end of any nomadic

phase, and B is a critical level related to A:

A¼ B� 1�Bð ÞW0

B

1�B
exp

B

1�B

� �

(A7)

Proof. Let tC denote the start of the subsequent colonial phase. We know that n2 tCð Þ > A is

required for the new colony to survive. B is defined using Equation A6 such that n2 tCð Þ ¼ A if

n1 tNð Þ ¼ B. Since n2 tCð Þ is an increasing function of n1 tNð Þ, it follows that n1 tNð Þ > B in order for

n2 tCð Þ > A. This completes the proof.

Theorem A.5 (Survival imposes constraints on L1 and L2)

Under the reasonable assumptions that switching is much faster than colonial or nomadic growth

(rsn1 � g1 n1ð Þ; rsn2 � g2 n2ð Þ), and that the difference between n2 and K is negligibly small once n2

grows to exceed K during the colonial phase, the following constraint on L1 and L2 is a necessary

condition for survival through periodic alternation:

L2 � L1þ
1

r1
ln
L1 þW0 �L1e

�L1ð Þ

B
(A8)

This also implies a lower bound on L1, given by:

L1 �
BeB

eB� 1
(A9)

Proof. Consider a sequence of consecutive phases which we will term as CP1, NP, CP2, where CP1

and CP2 are colonial phases and NP is the nomadic phase between them. Since the nomadic phase

NP is characterized by exponential decay, it is clear that n1 NP-startð Þ ¼ n1 NP-endð Þer1T , where

T :¼NP-end�NP-start¼
1

r1
ln
n1 NP-startð Þ

n1 NP-endð Þ
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is the duration of the nomadic phase. During this period, the colonial population n2 is close to or

equal to 0. Since dK=dt¼ 1� n2 � 1, it follows that

K NP-endð Þ�K NP-startð Þ � 1 � NP-end�NP-startð Þ ¼ T

Note that K NP-startð Þ ¼ L1 and K NP-endð Þ ¼ L2 by definition. Combining this with the two equa-

tions above, we obtain

L2 � L1þ
1

r1
ln
n1 NP-startð Þ

n1 NP-endð Þ
(A10)

For survival to occur, the colonial population at the start of CP2 needs to be greater than A. By

Theorem A.4, this implies that n1 NP-endð Þ > B. Substituting into the above, we have

L2 < L1þ
1

r1
ln
n1 NP-startð Þ

B
(A11)

Notice that by Theorem A.1, n1 NP-startð Þ is a function of n2 CP1-endð Þ, the colonial population at

the end of CP1. If CP1 lasts long enough that n2 exceeds K, then by assumption we have

n2 CP1-endð Þ ’K CP1-endð Þ, otherwise we have n2 CP1-endð Þ<K CP1-endð Þ. Note that K CP1-endð Þ ¼ L1.

Thus, n2 CP1-endð Þ � L1. Then by Equation A4 in Theorem A.1, we have

n1 NP-startð Þ � L1þW0 �L1e
�L1ð Þ. Substituting this into Equation A11 gives us Equation A8, as

desired.

Finally, recall that L2>L1 by definition. It thus needs to be the case that

ln
L1 þW0 �L1e

�L1ð Þ

B
>0

Solving this gives us the lower bound on L1. This completes the proof.

Theorem A.6 (Survival is ensured if n2 converges to K quickly)

Under the reasonable assumption that n2 ’ 0 during each nomadic phase, then together with

Equation A8 as well as the assumptions made in A.5, the following constraint is sufficient to ensure

survival:

There exists t� � t0:n2 t�ð Þ ¼K t�ð Þ � L1 (A12)

where t0 marks the start of an arbitrary colonial phase, and t� marks the time of intersection between

n2 and K during that phase. In other words, n2 has to grow sufficiently quickly during the colonial

phase such that it exceeds both K and L1 before switching begins.

Proof. Let CP1 denote the colonial phase in question. Given Equation A12, all switching to the

nomadic phase only happens after n2 exceeds K during CP1. We have already presumed in Theorem

A.5 that once n2 grows to exceed K, we have n2 � K � 1. This implies that

n2 CP1-endð Þ ’ K CP1-endð Þ ¼ L1, which in turn implies that n1 NP-startð Þ ’ L1 þW0 �L1e
�L1ð Þ by Theo-

rem A.1.

Given the new assumption that n2 ’ 0 during each nomadic phase, any value of L2 that satisfies

Equation A10 will be sufficient for survival. Substituting n1 NP-endð Þ>B along with our new expres-

sion for n1 NP-startð Þ into Equation A10 retains this property, which means that any value of L2 that

satisfies Equation A8 is sufficient for survival (as long as L2>L1). Thus, given our assumptions,

Equation A8 and Equation A12 collectively ensure survival. This completes the proof.

Theorem A.7 (Behavioral alternation improves survival levels)

Suppose that pure nomadism or pure colonialism (or both) result in population survival. That is,

ni;pure ¥ð Þ:¼
t!¥
lim ni;pure tð Þ>0 (A13)

where i¼ 1 or 2 or both. This can happen if r1 ¼ 0 (for nomadism) or A<1 (for colonialism). Then there

are conditions under which behavioral alternation between the two pure strategies will result in a
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total population size with higher long-term periodic maxima. That is, given the appropriate condi-

tions, then for any t� 0, there exists t� � t such that

n1 t�ð Þþ n2 t�ð Þ>ni;pure ¥ð Þ (A14)

for both i¼ 1 and i¼ 2.

Proof. As shown in the main text, there exist cases where periodic alternation between the levels

K ¼ L1 and K ¼ L2 result in survival. Furthermore, there exists cases where n2 t�ð Þ ¼ K t�ð Þ � L1 for

some t� during each colonial phase. For any such case where both nomadism and colonialism are los-

ing strategies, notice that we would still have n2 t�ð Þ ¼ K t�ð Þ � L1 even if nomadism or colonialism

were modified so that they did not lose.

To be precise, if r1 ¼ 0 (nomadism does not lose), then there would be no decay over each

nomadic phase, which means that in the subsequent colonial phase, n2 would start out higher and

grow to reach K even more quickly. If A<1 (colonialism does not lose), then g2 n2ð Þ would be even

larger in magnitude, so n2 would grow towards K more quickly as well. In both cases, K would decay

less than it would have originally by the time n2 t�ð Þ ¼ K t�ð Þ, so we would still have n2 t�ð Þ > L1. It fol-

lows that as long as L1 > ni;pure ¥ð Þ, Equation A14 will always be true. Such cases can be easily found

for i ¼ 1 (ensuring L1 > n1;pure 0ð Þ) and for i ¼ 2 (ensuring L1 > n2;pure ¥ð Þ ¼ 1). This completes the

proof.
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