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Mouse Pachytene Checkpoint 2 (Trip13)
Is Required for Completing

Meiotic Recombination but Not Synapsis
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In mammalian meiosis, homologous chromosome synapsis is coupled with recombination. As in most eukaryotes,
mammalian meiocytes have checkpoints that monitor the fidelity of these processes. We report that the mouse
ortholog (Trip13) of pachytene checkpoint 2 (PCH2), an essential component of the synapsis checkpoint in
Saccharomyces cerevisiae and Caenorhabditis elegans, is required for completion of meiosis in both sexes. TRIP13-
deficient mice exhibit spermatocyte death in pachynema and loss of oocytes around birth. The chromosomes of
mutant spermatocytes synapse fully, yet retain several markers of recombination intermediates, including RAD51,
BLM, and RPA. These chromosomes also exhibited the chiasmata markers MLH1 and MLH3, and okadaic acid treatment
of mutant spermatocytes caused progression to metaphase | with bivalent chromosomes. Double mutant analysis
demonstrated that the recombination and synapsis genes Spo11, Meil, Rec8, and Dmc1 are all epistatic to Trip13,
suggesting that TRIP13 does not have meiotic checkpoint function in mice. Our data indicate that TRIP13 is required
after strand invasion for completing a subset of recombination events, but possibly not those destined to be
crossovers. To our knowledge, this is the first model to separate recombination defects from asynapsis in mammalian
meiosis, and provides the first evidence that unrepaired DNA damage alone can trigger the pachytene checkpoint
response in mice.
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Introduction

The genesis of gametes containing an intact, haploid
genome is critical for the prevention of birth defects, and is
highly dependent upon the fidelity of chromosome dynamics
before the first meiotic division. Homologous chromosomes
must pair, synapse, undergo recombination, and segregate
properly to opposite poles. Recombination, which repairs
repair double strand breaks (DSBs) that are genetically
induced in leptonema, is coupled with synapsis in budding
yeast and mammals. While our knowledge of the assembly and
nature of recombination machinery is extensive, little is
known about the disassembly of recombination intermedi-
ates, recruitment of DNA replication machinery during
recombinational repair, and how the choice between differ-
ent repair pathways is made.

Defects in recombination can preclude homologous chro-
mosome pairing, leave unrepaired chromosome breaks, and
cause aneuploidy by abrogating crossing over. To avoid such
deleterious outcomes, surveillance systems (“checkpoints”)
exist to sense meiotic errors and eliminate cells containing
unresolved defects. In many organisms, including S. cerevisiae,
Drosophila melanogaster, C. elegans, and mice [1-4], meiocytes
with defects in recombination and/or chromosome synapsis
trigger meiotic arrest in the pachytene stage of meiotic
prophase I. This response to meiotic defects is referred to as
the “pachytene checkpoint” (reviewed in [5]). Genetic experi-
ments in S. cerevisiae have identified elements of the pachytene
checkpoint machinery (reviewed in [5]). In addition to
meiosis-specific proteins, these include factors that play roles
in DNA damage signaling in mitotic cells [6-10]. Arabidopsis
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thaliana does not appear to have a pachytene checkpoint akin
to that in yeast [11], nor do male Drosophila.

The pachytene checkpoint is known to monitor two aspects
of meiotic chromosome metabolism in S. cerevisiae and C.
elegans: (1) DSB repair and (2) chromosome synapsis [2,12]. In
mice, both spermatocytes and oocytes harboring mutations
that disrupt DSB repair (such as Dmcl, Msh5, and Atm) are
efficiently eliminated in pachynema, but spermatocytes are
much more sensitive to DSB repair-independent synapsis
defects than oocytes [13-15]. However, because recombina-
tion is required for synapsis in mice (mutations in recombi-
nation genes such as Dmcl cause extensive asynapsis [16]), it
has remained formally uncertain whether there is a distinct
pachytene checkpoint that responds to defects in meiotic
recombination, and if so, whether it would be identical to
that used in somatic cells. The mechanisms of putative
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Author Summary

It is critical that the chromosomes carried by sperm and eggs
contain faithful representations of the genome of the individual that
produced them. During the process of meiosis, the maternal and
paternal copies of each chromosome “synapse” with each other
(become tightly associated), exchange genetic material via the
process of recombination, then separate into daughter cells in the
first of two meiotic cell divisions. The intricate chromosome
behavior is subject to errors, so most organisms have evolved
meiotic “checkpoints” that monitor fidelity of chromosome synapsis
and repair of DNA damage. These checkpoints cause defective cells
to self destruct rather than generate defective sperm or eggs. We
studied the effects of deleting mouse Trip13, a gene that in distant
organisms plays a key role in meiotic checkpoint control. These
experiments revealed that instead of having a checkpoint role,
Trip13 is required for one of the two major classes of recombination
in meiosis that is required for repairing broken DNA molecules. The
chromosomes still synapsed normally, but animals were sterile due
to massive death of oocytes and spermatocytes. These results
indicate that, in addition to a checkpoint that responds to failed
synapsis, one exists to specifically detect unrepaired DNA damage
that is due to failed recombination.

pachytene checkpoint control remain unknown in mammals,
since no mutations have been identified that abolish it.
PCH2, encoding a nucleolar-localized AAA-ATPase that
was originally identified in an S. cerevisiae genetic screen for
mutants that relieve pachytene arrest of asynaptic zipl
mutants [8], was recently determined to be an essential
component of the pachytene synapsis (but not DSB repair)
checkpoint in yeast and worms [2,12]. PCH2 orthologs are
present in organisms that undergo synaptic meiosis, but not
asynaptic meiosis, prompting the suggestion that a Pch2-
dependent checkpoint evolved to monitor synaptonemal
complex (SC) defects from yeast to humans [12]. Here, we
generated mice deficient for the Trip13, the ortholog of PCH?2,
and evaluated whether it also plays a role in the pachytene
checkpoint. Surprisingly, while we found no evidence for
checkpoint function, we did uncover a potential role for this
protein in noncrossover (NCO) repair of meiotic DSBs.

Results

Trip13 Is a Widely Expressed Mammalian Ortholog of PCH2
with Unusual Phylogenetic Relationships

The mammalian ortholog of PCH2, Trip13 (thyroid hormone
receptor interacting protein 13), encodes a protein with
extensive amino acid homology in regions alignable to the
yeast and worm orthologs (Figure S1) [12]). Interestingly,
phylogenetic analysis of TRIP13/Pch2p shows that the mamma-
lian protein clusters more closely to plants than it does to the
evolutionarily more closely related worms and flies (Figure 1A;
see Discussion). Semi-quantitative reverse-transcriptase PCR
(RT-PCR) analysis showed Tripl3 mRNA to be expressed in a
variety of embryonic and adult tissues, including testis (Figure
1B), consistent with mouse and human EST data summarized in
Unigene (http://[www.ncbi.nlm.nih.gov/UniGene). It is also
highly expressed in human and mouse oocytes [17].

Generation of Trip13 Mutant Mice
To explore the function of TRIP13 in mammals, we
generated mice with a gene trap-disrupted allele, Tri[)li’RRBO47
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(Figure 1C; abbreviated as Tri[)l)"(;[). Heterozygotes were
normal in all respects, but homozygotes were present at ~2/
3 the expected ratio from intercrosses between heterozygotes
(91 Trip1 3™, 188 Trip13°"*, and 61 Trip13°"“"). Since >90% of
prewean mice that died were mutant homozygotes, this
discrepancy is apparently due to a partially penetrant lethal-
ity. Most surviving Tri;blj’("”m animals were grossly normal.
However, homozygotes that were semi-congenic (N4) on the
C57BLI6] strain were often markedly smaller and/or had
kinked or shorter tails (Figure 2A and 2B).

RT-PCR analysis of Triplj’(';t expression (Figure 1D)
revealed a low level of normally spliced transcripts in testes
of homozygotes that is presumably a consequence of
incomplete usage of the gene trap’s splice acceptor. Western
blot analysis, using a polyclonal antibody raised against a
peptide encoded by exon 3, revealed multiple species in wild-
type and heterozygous testes, one of which corresponds to the
expected size of 48 kDa (Figure 1E). This and three other
species were undetectable in homozygous mutant testes, but a
reduced amount of an intense ~38 kDa smaller band was
present. It is not clear if this corresponds to TRIP13. The
greatly decreased Tripl3 mRNA and predicted correct-length
protein in mutants indicate that the Tri[)l)"RRBU47 allele is
severely hypomorphic.

To determine the germ cell types in which TRIP13 is
expressed, and to assess possible expression in the mutant by
means other than Western analysis, testis sections were
immunolabeled for TRIP13 using a polyclonal chicken
antipeptide antibody (see Materials and Methods). The most
intensely labeled cells in control testes were Type B
spermatogonia and leptotene spermatocytes (Figure 1F).
Zygotenelpachytene spermatocytes stained less strongly, and
there was no detectable staining in late pachytene sperma-
tocytes. TRIP13 appeared to be nuclear localized. There was
no such staining of nuclei in mutant seminiferous tubules
(Figure 1F). To further assess the nuclear localization, TRIP13
was used to probe meiotic chromosomes prepared by surface
spreading of spermatocyte nuclei. In wild type, there was
diffuse nuclear staining, and no evidence of concentration on
SC cores (marked by the axial element protein SYCP3) at any
meiotic substage (Figure 1G). TRIP13 signal was noticeably
absent in mutant meiotic nuclei.

Infertility Due to Meiotic Disruption in TRIP13-Deficient
Meiocytes

Homozygotes of both sexes had small gonads (Figure 2C;
see below) and were invariably sterile. Ovaries of adult
TripIBG’/G': females were severely dysmorphic and had few or
no follicles (Figure 3A and 3B). The majority of oocyte loss
occurred in late embryogenesis or early in postnatal develop-
ment, since 2 d postpartum ovaries were markedly smaller
than those of control littermates, and were lacking oocytes or
newly forming follicles (Figure 3C and 3D). Thus, oocytes
failed to progress to the dictyate (resting) phase. Since we
observed oocytes with pachytene stage chromosomes in 17.5 d
Triplj’ct/ct embryonic ovaries (unpublished data), this indi-
cates that oocytes were eliminated somewhere between
pachynema and dictyate.

Histological sections of mutant testes revealed a lack of
postmeiotic cell types that are characteristic of wild-type
seminiferous tubules (Figure 3E). The most developmentally
advanced seminiferous tubules contained adluminal sperma-
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Figure 1. The Mouse PCH2 Ortholog TRIP13 and Expression in Wild Type and Mutant

(A) Phylogenetic tree of presumed PCH2/TRIP13 orthologs. The database sequence accession number of each protein is presented in Table S1. Numbers
shown are bootstrap values (see Materials and Methods). The clustering was the same regardless of whether the whole entire AA sequence or trimmed
sequences (where regions showing little conservation were removed) were used for the analysis. Major eukaryotic groups are indicated in color, with
deuterostomia in blue, plants in green, protostomia in purple, and fungi in maroon.

(B) Amplification products of cDNA from the following tissues: 1, heart; 2, brain; 3, spleen; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; 8, testis; 9, E7
embryo; 10, E11 embryo; 11, E15 embryo; and 12, E17 embryo.

(C) Intron-exon structure of TRIP13 and insertion site of gene-trap vector. See Materials and Methods for details on how the precise insertion site was
identified.

(D) RT-PCR of Trip13 and a control gene Med31 from testis RNA. The Trip13 primers are situated in the first and last exons (see Materials and Methods).
(E) Western blot analysis of testis protein with anti-TRIP13 antibody. The blot was later probed with anti-alpha tubulin actin as a loading control. The
expected TRIP13 protein is ~48 KDa.

(F) Localization of TRIP13 in testes. Wild-type (top) and mutant (bottom) testis sections were probed with chicken anti-TRIP13, and detected with HRP-
conjugated anti-chicken IgG (brown/red staining). Expression in WT was most prominent in the nuclei of Type B spermatogonia (Sg), leptotene
spermatocytes (LS), and early pachytene spermatocytes (PS), but not late pachytene spermatocytes (LP). No nuclear staining was seen in mutant testis
sections, although reddish cytoplasmic background is present. Identification of cell types was judged in part by estimating the epithelial stage of the
tubules as described [67].

(G) TRIP13 localization in surface-spread spermatocytes. Preparations were immunolabeled with anti-SYCP3 (S) and TRIP13 (T). Both individual and
merged images are shown for leptotene (Lep), zygotene (Zyg), and pachytene (Pac) spermatocytes. Nuclear staining was absent in the mutant.
doi:10.1371/journal.pgen.0030130.g001
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Figure 2. Developmental Phenotypes of Trip13 Mutant Mice

Trip13 and Meiotic Recombination

(A) Shown are 21-d-old littermates. Note the shortened tail in the mutant, but overall similar body size.
(B) Shown are 23-d-old littermates. The mutant is smaller in this case, but the tail is not as truncated as the mouse in (A).

(C) Wild-type (WT) and homozygous Trip13 mutant (MUT) testes.

(D) and (E) are cross sections through 17.5-d-old heterozygous (“WT”) and homozygous mutant Trip13 testes, respectively. Whereas the tubules in WT
show coordinated spermatogenesis with pachytene spermatocytes present in all tubules (proximal to the lumen), developmental progression in the
mutant is not synchronized between tubules. Some tubules have no pachytene spermatocyes (asterisks), while in others, development is somewhat

disorganized (#).
doi:10.1371/journal.pgen.0030130.g002

tocytes with condensed chromatin characteristic of pachyne-
ma (Figure 3F). The absence of coordinated spermatogenic
progression beyond this stage is indicative of a pachytene
arrest. This was revealed more clearly by chromosome
analysis (see below). Some sections of adult seminiferous
tubules contained postmeiotic spermatids (Figure 3G),
although we saw no motile epididymal sperm. These drastic
meiotic defects stand in contrast to yeast and C. elegans, in
which deletion of Pch2 alone has minor effects on spore/
gamete development [2,8].

TRIP13-Deficient Meiocytes Undergo Homologous
Chromosome Synapsis Despite the Presence of
Unrepaired DSBs in Pachynema

To better characterize the degree of meiotic progression in
Trip13°7“" spermatocytes, we immunostained chromosome
spreads for SYCP3 and SYCP1, components of the axiall
lateral elements and transverse filaments, respectively, of the
synaptonemal complex (SC). Pachytene spermatocyte nuclei
from postpubertal mutant testes could assemble normal SC
cores and exhibited full synapsis of chromosomes as judged
by colabeling of SYCP1 and SYCP3 along the full lengths of
all autosomes (Figure 4A). Additionally, the X and Y
chromosomes were normally synapsed at their pseudoauto-
somal region. More prepubertal (17.5 d postpartum) mutant
spermatocytes contained asynaptic or terminally asynapsed
chromosomes than age-matched controls (62.5% versus 25%,
respectively; Figure 4B). We attribute this to a delay in the
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first wave of postnatal spermatogenesis (Figure 2D and 2E),
likely related to systemic developmental retardation (Figure
2A and 2B). Nevertheless, since TripI3°”“" spermatocytes
progress to pachynema with no gross SC abnormalities, and
oocytes were eliminated soon after birth (a characteristic of
DNA repair mutants [13]), this suggested that unrepaired
DSBs are responsible for eventual meiotic arrest and
elimination.

To elucidate the cause of meiotic arrest, we analyzed
meiotic chromosomes with a variety of markers that are
diagnostic of recombination and synapsis. Recombination in
Trip13°”“" spermatocytes appeared to initiate normally as
judged by the presence of YH2AX in leptonema (Figure S2A
and S2B), which reflects the presence of meiotically induced
DSBs [18]. RAD51 and/or DMCI1, components of early
recombination nodules (ERNs), was also present as abundant
foci in Trip13°"“" zygotene spermatocytes (unpublished data;
the anti-RADb51 antibody cross-reacts with DMC1), indicating
that recombinational repair of DSBs is initiated. The cohesin
complex, which is essential for completion and/or mainte-
nance of synaptic associations, appeared to assemble nor-
mally as judged by immunolabeling for the meiosis-specific
cohesins STAG3 (Figure S2C and S2D) and RECS8 (unpub-
lished data). Because yeast PCH2 localizes to telomeres in a
Sir3p-dependent manner, we tested for possible telomere
defects by immunolabeling for TRF2, a component of a
protein complex that plays an essential role in telomere
protection [19]. It was localized to telomeres of both fully

1368 August 2007 | Volume 3 | Issue 8 | €130



Trip13 and Meiotic Recombination

Figure 3. Histology of Mutant Gonads

All are hematoxylin/eosin-stained paraffin sections. Testes are from 6-wk-old males, except as indicated below.
(A) Wild—tg/e 25-d-old ovary.

(B) Trip13°YS* 25-d-old ovary, showing dysgenesis from an absence of oocytes.

(C) Trip13°"/4 2-d-old control ovary. Arrows point to oocytes in newly forming follicles.

(D) Trip13°7“* 2-d-old ovary, dysgenic due to lack of oocytes. Magnification is the same as its littermate in “C.”

(E) Wild-type testis.

(F) Trip13°7C* testis with uniform pachytene arrest.

(G) Trip13°Y4t 3-mo-old testis with some postmeiotic spermatids (arrows).

(H) Spo117 testis. A tubule with spermatocytes at leptotene/zygotene transition is labeled ZP, and tubules with apoptotic spermatocytes are marked
with an asterisk. The specimen was taken from a littermate of that in (I).

(I) Spo11~~ Trip13°7%" testis. Labeling is the same as in (H). The inset contains a tubule with leptotene-zygotene spermatocytes.
(J) Mei1™~ Trip13°!/+ testis. The specimen was taken from a littermate of that in (K).

(K) Mei1™~ Trip13°7°t testis, )

(L) Rec8M“8/Rec8"*™ Trip13%'/4 testis. The Rec8"® allele was described [39]. The specimen was taken from a littermate of that in (M).
(M) Rec8"/Rec8V€® Trip13°7C! testis.

(N) Dmc1™~ Trip13°YC* testis.

(O) Spo1 1~ Trip13G‘/+ 25-d-old ovary. The specimen was taken from a littermate of that in (P).

(P) Spo117/~ Trip13°Y4* 25-d-old ovary.

(Q) Mei1™~ Trip13°/+ 25-d-old ovary. The specimen was taken from a littermate of that in (R).

(R) Mei I*/fs Trip13G‘_;Gt 25-d;3<2|d ovary.

(S) Rec8ME{ /RecsMef Trip13®'/+ 25-d-old ovary. The specimen was taken from a littermate of that in (T).

(T) Rec8"®/Rec8"® Trip13°Y4t 25-d-old ovary.

doi:10.1371/journal.pgen.0030130.g003
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Figure 4. Immunohistochemical Analysis of Pachytene Spermatocyte Chromosomes

Surface-spread chromosomes were immunolabeled with the indicated antibodies and fluorophores. As indicated in the upper right of each panel, cells
were from wild type (WT, either 4+/4 or Trip13°¥*) or Trip13°Y%" (Mut). There were no differences seen between heterozygotes and +/+ spermatocytes.
(A) A mutant pachytene nucleus with full synapsis. Areas of SYCP1/SYCP3 colabeling are yellow.

(B-E) Spermatocytes nucleus from 17.5 d postpartum mutant. Asynapsed chromosomes or regions of chromosomes are indicated by white and yellow
arrows, respectively. Unlike the normal distribution in wild-type pachytene spermatocytes (C), BLM foci are present on synapsed pachytene
chromosomes in the mutant (D). RAD51 foci, which are abundant earlier in prophase, disappear from autosomes in wild-type pachytene nuclei (E) and

the bulk of staining is over the XY body (arrow).
(F) RAD51 persists on the synapsed mutant chromosomes (arrows).
(G) H2AX phosphorylation is restricted to the XY body in WT.

(H) In addition to a large area of YH2AX staining (arrow) over the XY body, there is extensive autosomal H2AX phosphorylation (arrows).
(I, J) Note that in wild-type pachytene spermatocytes, TOPBP1 is present only over the XY body (yellow arrow). In the mutant (J), an arrow denotes one
area of intensive staining that may be over the sex chromosomes, but many other chromosome cores are positively stained.

(K, L) RPA persists along synapsed cores in the mutant, not WT.
(M, N) Arrows indicate examples of MLH3 foci on SCs.

(O) In WT late pachytene spermatocytes, RAD51 is present only at background levels.

(
(arrows) at the typical 1-2 foci per chromosome as in (M).
doi:10.1371/journal.pgen.0030130.g004

synapsed and telomerically asynaptic mutant chromosomes
(Figure S2E and S2F).

Defects in DSB repair became apparent in pachynema
upon probing of mutant spermatocyte nuclei with antibodies
against molecules involved in various stages of recombina-
tion. In >99% of Trip13“’*" chromosome spreads, BLM
helicase (Figure 4C and 4D), RAD51/DMCI1 (Figure 4E and
4F), YH2AX (Figure 4G and 4H), and TOPBP1 (Figure 41 and
4]) all persisted abnormally on synapsed chromosomes. For
RAD51/DMCI1, mutant pachytene spermatocytes contained
138 = 6 foci (compared to 11 * 3 foci in wild type, most of
which were on the XY body), down from 218 * 13 in
zygonema (compared to 220 * 13 foci in wild type). TOPBP1
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P) As in (F), extensive RAD51 staining delineates SCs in mutant pachytene nuclei (indicated by white arcs). MLH1 foci colocalize with these tracts

is a DNA damage-checkpoint protein involved in ATM
protein-dependent activation of ATR protein [20,21]. It
binds sites of DSBs and unsynapsed regions of meiotic
chromosomes [22,23]. BLM has been reported to colocalize
with markers (RPA and MSH4) of recombination at sites
distinct from those that become resolved as crossovers (CO)
[24]. We therefore assessed the distribution of RPA, the
ssDNA binding protein, which is normally present at focal
sites of synapsing meiotic chromosomes before disappearing
in mid-pachynema [25]. It is thought to bind D-loops of
recombination intermediates [26]. RPA also persisted on
pachytene mutant chromosomes (Figure 4K and 4L). These
data indicate that unrepaired DSBs, or unresolved recombi-
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nation intermediates, remain in pachynema and activate a
DNA damage checkpoint system.

It should be noted that chromosomes affected by meiotic
sex chromosome inactivation (MSCI) and meiotic silencing of
unpaired chromatin (MSUC) are heavily stained by antibodies
for several DSB repair-associated molecules, including
YH2AX. H2AX phosphorylation due to MSCI and MSUC is
conducted by ATR, not ATM [27-29]. Since mutant chromo-
somes are fully synapsed, and MSUC is known to occur only as
a result of asynapsis, the decoration of Trip13“”“" chromo-
somes with DNA repair markers is probably attributable to
incomplete DNA repair rather than transcriptional silencing.

Consistent with the presence of rare (<1%) TripBGt/G’
pachytene spermatocytes devoid of persistent DNA repair
markers, and testis histology showing some degree of
postmeiotic progression (Figure 3G), we observed both
diplotene nuclei that lacked autosomal RAD51/DMCI1 and
YH2AX (Figure S3A-S3D), and also metaphase I spreads with
20 bivalents (Figure S3E-S3F). Since Triplim may not be a
complete null, these diplotene and metaphase I spermato-
cytes might arise by virtue of having sufficient wild-type
TRIP13.

CO-Associated Markers Appear Normally in the Absence
of TRIP13

The persistence of BLM on Trip 13" spermatocyte
chromosomes suggests that at least a subset of the unrepaired
DSBs correspond to sites of defective NCO recombinational
repair. To assess whether CO recombination occurs in the
mutant, we examined the distribution of the mismatch repair
proteins MLH1 and MLH3, which are normally detectable as
foci in mid-late pachynema and mark the locations of
chiasmata [30,31]. Remarkably, MLH1/3 foci were formed;
we observed 1-2 focilchromosome as in wild type and at
typical overall levels MLH3 =23 *= 2, N=10; [30,32]) on mid-
late pachytene chromosomes (Figure 4M and 4N; MLH1 not
shown). Since <1% of TripIS(”/m pachytene nuclei had
normal repair (as judged by absence of persistent DSB repair
markers; see above), but most of the pachytene nuclei had
MLH1/3 foci, it was unlikely that the MLH1/3 foci formed only
on chromosomes with fully repaired DSBs. To test this
directly, we conducted double staining for MLH1 and RAD51/
DMCI1. MLH1 foci were present on chromosomes that also
contained numerous RAD51/DMCI foci (Figure 40 and 4P).

To assess whether these MLHI1/3 foci in Triplj’m/w
pachytene spermatocytes represent CO events completed to
a point where they could maintain interhomolog attachments
though the end of prophase I, we treated testicular cells from
17.5-20.5-d-old control (+H), Tripl}ct/ct, and DmcI™™ mice
with the protein phosphatase inhibitor okadaic acid (OA), a
chemical that induces degradation of the SC, chromosome
condensation, and premature progression to metaphase I
[33]. Fifteen metaphase spreads were identified for each
genotype. Whereas all of the Dmel™ spreads had ~35 or
more condensed chromosomes, all of the +H and Tripl3°7
spreads had 20-25, suggesting that the MLHI1/3 foci in
Trip13°7¢! pachytene spermatocytes represent sites of com-
pleted, or near-completed, COs. Because the preparations
were made from whole testes, it is possible that the univalent-
containing metaphases from DmcI™ mice were from sper-
matogonia, not spermatocytes.
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TRIP13 Deficiency Does Not Alleviate Meiotic Arrest
Phenotypes of Mutants Defective in Synapsis

To determine if TRIP13 deficiency prevents apoptosis
triggered by asynapsis as in C. elegans, we analyzed mice that
were doubly mutant for Spoll and Tripl3. SPOI11 is a
transesterase that is essential for the creation of genetically
programmed DSB during leptonema of many organisms,
including mice [18]. In C. elegans, spo-11 mutant gametes have
extensive asynapsis, which triggers PCH-2 dependent apop-
tosis in pachynema [2]. In mice, S;bol]ik spermatocytes are
severely defective in homologous chromosome synapsis
[34,35], and arrest with chromosomes in a state characteristic
of the zygotene/pachytene transition (Figure 3H). Spermato-
cytes in Tripl3%"“" SpolI™ testes progressed maximally to
that point before undergoing death (Figs 3I), well before the
spindle checkpoint that eliminates achiasmate spermatocytes
[36]. There was no evidence of metaphase I spermatocytes or
postmeiotic spermatids in these testes, unlike those seen in
Trip13 single mutants (Figure 3G). In contrast to the complete
synapsis in TripI3Gt/G' pachytene spermatocytes (Figure 5A),
in which SPO11 is available in leptonema to initiate (via DSB
induction, Figure S2A and S2B) a recombination-driven
homolog search, chromosome synapsis in doubly mutant
spermatocytes was highly disrupted as in Spol I single mutants
(Figure 5B and 5C). Identical studies were performed with
mice deficient for Meil, a vertebrate-specific gene also
required for DSB formation and chromosome synapsis [37],
with similar results (Figure 3] and 3K; immunocytology not
shown).

In yeast, deletion of PCH2 alleviates the pachytene arrest
caused by asynaptic mutants zipl and zip2 [8]. Although
mouse SYCP1 might be a functional equivalent of Ziplp,
because Sycpl mutant spermatocytes arrest at approximately
the same point as 7ripl3 mutants, there would be no
opportunity to observe bypass of Syqblf/*, Since Zip2p is
present at sites of axial associations, even in zip] mutants, it
has been suggested that Zip2p promotes initiation of
chromosome synapsis [38]. These observations raise the
possibility that in yeast, Pch2p responds to synapsis polymer-
ization rather than initiation. To test this, we performed
epistasis analysis with a Rec8 allele (Rec8™“®, abbreviated as
Rec8™). Meiotic chromosomes of Rec§ mutant spermatocytes
undergo apparent homolog pairing and interhomolog syn-
aptic initiation, but are defective in DSB repair and fail to
maintain interhomolog synapsis [39,40]. Rather, sister chro-
matids appear to synapse and are bound by SYCP1 along
their axes. Rec§ mutants do not progress to diplonema or
metaphase 1. Double mutant analysis indicated that Rec§ is
epistatic to Tripl3. As in the Spoll and Meil experiments,
histology of testes deficient for both REC8 and TRIP13
resembled the Rec8 mutant, with no evidence of progression
to metaphase I that occurs in Tripli’(”/m mice (Figure 3L and
3M). Immunocytological analysis of spread chromosomes
showed a failure of homologous chromosome synapsis in both
the Rec8 " and Rec§ ™~ Triplj’cmt spermatocytes, as previously
reported for Rec8 mutants (Figure 5D and 5E) [39,40].

Although subsequent reports indicate otherwise [10,12],
deletion of PCH2 in yeast was originally reported to alleviate
meiotic arrest caused by deficiency for the meiosis-specific
RecA homolog DMCI [8]. To investigate this relationship in
mice, we constructed animals doubly mutant for Tripl3 and
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Dmecl. As in DmecI™ mice, in which spermatocytes undergo
meiotic arrest from defective DSB repair and failed chromo-
some synapsis [16], spermatogenesis in Dmel™~ Triplj’(;t/ct
testes was uniformly arrested at the point where spermato-
cytes contained chromatin characteristic of zygonemal/pachy-
nema (Figure 3N). Immunocytological analysis indicated that
both DmcI™ and Dmel™ Triplj’ct/ct chromosomes had
extensive asynapsis compared to Triplj"ct single mutants
(Figure bF-5H), and all had persistent RAD51/DMCI1 foci and
phosphorylated H2AX (yYH2AX; Figure 5I-5L), confirming
that Dmcl is epistatic to Tripl3. Doubly mutant females had
residual ovaries, phenocopying DmeI™ and Trip]j‘ct/ct
mutants (unpublished data).

single

Meiotic Defects in Trip13°7®* Oocytes Are DSB-Dependent
Epistasis analysis of females was insightful with respect to
the cause of arrest in Tripl3 mutants. Both Mei]f/flTriplj’G”G[
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and Spollf/flTriplj’(”/(’vl females had ovaries with numerous
follicles, identical to Meil and Spoll single mutants (Figure
30-3R). Thus, Spoll and Meil are epistatic to Tripl3 in
oogenesis, just as they are to Dmcl [13,41]. This demonstrates
that oocyte loss in TripBGt/Gt females is dependent on DSB
formation. In conjunction with the immunohistochemical
data, these data provide strong evidence that meiotic arrest in
Tripl3 mutant mice is due to defects in DSB repair. As
expected, ovaries of Rec8 Tripl3 double mutants were devoid
of oocytes as were those from either single mutant (Figure 3B,
3S, and 3T).

Discussion

Genetic experiments in S. cerevisiae provided evidence that
the pachytene checkpoint monitors and responds to recom-
binational DSB repair and synapsis independently. Wu and
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Burgess concluded that the repair checkpoint is RADI7-SAE2
dependent, while the synapsis checkpoint is PCH2-ZIPI
dependent [12]. Of these four genes, SAE2 and ZIPI do not
have clear mammalian orthologs (although SYCP1 may be a
functional ortholog of ZIP1), and mutation of the mouse
RADI17 ortholog, Radl, presumably causes embryonic lethal-
ity [42]. Thus, mutational analysis of mouse Pch2 (Tripl3),
which is also critical for the synapsis checkpoint in C. elegans
[2], was the best remaining option to evaluate potential
functional conservation in mammalian meiotic checkpoint
control.

Our results demonstrate that in mice, the primary meiotic
function of TRIP13 is in recombination itself. We found no
evidence that it is involved in pachytene checkpoint control.
Our data suggest that while recombination events destined to
be resolved as COs can proceed normally in Tripl3 mutants,
DSBs that enter the NCO repair pathway are incompletely
resolved or processed inefficiently. This hypothesis is
compatible with current knowledge of meiotic recombina-
tion pathways. In S. cerevisiae, CO and NCO pathways are
distinct [43]; they have different recombination intermedi-
ates, and are dependent upon different proteins [44,45]. Mice
also appear to have independent CO versus NCO recombi-
nation pathways [46]. As in yeast, both require SPOI11-
induced breaks, but only the CO pathway requires MLHI1.
Both types of recombinant products are formed by mid-late
pachynema. Another possibility is that the recombination
defects are a result of defective intersister recombination.
However, this type of DSB repair is suppressed in meiotic
cells. Ablation of RAD54, which mediates intersister recombi-
nation in yeast, does not significantly disrupt meiosis in
either yeast or mice [47,48]. Interestingly, RAD54-deficient
spermatocytes display abnormal persistence of RAD51 foci
on pachytene chromosomes, similar to those in TRIP13 mice,
but there are no deleterious effects on meiotic progression or
fertility [49].

Data from budding yeast also indicate that Pch2p functions
in recombination. Deletion of PCH2 delays meiotic progres-
sion by ~2 h in SK1 yeast, and causes a minor decrease in
ascus formation [50]. DSBs persist >2 h longer in pch2A yeast
than in wild type, and hyperresection of DSBs in dmcIA pch2A
double mutants is lower than in dmcIA cells [10]. Additionally,
it was reported that pch2A yeast had a meiosis I delay
dependent on the RADI7-SAE2 checkpoint that monitors
recombination intermediates [12]. However, the exact role of
TRIP13 (or Pch2) in recombination is unclear. Because
synapsis occurs in TRIP13-deficient spermatocytes and is
dependent on DSB formation (activity of SPO11 and MEI1),
we suggest that TRIP13 functions after homology recognition
and strand exchange, and that recombination events entering
the CO repair pathway are either completed or nearly so
(because OA treated resulted in bivalent chromosomes). One
possibility for TRIP13's role in recombination is that it is
directly involved in a step specific to resolution of NCO
recombination intermediates. Another possibility is that
TRIP13 is required for disassembly of NCO recombinational
repair complexes [51] containing those proteins that persist
abnormally on TripZSGt/Gt pachytene chromosomes. Notably,
TRIP13 has two putative ATPase domains, a signature of
AAA-ATPase ClIpA/B chaperones that perform protein or
protein/DNA complex disassembly [52]. These potential
recombination roles might not be limited to meiosis, since
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Tripl3 is widely transcribed and the mutant animals exhibited
developmental defects. Finally, TRIP13 might play an indirect
role, such as providing a “licensing” signal for the resolution
of NCO intermediates and completion of meiosis.

Regarding the cause of cell death in Tripl3 mutants, our
data indicate that this is triggered by defective DSB repair
rather than asynapsis. We base this conclusion on two
observations: (1) oocyte elimination is dependent upon DSB
formation and (2) synapsis is normal in spermatocytes of
adult testes. Indeed, this mutant is unique in that recombi-
nation defects occur in the absence of asynapsis (e.g., as in
Dmcl knockouts). Thus, the Tripl3 mutant provides the first
evidence that unrepaired DNA damage alone can trigger the
mammalian pachytene checkpoint response. Furthermore,
our results allow us to conclude that oocytes and spermato-
cytes share a similar, if not identical, DNA damage pachytene
checkpoint that is decoupled from a synapsis checkpoint.

Interestingly, we found that OA treatment of Tri[)li’(“/w
spermatocytes could propel them into MI, despite a report that
the same did not occur when wild-type pachytene spermato-
cytes were treated with the DSB-inducing agents gamma
radiation or etoposide [53]. It is possible that the nascent
induction of DSBs in pachynema evokes a checkpoint response
that cannot be bypassed by OA, whereas the post-strand
invasion lesions in TRIP13-deficient spermatocytes do not.

TRIP13 was originally discovered to be an interactor with
rat thyroid receptor beta (THRB; [54]), but the relationship
between THRB and TRIP13 in meiosis is unknown. Interest-
ingly, we observed that THRB is distributed diffusely
throughout wild-type spermatocyte nuclei but is excluded
from the XY (sex) body (unpublished observations), a
compartmentalized nuclear domain beginning in pachynema,
in which the sex chromosomes become heterochromatinized
and transcriptionally silenced in the process of MSCI [55].
However, the XY body appeared intact in most mutant
spermatocytes upon probing with several markers of XY
heterochromatinization (unpublished observations). Consid-
ering that THRB knockout mice are viable and fertile [56],
the functional relationship between TRIP13 and its receptor
THRB in meiosis is unclear.

Given the high similarity of PCH2 orthologs throughout
the eukaryotic world, one or more essential functions of this
protein must be conserved. Since TRIP13 does not exhibit
checkpoint function in mice, we surmise that the TRIP13/
PCH2 ancestral protein had a function in recombination that
persists to the present. Notably, A. thaliana does not appear to
have a meiotic checkpoint activity that eliminates mutant
meiocytes in a manner analogous to organisms such as mice,
budding yeast, and female Drosophila [11,57], and mammalian
TRIP13 is more similar to Arabidopsis PCH2 than the fly or
worm proteins (Figures 1A and S1). The unusual relatedness
between mammalian and plant PCH2 may therefore be
attributable to both the presence of a common conserved
function (namely recombination, although the role of PCH2
in plants has yet to be determined), and the absence of
checkpoint function. Nevertheless, the evolutionary relation-
ships between animals, fungi, and plants (which are discord-
ant with PCH2 sequence phylogeny) do not allow
parsimonious models addressing the points in time that
checkpoint functions in PCH2 were gained or lost. It is
possible that its checkpoint function evolved independently
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in worms and budding yeast. The picture will become clearer
as the function of PCH2 in other organisms is elucidated.

The nature of the synapsis checkpoint in male mice
remains unidentified. One possible candidate is Dot (PCHI
in yeast), a histone methyltransferase silencing factor that is
required for pachytene arrest of zipl and dmcl mutants in
yeast [58], and for preventing RADb54-mediated recombina-
tional DSB repair between sister chromatids. However, DOT1
acts upstream of PCH2. Given that TRIP13 doesn’t have
checkpoint function in mice, a potential role for mammalian
DOT1 in the pachytene checkpoint is dubious but awaits
investigation. Recently, it was shown that the TRP53 homolog
TRP63 is required for DNA damage-induced death of
dictyate-stage primordial oocytes, leading to the suggestion
that it is involved in monitoring genome integrity [59].
However, this activity occurs subsequent to a pachytene
checkpoint. As alluded to earlier, a complicating problem for
studying potential meiotic checkpoint genes in mice is that as
in yeast, such genes often have mitotic functions (such as
RAD24 [7]), and their ablation can cause lethality [42]. Unless
mammalian pachytene checkpoint components have ortho-
logs with similar functions in organisms such as yeast, their
identities are likely to remain elusive.

Materials and Methods

PCR analysis of Tripl3 cDNA. Tripl3 was amplified from samples
of Clontech’s Mouse Multiple Tissue cDNA Panel 1 (http:/fwww.
clontech.com), using the following primers: 5'-GCACCATTGCACTT-
CACATC-3" (TRP3-6F) and 5-TGACCATCAGACTGTCGAGC-3’
(TRP3-6R). These primers correspond to exons 3 and 6, respectively,
and amplify a 330-bp ¢cDNA product. The cDNAs in this panel are
equalized to allow quantitative analysis by RT-PCR.

Generation of Tripl3-deficient mice. The mouse embryonic stem
cell line RRB047 (strain 129/0Ola) containing a gene trap insertion in
Trip13 was obtained from BayGenomics (http://www.baygenomics.
ucsf.edu/). The gene-trapping vector used to create this line, pGT1Ixf,
was designed to create an in-frame fusion between the 5’ exons of the
trapped gene and a reporter, Pgeo (a fusion of B-galactosidase and
neomycin phosphotransferase II). The gene-trapped locus creates a
fusion transcript containing exons 1-3 of Trip13 and Pgeo. To identify
the exact insertion site within intron 3, PCR was performed using one
primer within the gene trap vector, and the other primer at various
positions in intron 3 pointing towards the 3’ end of the gene. Product
from a productive reaction was sequenced, revealing that the
insertion site was 445 bp into intron 3.

Genotyping of mice. Three primers were used to distinguish wild-
type and mutant alleles of Trip13: primer 1, 5'-CGTCGCTCCATTGCT-
TTGTGC-3'; primer 2, 5'-AGTAGTGGTACACTGTATTTTTGCTTT-
CATTGA-3'; and primer 3, 5'-GTAGATCCCGGCGCTCTTACCAA-3'.
Primers 1 and 2 are located upstream and downstream, respectively,
of the gene trap insertion within the intron 3. Primer 3 corresponds
to pGTIxf sequence. Primers 1 and 2 amplify a 700-bp band from a
wild-type allele; primers 1 and 3 amplify a 540-bp fragment from a
mutant allele. Separate reactions were used to assay the presence or
absence of each amplicon from a DNA sample. The cycling
conditions were: 94 °C 2 min; 35 cycles of 94 °C 30 s, 57 °C 45 s,
and 72°C 50 s; and 72 °C 2 min.

RT-PCR. Total RNA was isolated from adult testes with the RNeasy
Mini Kit (Qiagen, http://lwww.qiagen.com), and 4.0 ug was oligo dT-
primed and reverse-transcribed with Superscript II (Stratagene,
http://lwww.stratagene.com). The entire Tripl3 protein-coding se-
quence was amplified with primers 5-ATGGACGAGGCGGTG-3’
and 5-TCAAACATAAGCTGAAAGTT-3'. The cycling conditions
were: 94 °C 2 min; 94 °C 30s, 55 °C 45 s, and 72 °C 80 s for 35
cycles; and 72 °C 2 min. The primers for amplifying the Med3I coding
sequence as control were : 5'-ATGGCCGCGGCCGTCGCTATGG-3’
and 5'-TCATTTCCCTGCTGTGTTATTCTGCTGCTGCTGC-3'. The
cycling conditions were: 94 °C 2 min; 94 °C 30 s, 55 °C 30 s, and 72 °C
35 s for 35 cycles; and 72 °C 2 min.

Development and purification of chicken antibodies. A peptide
corresponding to amino acids 25-40 of TRIP13, VLQRSGSTAKKE-
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DIK, was conjugated to KLH and used to immunize chickens (done by
Sigma Genosys, http://lwww.sigmaaldrich.com). Polyclonal IgY was
isolated from eggs with the Eggcellent Chicken IgY Purification kit
(Pierce, http:/lwww.piercenet.com). IgY antibodies were then affinity
purified using the immunizing synthetic peptide.

Western blotting. 50 pg of testis extract in RIPA buffer was
separated by 8% SDS-PAGE and electrotransferred onto a Pure
Nitrocellulose membrane (Bio-Rad, http://www.biorad.com). The
membrane was incubated with a polyclonal rabbit anti-human
TRIP13 antibody (18-003-42687; Genway, http://lwww.genwaybio.
com). According to the manufacturer, the immunogen was a synthetic
peptide embedded in sequence we deduced to correspond to exon 3.
Binding was detected by chemiluminescence ECL kit (Pierce) using a
rabbit anti-chicken IgG horseradish peroxidase conjugate (Pierce).

Histological analyses. Testes or ovaries were fixed in Bouin’s,
embedded in paraffin, sectioned at 6 pm, and stained by hematoxylin
and eosin. Antigen retrieval for immunohistochemistry of testis
sections was as described [60]. Oocyte and follicle numbers were
counted as described [61]. Only follicles containing an oocyte with a
clearly visible nucleus were scored.

Immunocytochemistry. Inmunolabeling of surface-spread sperma-
tocytes and oocytes was performed as described [39,62]. To reach
conclusions on the pattern of staining for various proteins, 30 (unless
otherwise indicated) well-spread nuclei of particular meiotic stages
were first identified under the fluorescent microscope on the basis of
SYCP3 or STAGS3 staining, then imaged at both appropriate wave-
lengths to determine the pattern of second proteins with focal
patterns such as RAD51 or RPA. Unless otherwise indicated, the
panels shown in the figures were the exclusive or predominant
patterns seen. The exception for this approach was in the case of
staining for MLH1 or MLH3 plus RADb51 (in which case SYCP3 or
STAG3 was not available to find chromosome cores). Nuclei in this
situation were identified first by MLH1/3 foci clustering, then imaged
for both fluorescent wavelengths.

Primary antibodies used in this study were as follows: mouse anti-
SCP3 (1:500; Abcam, http://lwww.abcam.com); rabbit anti-SYCP1
(1:1,000; a gift from C. Heyting) [63]; rabbit anti-RECS8 (1:100; a gift
from C. Heyting); rabbit anti-RAD51 (1:250, this polyclonal antibody
recognizes both RAD51 and DMCI1; Oncogene Research Products,
http:/flwww.merckbiosciences.co.uk); rabbit anti-yH2AX (1:500; Upstate
Biotechnology, http:/lwww.upstate.com/); rabbit anti-STAG3 (1:1,000; a
gift from R. Jessberger); rabbit anti-MLH3 (1:400; a gift from P.
Cohen); mouse-anti-human MLH1 (1:50; BD Biosciences, http:/lwww.
bdbiosciences.com); rabbit-anti-TopBP1 (1:100; a gift from J. Chen)
[22]; mouse-anti-ubiquityl-histone H2A (1:200; Upstate Biotechnol-
ogy); rabbit-anti-TRF2 (1:500; a gift from T. de Lange); and rabbit-anti-
BLM (1:50; a gift from R. Freire). All secondary antibodies conjugated
with either Alexa Fluor 488 or 594 (Molecular Probes, http:/lprobes.
invitrogen.com/) were used at a dilution of 1:1,000. All images were
taken with a 100X objective lens under immersion oil.

Metaphase I spermatocyte spreads and OA treatment. Metaphase
fixed spermatocytes from 8-mo-old Tm‘p13KRBO47 homozygotes, using
23-d-old wild-type mice as control, were prepared and stained with
Giemsa as described [64].

For OA treatment, cells were exposed to 5 pM OA (Calbiochem,
http://lwww.emdbiosciences.com,) for 6 h at 32 °C in a humidified
environment of 5% COs before spreading [65]. These preparations
were stained with DAPI to visualize metaphase nuclei and chromo-
somes.

Phylogenetic analyses. TRIP13 orthologs were identified by
BLASTP searches of Genbank and other sources providing gene
models such as Ensembl. The selected orthologs can be found in Table
S1. Amino acid alignments were done with Clustal W, using the default
settings with and without removing the regions outside of the AAA-
ATPase central domain. The trees were constructed by using the
neighbor-joining method with Poisson correction. The reliability of
internal branches was assessed by using 500 bootstrap replicates, and
sites with gaps were ignored in this analysis. Neighbor-joining searches
were conducted by using the computer program MEGA3 [66].

Supporting Information

Figure S1. Depiction of Conserved Regions of Mouse TRIP13 and Its
PCH2 Orthologs

Found at doi:10.1371/journal.pgen.0030130.sg001 (75 KB PDF).
Figure S2. Surface-Spread Chromosomes Immunolabeled with the
Indicated Antibodies and Fluorophores

Found at doi:10.1371/journal.pgen.0030130.sg002 (947 KB PDF).
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Figure S3. Tripl3 Mutant Spermatocytes That Progress Beyond
Pachynema Have Repaired DSBs and Form Bivalents at Metaphase 1

Found at doi:10.1371/journal.pgen.0030130.sg003 (1.5 MB PDF).

Table S1. Sources of TRIP13 Amino Acid Sequences Used to
Construct the Phylogenetic Tree in Figure 1

Found at doi:10.1371/journal.pgen.0030130.5st001 (22 KB PDF).

Acknowledgments

We thank P. Burgoyne, P. Cohen, E. Alani, and P. Moens for helpful
discussions, R. Viswanatha for helpful comments on the manuscript,

References

1. Ghabrial A, Schupbach T (1999) Activation of a meiotic checkpoint

regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1:

354-357.

Bhalla N, Dernburg AF (2005) A conserved checkpoint monitors meiotic

chromosome synapsis in Caenorhabditis elegans. Science 310: 1683-1686.

Ashley T, Gaeth AP, Creemers LB, Hack AM, de Rooij DG (2004)

Correlation of meiotic events in testis sections and microspreads of mouse

spermatocytes relative to the mid-pachytene checkpoint. Chromosoma 113:

126-136.

Roeder GS (1997) Meiotic chromosomes: It takes two to tango. Genes Dev
11: 2600-2621.

Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16:

395-403.

Hochwagen A, Amon A (2006) Checking your breaks: Surveillance

mechanisms of meiotic recombination. Curr Biol 16: R217-R228.

Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombina-

tion checkpoint controlled by mitotic checkpoint genes. Nature 383: 840-

843.

San-Segundo PA, Roeder GS (1999) Pch2 links chromatin silencing to

meiotic checkpoint control. Cell 97: 313-324.

Leu JY, Roeder GS (1999) The pachytene checkpoint in S. cerevisiae depends

on Swel-mediated phosphorylation of the cyclin-dependent kinase Cdc28.

Mol Cell 4: 805-814.

Hochwagen A, Tham WH, Brar GA, Amon A (2005) The FK506 binding

protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic

recombination checkpoint activity. Cell 122: 861-873.

Caryl AP, Jones GH, Franklin FC (2003) Dissecting plant meiosis using

Arabidopsis thaliana mutants. ] Exp Bot 54: 25-38.

Wu HY, Burgess SM (2006) Two distinct surveillance mechanisms monitor

meiotic chromosome metabolism in budding yeast. Curr Biol 16: 2473-

2479.

Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, et al. (2005)

Distinct DNA-damage-dependent and -independent responses drive the

loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad

Sci U S A 102: 737-742.

Yuan L, Liu JG, Hoja MR, Wilbertz ], Nordqvist K, et al. (2002) Female germ

cell aneuploidy and embryo death in mice lacking the meiosis-specific

protein SCP3. Science 296: 1115-1118.

5. Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296: 2181-2183.

. Pittman D, Cobb J, Schimenti K, Wilson L, Cooper D, et al. (1998) Meiotic
prophase arrest with failure of chromosome pairing and synapsis in mice
deficient for Dmcl, a germline-specific RecA homolog. Mol Cell 1: 697-705.

. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, et al. (2006) The

transcriptome of human oocytes. Proc Natl Acad Sci U S A 103: 14027-

14032.

Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, et al. (2001)

Recombinational DNA double-strand breaks in mice precede synapsis. Nat

Genet 27: 271-276.

van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human

telomeres from end-to-end fusions. Cell 92: 401-413.

Kumagai A, Lee ], Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-

ATRIP complex. Cell 124: 943-955.

Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2007)

ATM-dependent activation of ATR occurs through phosphorylation of

TopBP1 by ATM. J Biol Chem 282: 17501-17506.

Perera D, Perez-Hidalgo L, Moens PB, Reini K, Lakin N, et al. (2004)

TopBP1 and ATR colocalization at meiotic chromosomes: Role of TopBP1/

Cutb in the meiotic recombination checkpoint. Mol Biol Cell 15: 1568-

1579.

. Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, et al.

(2005) Surveillance of different recombination defects in mouse sperma-

tocytes yields distinct responses despite elimination at an identical

developmental stage. Mol Cell Biol 25: 7203-7215.

Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, et al. (2002) The

time course and chromosomal localization of recombination-related

proteins at meiosis in the mouse are compatible with models that can

10.

11.

12.

13.

14.

18.

19.
20.

21.

22.

24,

@ PLoS Genetics | www.plosgenetics.org

1375

Trip13 and Meiotic Recombination

W. Pawlowski and T. Pawlowska for input on the evolutionary tree of
PCH2, R. Freire and J. Chen for antibodies, M. Jasin for Spoll™
embryonic stem cells, and R. Munroe for generating chimeric mice.
We also thank an anonymous reviewer for pointing out that Pch2p
might be sensing synaptic polymerization in yeast, not initiation.

Author contributions. XL and JCS conceived and designed the
experiments and analyzed the data. XL performed the experiments.
JCS wrote the paper.

Funding. This work was supported by NIH grant GM45415 to JS.

Competing interests. The authors have declared that no competing
interests exist.

resolve the early DNA-DNA interactions without reciprocal recombination.

J Cell Sci 115: 1611-1622.

Plug AW, Peters AH, Xu Y, Keegan KS, Hoekstra MF, et al. (1997) ATM and

RPA in meiotic chromosome synapsis and recombination. Nat Genet 17:

457-461.

Wang X, Haber JE (2004) Role of Saccharomyces single-stranded DNA-

binding protein RPA in the strand invasion step of double-strand break

repair. PLoS Biol 2: E21.

. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X,

et al. (2005) Silencing of unsynapsed meiotic chromosomes in the mouse.

Nat Genet 37: 41-47.

Turner JM, Aprelikova O, Xu X, Wang R, Kim S, et al. (2004) BRCAI,

histone H2AX phosphorylation, and male meiotic sex chromosome

inactivation. Curr Biol 14: 2135-2142.

Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006)

Pachytene asynapsis drives meiotic sex chromosome inactivation and leads

to substantial postmeiotic repression in spermatids. Dev Cell 10: 521-529.

Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously

induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics

165: 2283-2287.

Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing

over on mouse synaptonemal complexes using immunofluorescent local-

ization of MLH1 protein. Genetics 151: 1569-1579.

. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, et al. (2002)
Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31: 385-
390.

. Wiltshire T, Park C, Caldwell KA, Handel MA (1995) Induced premature

G2/M-phase transition in pachytene spermatocytes includes events unique

to meiosis. Dev Biol 169: 557-567.

Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome

synapsis defects and sexually dimorphic meiotic progression in mice

lacking spol1. Mol Cell 6: 989-998.

Romanienko PJ, Camerini-Otero RD (2000) The mouse spoll gene is

required for meiotic chromosome synapsis. Mol Cell 6: 975-987.

Eaker S, Pyle A, Cobb ], Handel MA (2001) Evidence for meiotic spindle

checkpoint from analysis of spermatocytes from Robertsonian-chromo-

some-heterozygous mice. J Cell Sci 114: 2953-2965.

. Libby BJ, Reinholdt LG, Schimenti JC (2003) Positional cloning and
characterization of Meil, a vertebrate-specific gene required for normal
meiotic chromosome synapsis in mice. Proc Natl Acad Sci U S A 100:
15706-15711.

. Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for
the initiation of chromosome synapsis. Cell 93: 349-359.

. Bannister LA, Reinholdt LG, Munroe R], Schimenti JC (2004) Positional

cloning and characterization of mouse mei8, a disrupted allelle of the

meiotic cohesin Rec8. Genesis 40: 184-194.

Xu H, Beasley MD, Warren WD, van der Horst GT, McKay M]J (2005)

Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in

meiosis. Dev Cell 8: 949-961.

. Reinholdt LG, Schimenti JC (2005) Meil is epistatic to Dmc1 during mouse

meiosis. Chromosoma 114: 127-134.

Budzowska M, Jaspers I, Essers ], de Waard H, van Drunen E, et al. (2004)

Mutation of the mouse Rad17 gene leads to embryonic lethality and reveals

a role in DNA damage-dependent recombination. EMBO J 23: 3548-3558.

Allers T, Lichten M (2001) Differential timing and control of noncrossover

and crossover recombination during meiosis. Cell 106: 47-57.

Hunter N, Kleckner N (2001) The single-end invasion: An asymmetric

intermediate at the double-strand break to double-holliday junction

transition of meiotic recombination. Cell 106: 59-70.

Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differ-

entiation, synaptonemal complex formation, and regulatory surveillance at

the leptotene/zygotene transition of meiosis. Cell 117: 29-45.

Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and

noncrossover pathways in mouse meiosis. Mol Cell 20: 563-573.

Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H,

et al. (1997) Characterization of the roles of the Saccharomyces cerevisiae

RADb54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and

meiosis. Genetics 147: 1545-1556.

25.

26.

3

28.

29.

30.

31.

36.

40.

4

—

42.

43.

44,
45.

46.

47.

August 2007 | Volume 3 | Issue 8 | €130



48.

49.

51.

52.

53.

54.

Arbel A, Zenvirth D, Simchen G (1999) Sister chromatid-based DNA repair
is mediated by RAD54, not by DMC1 or TID1. EMBO J 18: 2648-2658.
Wesoly ], Agarwal S, Sigurdsson S, Bussen W, Van Komen S, et al. (2006)
Differential contributions of mammalian Rad54 paralogs to recombina-
tion, DNA damage repair, and meiosis. Mol Cell Biol 26: 976-989.

. de los Santos T, Loidl J, Larkin B, Hollingsworth NM (2001) A role for

MMS4 in the processing of recombination intermediates during meiosis in
Saccharomyces cerevisiae. Genetics 159: 1511-1525.

Symington LS, Heyer WD (2006) Some disassembly required: Role of DNA
translocases in the disruption of recombination intermediates and dead-
end complexes. Genes Dev 20: 2479-2486.

Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of
chaperone-like ATPases associated with the assembly, operation, and
disassembly of protein complexes. Genome Res 9: 27-43.

Matulis S, Handel MA (2006) Spermatocyte responses in vitro to induced
DNA damage. Mol Reprod Dev 73: 1061-1072.

Lee JW, Choi HS, Gyuris J, Brent R, Moore DD (1995) Two classes of
proteins dependent on either the presence or absence of thyroid hormone
for interaction with the thyroid hormone receptor. Mol Endocrinol 9: 243—
254.

. Handel MA (2004) The XY body: a specialized meiotic chromatin domain.

Exp Cell Res 296: 57-63.

5. Forrest D, Hanebuth E, Smeyne R], Everds N, Stewart CL, et al. (1996)

Recessive resistance to thyroid hormone in mice lacking thyroid hormone
receptor beta: Evidence for tissue-specific modulation of receptor
function. EMBO J 15: 3006-3015.

. Yang X, Makaroff CA, Ma H (2003) The Arabidopsis MALE MEIOCYTE

@ PLoS Genetics | www.plosgenetics.org

1376

60.

61.

63.

67.

Trip13 and Meiotic Recombination

DEATHI1 gene encodes a PHD-finger protein that is required for male
meiosis. Plant Cell 15: 1281-1295.

. San-Segundo PA, Roeder GS (2000) Role for the silencing protein Dotl in

meiotic checkpoint control. Mol Biol Cell 11: 3601-3615.

. Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, et al. (2006)

p63 protects the female germ line during meiotic arrest. Nature 444: 624-
628.

Reinholdt L, Munroe R], Kamdar S, Schimenti J (2006) The mouse ged2
mutation causes primordial germ cell depletion. Mech Dev 123: 559-569.
Myers M, Britt KL, Wreford NG, Ebling FJ], Kerr JB (2004) Methods for
quantifying follicular numbers within the mouse ovary. Reproduction 127:
569-580.

. Reinholdt L, Ashley T, Schimenti J, Shima N (2004) Forward genetic screens

for meiotic and mitotic recombination-defective mutants in mice. Methods
Mol Biol 262: 87-107.

Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, et al.
(1992) A coiled-coil related protein specific for synapsed regions of meiotic
prophase chromosomes. EMBO J 11: 5091-5100.

. Russo A (2000) In vivo cytogenetics: Mammalian germ cells. Mutat Res 455:

167-189.

. Handel MA, Caldwell KA, Wiltshire T (1995) Culture of pachytene

spermatocytes for analysis of meiosis. Dev Genet 16: 128-139.

6. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for

Molecular Evolutionary Genetics Analysis and sequence alignment. Brief
Bioinform 5: 150-163.

Russell L, Ettlin R, Hikim A, Clegg E (1990) Histological and histopatho-
logical evaluation of the testis. Clearwater (Florida): Cache River Press.
286 p.

August 2007 | Volume 3 | Issue 8 | €130



