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Abstract: Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability
screening technique that simultaneously monitors protein unfolding and aggregation properties. The
thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium
acetate, sodium citrate, and sodium phosphate) ranging from pH 4 to 8. In all three buffers, the
midpoint temperature of thermal unfolding (Tm) showed a tendency to increase as the pH increased,
but the aggregation propensity was different depending on the buffer species. The best stability
against aggregation was obtained in the sodium acetate buffers below pH 4.6. On the other hand,
IgG in the sodium citrate buffer had higher aggregation and viscosity than in the sodium acetate
buffer at the same pH. Difference of aggregation between acetate and citrate buffers at the same pH
could be explained by a protein–protein interaction study, performed with dynamic light scattering,
which suggested that intermolecular interaction is attractive in citrate buffer but repulsive in acetate
buffer. In conclusion, this study indicates that the sodium acetate buffer at pH 4.6 is suitable for IgG
formulation, and the nanoDSF method is a powerful tool for thermal stability screening and optimal
buffer selection in antibody formulations.

Keywords: nano differential scanning fluorimetry; immunoglobulin G; stability; aggregation;
antibody formulation

1. Introduction

Antibody drugs have become an important class after muromonab-CD3 (Orthoclone
OKT3, Janssen-Cilag, Beerse, Belgium), the first antibody drug approved by the Food and
Drug Administration in 1986 [1]. Since 1986, more than 100 antibody products have been
approved in the United States or the European Union, and many candidates, including
bispecific antibodies and antibody–drug conjugates, are in clinical trials [2–5]. With the
recent rapid growth of antibody drugs, the development of formulations to ensure stability
is becoming more important because antibodies are prone to various physical and chemical
degradation processes, like any other proteins [6,7]. For successful formulation, several
factors affecting the physicochemical stability of proteins must be considered and optimized,
including solution pH, buffer species, and excipients [8].

Large and complex molecules, such as antibodies, are known to be prone to aggrega-
tion during the manufacturing processes and storage, which can lead to reduced potency
and increased immunogenicity [9–11]. Aggregation is closely related to the thermal stability
of antibody molecules. The lower the thermal stability, the less stable the product, and
the higher degree of aggregation, whereas the higher thermal stability of the product can
reduce the degree of aggregation [12]. Thermal stability analysis is traditionally performed
using differential scanning calorimetry (DSC), but this technique is often limited to a certain
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concentration range and requires large amounts of sample (300–500 µL of samples per
measurement) [13,14].

Differential scanning fluorimetry (DSF) is a fluorescence-based protein stability assay
that measures protein folding state through monitoring changes in fluorescence as a func-
tion of temperature [15]. This technique provides biophysical properties such as midpoint
temperature (Tm) and onset temperature (Tonset) of thermal unfolding. Conventional DSF
is typically performed using a real-time polymerase chain reaction (PCR) instrument to
monitor thermal denaturation of proteins in the presence of a fluorescent dye, such as
SYPRO orange, that preferentially binds to unfolded proteins [16]. NanoDSF is a dye-free
DSF method that monitors the change of intrinsic fluorescence from inherent tryptophan
in protein as a function of temperature, time, or denaturant concentration [17]. Protein
unfolding changes the microenvironment polarity around tryptophan residues, causing a
red shift of fluorescence [18]; using this principle, nanoDSF determines Tm and Tonset by
measuring the ratio of the fluorescence intensity at 330 nm and 350 nm as a function of tem-
perature. The dye-free nature of nanoDSF makes it applicable to a wider range of protein
samples than conventional DSF, which uses extrinsic dyes that can interact with surfactants
often used in protein formulations [19]. In addition, nanoDSF offers the advantages of
higher throughput and lower sample consumption than conventional approaches, such as
DSC and circular dichroism [12]. The nanoDSF instrument used in this study (Prometheus
NT.48, NanoTemper Technologies, München, Germany) can measure 48 samples in parallel
within 90 min, requiring only 10 µL for each sample. In addition to measuring the intrinsic
fluorescence intensity ratio (350/330 nm), this instrument uses backreflection technology
to detect protein aggregation, providing the onset temperature of aggregation (Tagg) with
increasing temperature. Therefore, this instrument can simultaneously monitor protein
unfolding transitions and aggregation.

In protein formulations, one of the important elements are buffers that control the pH
of the formulation and can contribute to the stability of protein drug product by a variety
of mechanisms [20]. In particular, the pH of the buffer is the most critical condition for
protein formulation because pH itself has a greater effect on protein stability than any other
factors [21,22]. The buffer species itself also affects the thermal stability of proteins beyond
the direct effect of pH on stability [23]. One example is the difference in propensity for
protein unfolding and aggregation between the sodium acetate and the sodium citrate
buffers at the same pH as reported in stability studies with anti-streptavidin and anti-CD20
monoclonal antibodies [24–26]. Therefore, both pH and buffer species are key factors to
consider when selecting the appropriate buffer for protein formulation.

In this study, a nanoDSF-based thermostability screening approach was applied to
select the optimal buffer conditions for injectable liquid formulation of immunoglobulin
G (IgG) as a typical model antibody [27,28]. The IgG used in this study was obtained
from the I.V.-Globulin SN injection product from GC Pharma (Yongin, Korea), which is
a pooled preparation of normal human IgG, obtained from healthy donors. It is widely
used in the treatment of several autoimmune diseases and inflammatory bowel diseases,
including Crohn’s disease and ulcerative colitis [29]. First, conformational stability and
colloidal stability of IgG was investigated in three different buffers (sodium acetate, sodium
citrate, and sodium phosphate), ranging from pH 4 to 8, using nanoDSF in order to select
the optimal pH. Thereafter, thermal stability of IgG in the sodium acetate and sodium
citrate buffers at the same pH was compared with their viscosity when highly concentrated
over ~200 mg/mL. Finally, dynamic and static light scattering were performed to determine
protein–protein interactions to elucidate stability mechanism in different buffers.

2. Results
2.1. NanoDSF Analysis of IgG

Figure 1 shows typical nanoDSF thermograms of IgG at a concentration of 10 mg/mL
in the 50 mM sodium phosphate buffer at pH 7.4. Figure 1a shows the folding state
transition of IgG by monitoring the ratio of fluorescence intensity at 330 nm and 350 nm
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as a function of temperature, where Tonset (onset temperature of thermal unfolding) was
60.2 ◦C and Tm (inflection temperature of thermal unfolding) was 69.2 ◦C. Figure 1b shows
light scattering thermogram of IgG by measuring the attenuation of the backreflected light
intensity passing through the sample, where Tagg (onset temperature at which a protein
begins to aggregate) was 62.9 ◦C. This result shows the relationship between transition
from folded state to unfolded state and aggregation of IgG.
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Figure 1. (a) Typical nanoDSF thermogram showing the fluorescence intensity ratio at 330 nm
and 350 nm; (b) Light scattering thermogram by measuring the attenuation of the backreflected
light intensity passing through the sample as a function of temperature. The sample was IgG at
a concentration of 10 mg/mL in the 50 mM sodium phosphate buffer at pH 7.4. Tonset—onset
temperature of thermal unfolding; Tm—inflection temperature of thermal unfolding; Tagg—onset
temperature of protein aggregation.

Figure 2 shows the effect of IgG concentration on the folding state transition and
aggregation propensity of IgG. Different IgG concentrations of 1, 10, and 100 mg/mL in
the 50 mM sodium phosphate buffer at pH 7.4 were tested. In this result, the effect of IgG
concentration was not significant on the unfolding/denaturation of IgG, where Tonset re-
sults were 60.2 ◦C, 60.2 ◦C, and 61.4 ◦C, and Tagg results were 67.3 ◦C, 62.9 ◦C, and 56.6 ◦C,
at IgG concentrations of 1, 10, and 100 mg/mL, respectively. However, the aggregation
propensity was proportional to the concentration of IgG, where Tagg decreased and light
scattering significantly increased as the concentration increased. This result suggests that
both unfolding and aggregation should be considered for the development of highly con-
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centrated antibody formulations. It also shows the utility of nanoDSF with backreflection
technology that simultaneously monitors protein unfolding transitions and aggregation.
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Figure 2. NanoDSF thermograms showing the effect of IgG concentration (gray—1 mg/mL;
blue—10 mg/mL; dark blue—100 mg/mL) on the propensity for unfolding (a) and aggregation
(b) of IgG in the 50 mM sodium phosphate buffer at pH 7.4. (a) NanoDSF thermogram; (b) Light
scattering thermogram.

2.2. Buffer Screening by NanoDSF

The thermal stability of IgG was investigated in three different buffers (sodium acetate,
sodium citrate, and sodium phosphate), ranging from pH 4 to 8, using nanoDSF in order to
select the optimal pH (Table 1). The concentration of each sample was set to 1 mg/mL in
order to reduce the sample consumption and conduct an efficient experiment. Figure 3a
shows the profile of Tm as a function of pH for IgGs in different pH buffers, where higher
Tm values were observed at higher pH. The Tonset values also showed the same trend as
the Tm profile (Table 1). This means that conformational stability of IgG increases as the
pH increases from 4 to 6 or higher.

Figure 3b shows the profile of Tagg as a function of pH for IgGs in different pH buffers.
Unlike the Tm and Tonset results, the Tagg values were higher at acidic pH than neutral pH
in the cases of the sodium acetate and phosphate buffers. In particular, in the acetate buffers
at pH 4.6 and lower, aggregation did not occur even when heated to 95 ◦C. However, IgGs
in the citrate buffers showed pH-independent aggregation with similar Tagg values of 65.3
to 69.0 ◦C. This result indicates that not only the pH but also the buffer species of the
formulation affect the thermal stability of IgG.
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Table 1. Thermal stability of IgGs in three buffers with different pHs as measured by nanoDSF.

Buffers pH
Thermal Stability Parameters (◦C)

Tonset Tm Tagg

Sodium phosphate 5.0 57.9 ± 0.5 65.0 ± 0.0 74.0 ± 0.9
5.2 58.7 ± 0.8 66.1 ± 0.0 73.6 ± 0.6
5.4 59.9 ± 0.4 67.2 ± 0.1 71.8 ± 0.2
5.6 60.7 ± 0.9 68.1 ± 0.0 70.1 ± 0.2
5.8 61.2 ± 0.3 68.7 ± 0.0 69.4 ± 0.4
6.0 61.4 ± 0.1 69.3 ± 0.1 68.5 ± 0.0
6.2 61.6 ± 0.3 69.6 ± 0.0 68.5 ± 0.0
6.4 61.8 ± 0.4 69.8 ± 0.0 68.2 ± 0.6
6.6 61.4 ± 0.0 69.9 ± 0.1 69.1 ± 0.1
6.8 60.1 ± 0.3 69.8 ± 0.1 69.3 ± 0.2
7.0 60.8 ± 0.1 69.8 ± 0.1 69.1 ± 0.2
7.3 60.4 ± 0.5 69.5 ± 0.1 69.5 ± 0.2
7.5 60.2 ± 0.2 69.4 ± 0.1 70.1 ± 0.1
7.7 59.7 ± 0.9 69.2 ± 0.0 69.2 ± 0.6
8.0 58.9 ± 0.2 69.0 ± 0.0 70.5 ± 0.5

Sodium acetate 4.0 42.3 ± 0.1 51.4 ± 0.5 No aggregation
4.2 45.0 ± 0.0 54.4 ± 0.1 No aggregation
4.4 50.1 ± 0.5 58.0 ± 0.1 No aggregation
4.6 53.2 ± 0.1 60.6 ± 0.1 No aggregation
4.8 55.2 ± 0.2 62.8 ± 0.1 78.6 ± 0.4
5.0 57.0 ± 0.3 64.6 ± 0.1 75.6 ± 1.6
5.2 58.6 ± 0.1 66.1 ± 0.0 74.0 ± 0.2
5.4 59.9 ± 0.1 67.2 ± 0.0 72.4 ± 0.1
5.6 60.3 ± 0.5 68.2 ± 0.1 71.8 ± 0.2
5.8 60.9 ± 0.3 69.0 ± 0.1 69.5 ± 0.2
6.0 61.4 ± 0.3 69.7 ± 0.4 69.0 ± 0.3

Sodium citrate 4.0 40.1 ± 0.2 49.7 ± 0.2 67.6 ± 0.2
4.2 44.3 ± 0.1 52.5 ± 0.2 65.5 ± 1.8
4.4 47.6 ± 0.3 55.1 ± 0.1 65.3 ± 1.4
4.6 50.5 ± 0.5 58.0 ± 0.1 66.2 ± 0.9
4.8 53.0 ± 0.5 60.3 ± 0.1 66.0 ± 0.5
5.0 55.4 ± 0.1 62.5 ± 0.0 67.6 ± 0.4
5.2 57.7 ± 0.0 64.5 ± 0.1 67.8 ± 0.5
5.4 58.4 ± 0.4 66.0 ± 0.1 67.8 ± 0.2
5.6 59.7 ± 0.3 67.0 ± 0.0 68.1 ± 0.3
5.8 60.2 ± 0.5 67.6 ± 0.0 68.9 ± 0.2
6.0 60.6 ± 0.2 68.3 ± 0.0 69.0 ± 0.1

Values are the mean and standard deviation from triplicate measurements.

2.3. Comparison of Thermal Stability between Acetate and Citrate Buffers

At pH 4.6, where no aggregation of IgG occurred in the sodium acetate buffer, as shown
in Figure 3b, the effect of the sodium acetate and citrate buffers on thermal stability of IgG
was studied by nanoDSF, with IgGs at concentrations of 1 and 100 mg/mL in 2 buffers
at the same pH, 4.6. As shown in Figure 4a–c, 1 mg/mL IgG showed Tm values of 57.6
◦C and 60.7 ◦C in the sodium citrate and acetate buffers, respectively, and Tagg of 66.7 ◦C
in the sodium citrate buffer, but there was no aggregation in the sodium acetate buffer.
Figure 4d–f shows thermograms of concentrated IgG at a concentration of 100 mg/mL. At
this high concentration, two unfolding transitions (Tm1 and Tm2) were observed, where
Tm1 and Tm2 are known to be attributed to unfolding transitions in the CH2 domain and
the Fab/CH3 domain, respectively [12]. The Tm1 and Tm2 in the sodium citrate buffer were
56.5 ◦C and 71.1 ◦C, respectively, whereas those in the sodium acetate buffer were 60.1 ◦C
and 74.3 ◦C, respectively. Unlike at 1 mg/mL, IgG at 100 mg/mL in the sodium acetate
buffer also exhibited aggregation but showed higher Tagg of 61.0 ◦C and lower scattering
intensity than Tagg of 52.7 ◦C in the sodium citrate buffer. Therefore, IgG showed higher
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thermal stability in the sodium acetate buffer with higher Tm and Tagg values than the
sodium citrate buffer at the same pH, 4.6.
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Figure 3. Effect of pH and buffer species on Tm (a) and Tagg (b) of IgG in three different buffers
(red—sodium phosphate; green—sodium acetate; blue—sodium citrate), as measured by nanoDSF.
(a) Graph of Tm of IgG as a function of pH; (b) Graph of Tagg of IgG as a function of pH. All
samples were set at a concentration of 1 mg/mL and values are the mean and standard deviation of
triplicate measurements.

Figure 5 shows isothermal graphs of IgGs in the sodium acetate and sodium citrate
buffers at pH 4.6. The fluorescence intensity ratio (F350/F330) and scattering property of
the sample at each constant temperature of 50, 54, 57, and 60 ◦C were monitored for 60 min.
As shown in Figure 5a,c, the fluorescence intensity ratio (F350/F330) of both IgGs in acetate
and citrate buffers increased as the temperature increased, without significant difference
between the two samples. However, there was significant difference of aggregation propen-
sity between IgGs in acetate and citrate buffers at 60 ◦C, as shown in Figure 5b,d. This
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result also indicates that IgG is more stable in acetate buffer than in citrate buffer at the
same pH of 4.6.
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Figure 4. NanoDSF thermograms of IgGs at concentrations of 1 mg/mL (a–c) and 100 mg/mL
(d–f) in acetate (green) and citrate buffers (blue) at the same pH 4.6. (a,d) fluorescence in-
tensity ratio (F350 nm/F330 nm); (b,e) first derivative of fluorescence intensity ratio; (c,f) light
scattering thermograms.

2.4. Viscosity of Highly Concentrated IgG

The viscosity of IgGs in the sodium acetate and citrate buffers, that showed different
thermal stability at the same pH, was measured by RheoSense microVISC viscometer
employing rheometer-on-a-chip technology. Figure 6 shows the viscosity profiles of IgG
solutions from 95 mg/mL to over 209 mg/mL in the sodium acetate and citrate buffers at
the same pH of 4.6. In the sodium acetate buffer at pH 4.6, IgGs from 103.0 to 208.9 mg/mL
exhibited viscosity from 2.75 ± 0.01 to 15.12 ± 0.05 cP, whereas in the sodium citrate buffer
at the same pH, IgGs from 95.5 to 208.7 mg/mL showed viscosity from 2.74 ± 0.03 to
18.04 ± 0.15 cP. At relatively low concentrations around 100 mg/mL, IgGs in both buffers
showed a similar viscosity of about 2.7 cP, but when concentrated to about 200 mg/mL, the
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IgG viscosity in the sodium acetate buffer was significantly lower than that in the sodium
citrate buffer at the same pH, 4.6.
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2.5. Protein–Protein Interactions

Protein–protein interactions (PPIs) are known to play a role as a major factor inducing
aggregation and high viscosity in antibody formulations [30–32]. To elucidate the reasons
for the difference in the degree of aggregation and viscosity of IgGs in the sodium acetate
and citrate buffers, two measures of colloidal stability, the diffusion interaction parameter
(kD) and the second virial coefficient (A2), were measured by DLS and SLS, respectively
(Figure 7). Negative values of kD and A2 mean molecular attraction and positive values
mean molecular repulsion [33]. The kD of IgG in the sodium acetate buffer was 11.2 mL/g,
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while the kD of IgG in the sodium citrate buffer at the same pH 4.6 was −9.05 mL/g. Similar
to kD, the A2 values of IgG in the sodium acetate and citrate buffers were 1.2145 × 10−4 and
−2.5911 × 10−5 mol·mL/g2, respectively. Consequently, intermolecular interactions were
repulsive in the sodium acetate buffer at pH 4.6 but attractive in the sodium citrate buffer
at pH 4.6. This result suggests that the differences between the sodium acetate and citrate
buffers on the aggregation and viscosity of IgG correlate with protein–protein interactions.
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3. Discussion

In this study, the nanoDSF method with high-throughput screening and aggregation
measurement capabilities was applied to assess the conformational and colloidal stability
of IgG at various pH conditions and to select the optimal buffer for IgG formulation.
NanoDSF differs from conventional DSF in that it is a dye-free method that monitors
changes in intrinsic fluorescence from the inherent tryptophan of a protein, as a function
of temperature [15]. When the protein with tryptophan residues buried in the native state
is exposed to strong thermal stress, the folded structure converts to an unfolded state
and the tryptophan buried in the hydrophobic region is disclosed, thereby shifting the
maximum emission wavelength from 330 nm to 350 nm (red shift) [18]. Figure 1a shows a
typical nanoDSF thermogram of the F350/F330 ratio changes generated by the red shift
of fluorescence due to the change in microenvironment polarity around the tryptophan
residues. This demonstrates that IgG is suitable for nanoDSF measurement. On the
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other hand, for proteins with tryptophan residues exposed on the surface in the native
state, unfolding simply causes a change in fluorescence emission intensity, but not at the
F350/F330 ratio, which shows a flat signal in the nanoDSF thermogram [12]. In this case,
application of nanoDSF is difficult.

NanoDSF determines Tm and Tonset by measuring the intrinsic fluorescence intensity
ratio (350/330 nm) as a function of temperature, and its comparability with conventional
DSF and DSC has been demonstrated in previous studies [9,12]. The nanoDSF instrument
used in this study (Prometheus NT.48, NanoTemper Technologies) is equipped with back-
reflection technology that measures protein aggregation, providing the aggregation onset
temperature (Tagg) with increasing temperature. As shown in Figure 1, this instrument
can simultaneously determine the conformational stability parameter, based on protein
unfolding transitions (Tm and Tonset), and the colloidal stability parameter, based on aggre-
gation (Tagg). This ability is important for determining the thermal stability of proteins as
they may have different aggregation propensity despite similar Tm and Tonset, as shown in
Figure 2. The nanoDSF is a high-throughput screening method that can measure 48 samples
in parallel within 90 min, requiring only 10 µL for each sample, which is useful for selecting
optimal buffer conditions, as shown in Table 1 and Figure 3.

Human IgG consists of two identical light chains and two identical heavy chains
linked together by disulfide bridges. Each heavy chain contains a variable domain (VH)
and three conserved domains of CH1, CH2, and CH3, and each light chain contains a single
variable domain (VL) and a single constant domain (CL). The VH and CH1 domains form
heterodimers with the light chain VL and CL domains corresponding to the Fab domain,
and the CH2 and CH3 domains form the Fc fragment [34,35]. Previous work with DSC
showed thermal unfolding curves of IgG presenting two distinctive endothermic peaks
(Tm1 and Tm2), where Tm1 peak was due to unfolding of the CH2 domain and Tm2 peak
was due to the unfolding of the Fab and CH3 domains [36]. The endothermic peaks were
different depending on the pH, showing two broad peaks at pH 4 but and one large peak
with a front shoulder at pH 6. A similar phenomenon was observed in this study as well,
as shown in Figures 1, 2, and 4. Two unfolding transitions (Tm1 and Tm2) were observed
under the acidic pH condition of 4.0–6.0, as shown in Figure 4d,e. However, as shown in
Figure 1, only one Tm has observed at neutral conditions above pH 6, where the unfolding
transition, due to the CH2 domain, disappeared, and the unfolding transition, due to the
Fab and CH3 domains, were prominent.

The most important step to consider when developing liquid formulations of antibody
drugs is the choice of buffer. In particular, the pH of the buffer is the most important
condition for antibody formulation as shown in Figure 3, where pH itself had a greater
effect on both the conformational and colloidal stability of IgG. Since the IgG used in this
study is known to be basic with isoelectric points (pIs) of 6–9 [37,38], it was expected that
acidic buffers lower than pH 6 would exhibit stability against aggregation. Moreover,
many immunoglobulin products have been formulated at acidic pH [39]. As acidic buffers,
acetate and citrate buffers are most commonly used for antibody formulations [40]. On
the other hand, commercially available antibody formulations have a pH range of up to
8.0 [40]. Therefore, a phosphate buffer was used to cover the neutral pH range. In addition
to buffers, additives for antibody formulation may include tonicity-adjusting excipients,
viscosity-lowering excipients, and surfactants [40]. Sodium chloride is mainly used as an
ionic tonicity-adjusting excipient. Sugars and polyols, such as sucrose, trehalose, mannitol,
maltose, and sorbitol, are used as non-ionic osmolality-adjusting excipients. Surfactants are
included in antibody formulation to inhibit aggregation and minimize surface adsorption
at the air–water interface and containers. The most common surfactants are polysorbate 20
and polysorbate 80 [41]. If these additives are added to the formulation, the formulation
with higher stability may be obtained.

The effects on the thermal stability of IgG in the sodium citrate buffers were differ-
ent from the sodium acetate buffers at the same pH. As shown in Figure 4, the IgG in
the sodium citrate buffer exhibited lower Tm and Tagg values than those of IgG in the
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sodium acetate buffer at the same pH 4.6. In isothermal stability at 60 ◦C, IgG was also
more stable in the sodium acetate buffer than in the sodium citrate buffer, as shown in
Figure 5. Differences in unfolding and aggregation propensities between the sodium ac-
etate and citrate buffers at the same pH have also been reported in stability studies with
anti-streptavidin IgG1 and anti-CD20 monoclonal antibody Mab-T [24–26]. Barnett et al.
reported that anti-streptavidin IgG1 exhibited higher Tm and stronger net repulsive PPIs
in acetate buffer compared with the citrate buffer [25]. They speculated that preferential
accumulation of citrate anions on the protein surface compared with acetate anions would
reduce electrostatic repulsions between antibodies. Oyama et al. also reported similar
buffer effect on Mab-T antibody stability, showing higher Tagg and repulsive PPIs between
antibodies in acetate buffer at pH 5.0 compared with the citrate buffer at the same pH
5.0 [26]. They also suggested that the charge-shielding effect of citrate anions accumulated
on the surface of the Mab-T antibody is a major source of lower colloidal and conforma-
tional stability in the sodium citrate buffer. In this study, the kD and A2 values of IgG in
acetate buffer was positive, whereas the values of IgG in citrate buffer at the same pH 4.6
was negative, indicating that intermolecular interactions were repulsive in acetate buffer at
pH 4.6 but attractive in citrate buffer at pH 4.6 (Figure 7). This result is in good agreement
with the aforementioned studies of anti-streptavidin IgG1 and Mab-T antibody [24–26].
Contrasting interactions in the two buffers resulted in differences in viscosity when IgG
was concentrated to high concentrations as shown in Figure 6. When concentrated to about
209 mg/mL in each buffer, the IgG viscosity was 15.12 ± 0.05 cP in the sodium acetate
buffer, vs. 18.04 ± 0.15 cP in the sodium citrate buffer at the same pH 4.6. Therefore, kD and
A2 values showed a good correlation to the aggregation and viscosity propensity of IgG.

High protein concentrations above 50 mg/mL are becoming increasingly important for
antibody formulations. High antibody concentrations are also essential for intravenous or
subcutaneous IgG administration for a replacement therapy of primary immunodeficiency
diseases and for modulation of various autoimmune or inflammatory diseases [42,43].
In particular, in the case of subcutaneous administration, since the maximum volume is
limited to 1.0–1.5 mL, a highly concentrated protein composition is required to administer
a high-dose therapeutic antibody [44]. However, highly concentrated antibody solutions
greatly increase the viscosity, complicating patient administration by subcutaneous injec-
tion [45]. Therefore, viscosity is a critical quality attribute of highly concentrated antibody
formulations. In this study, when concentrated to approximately 209 mg/mL in the sodium
acetate buffer at pH 4.6, the viscosity of the IgG solutions was 15.12 ± 0.05 cP (Figure 6),
which is comparable to the viscosity of 14.7 ± 1.2 cP of the commercial product IgPro20
(Hizentra®, CSL Behring, Berne, Switzerland), a 20% liquid preparation of IgG for subcuta-
neous administration [46].

4. Materials and Methods
4.1. Materials

Human IgG was obtained from I.V.-Globulin SN injection product from GC Pharma
(Yongin, Korea). Acetic acid glacial was purchased from Duksan (Ansan, Korea). Tergazyme
was purchased from Alconox (White Plains, NY, USA). All other reagents including buffer
reagents and chemicals, unless indicated otherwise, were obtained from Sigma-Aldrich
(St. Louis, MO, USA).

4.2. Buffer Preparation

Three different types of buffers (sodium phosphate, sodium acetate, and sodium
citrate) were prepared using deionized water (18.2 MΩ·cm; Millipore, Billerica, MA,
USA). The pH of the buffer was measured with a pH meter (SevenCompact pH meter
S220, Mettler Toledo AG, Schwerzenbach, Switzerland) and adjusted to the target value
(within ± 0.05 deviation). The buffer concentration was adjusted to the same concentration
as 50 mM. The prepared buffers were filtered through 0.20 µm cellulose acetate filter (Toyo
Roshi Kaisha Ltd., Tokyo, Japan).
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4.3. Buffer Exchange and Centrifugal Concentration

IgG with a protein concentration of 50 mg/mL was originally formulated in the
product with a 100 mg/mL maltose solution at pH 4.25. In order to remove excipients in
the product and formulate the IgG with the target buffer, the product solution was first
exchanged with a low ionic strength buffer (5 mM sodium phosphate buffer at pH 5.5) using
an ultrafiltration unit with molecular weight cut-off (MWCO) of 30 kDa (Vivaspin Turbo
15 RC; Sartorius AG, Göttingen, Germany) at a spin speed of 3000 rcf for 15 min. This was
performed at 4 ◦C by mixing the product solution and the 5 mM sodium phosphate buffer
(pH 5.5) at a ratio of 1:1 and concentrating to the original concentration and repeated 6 times.
After this, the solutions were diluted with each target buffer to protein concentrations of 1,
2, 10, and 100, or greater than 200 mg/mL for nanoDSF experiments. Protein concentration
was examined by UV absorbance at 280 nm using Lunatic (Unchained Labs, Pleasanton,
CA, USA), which directly measures a wide concentration range of protein solutions without
dilution and required only a volume of 2 µL.

4.4. Nano Differential Scanning Fluorimetry

NanoDSF was performed using Prometheus NT.48 equipped with backreflection mode
(NanoTemper Technologies, München, Germany). Samples were loaded in nanoDSF grade
standard capillaries (NanoTemper Technologies GmbH, München, Germany) and exposed
at thermal stress from 20 ◦C to 95 ◦C by thermal ramping rate of 1 ◦C/min. Fluores-
cence emission from tryptophan after UV excitation at 280 nm was collected at 330 nm
and 350 nm with dual-UV detector. Protein aggregation was assessed simultaneously
employing backreflection optics, which detects protein aggregation by measuring the at-
tenuation of backreflected light intensity passing through the sample. Thermal stability
parameters, including Tonset, Tm, and Tagg, were calculated by PR.ThermControl software
(NanoTemper Technologies, München, Germany). For isothermal stability, the time interval
data from thermal stress at constant temperature (50, 54, 57, or 60 ◦C) were collected by
PR.TimeControl software (NanoTemper Technologies, München, Germany).

4.5. Viscosity Measurement

Viscosity of samples was measured by microVISC viscometer (RheoSense, San Ramon,
CA, USA) employing Rheometer-on-a-chip technology. A05 chip with viscosity ragne of
0–100 mPa·s (cP) was used. Before measurements, the chip was thoroughly cleaned with
tergazyme solution and calibrated with Newtonian fluids standard (water). Approximately
400 µL of the IgG samples was carefully loaded into a disposable syringe and the syringe
was placed in a viscometer, maintained at a temperature of 25 ± 0.1 ◦C in a temperature
control unit (HVROC-T). After temperature equilibration for 5 min, samples were injected
through a 50 µm flow channel at a constant flow rate, selected automatically.

4.6. Dynamic and Static Light Scattering

In order to measure the solute–solute and solute–solvent interactions, diffusion inter-
action parameter (kD) and the second virial coefficient (A2) were determined using DynaPro
NanoStar (Wyatt Technology Corporation, Santa Barbara, CA, USA), which can simultane-
ously perform dynamic light scattering (DLS) and static light scattering (SLS) with a laser
wavelength of 661 nm. Samples of IgG formulations ranging from 2 to 10 mg/mL were
applied. By DLS, the diffusion coefficient was plotted as a function of sample concentration;
thus, kD was calculated according to Equation (1), as follows:

Dm = D0 (1 + kD c) (1)

where Dm is the measured diffusion coefficient, D0 is the diffusion coefficient at infinite
dilution, and c is the concentration of protein (mg/mL).
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A2 value was calculated based on the slope of static light scattering at 90◦ as a function
of concentration, according to Equation (2), as follows:

K × c
R(θ)

=
1
M

+ 2A2c (2)

where K is optical constant, c is concentration of protein, M is apparent molar mass, and
R(θ) is the excess Rayleigh ratio.

5. Conclusions

This study demonstrates the utility of a nanoDSF-based thermostability assessment
technology for the development of IgG formulations. The nanoDSF method could simulta-
neously monitor conformational and colloidal stability of IgG. As a result of monitoring
in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) in the
pH 4–8 range, the best stability against aggregation was obtained in the sodium acetate
buffers at pH 4.6 or lower. On the other hand, IgG in the sodium citrate buffers showed
higher aggregation and viscosity than in the sodium acetate buffers at the same pHs. The
PPI parameters measured by DLS and SLS indicated that intermolecular interactions were
repulsive in acetate buffer at pH 4.6 but attractive in citrate buffer at pH 4.6. These results
suggest that the binding of citrate anions to the surface of IgG leads to attractive PPIs, and
has a lower Tagg than acetate buffers, in which repulsive PPIs occur. In conclusion, the
sodium acetate buffer at pH 4.6 is recommended as a buffer for IgG formulation, and the
nanoDSF method would be useful for the formulation and development of various protein
drugs, as well as other antibodies.
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