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Two approaches to the classification of different locomotor activities performed at various speeds are here presented and evaluated:
a maximum a posteriori (MAP) Bayes’ classification scheme and a Support Vector Machine (SVM) are applied on a 2D projection
of 16 features extracted from accelerometer data. The locomotor activities (level walking, stair climbing, and stair descending) were
recorded by an inertial sensor placed on the shank (preferred leg), performed in a natural indoor-outdoor scenario by 10 healthy
young adults (age 25-35 yrs.). From each segmented activity epoch, sixteen features were chosen in the frequency and time domain.
Dimension reduction was then performed through 2D Sammon’s mapping. An Artificial Neural Network (ANN) was trained to
mimic Sammon’s mapping on the whole dataset. In the Bayes’ approach, the two features were then fed to a Bayes’ classifier that
incorporates an update rule, while, in the SVM scheme, the ANN was considered as the kernel function of the classifier. Bayes’
approach performed slightly better than SVM on both the training set (91.4% versus 90.7%) and the testing set (84.2% versus 76.0%),
favoring the proposed Bayes’ scheme as more suitable than the proposed SVM in distinguishing among the different monitored

activities.

1. Introduction

With the evolution of wireless communication technology, it
is now possible to use inertial sensors (Inertial Measurement
Units (IMU)) to gather and transmit over the air patterns
associated with different activities performed by people
moving in unconstrained environments [1]. IMUs allow to
collect kinematic data through miniaturized accelerometers
[2], gyroscopes [3], and possibly magnetometers [4].

Restricting the analysis to accelerometers, they are popu-
lar as fall detectors [5], as means to monitor physical activity
[6], and also as tools to classify among different motor
activities [7, 8]. They have also been shown as good predictors
of the functional capacity in healthy adults [9] and elderly
people [10] and of the level of energy expenditure [11, 12].
In these specific regards, since the accuracy in the prediction
strongly depends on the kind of activity [13], classification of
activities is often necessary as a preliminary step for energy
expenditure estimation [14].

The utility of distinguishing between activities is also
apparent when, for long term monitoring, the wearable
device needs to transmit data in a compact way. Following
this perspective, the general communication model of having
raw data to be sent continuously from the sensing devices
over the air, and let the receiving unit extract relevant
information from the data [15], may be a suboptimal solution.
If, instead, on-board processing is available, the processing
unit in each sensing unit may incorporate the function of
feature extraction and subsequent activity classification [16].
In order to do this, each sensing unit will incorporate three
successive functions: (1) the detection and windowing (or
segmentation) of each activity epoch, (2) the extraction of the
features from the windowed activity, and (3) the classification
of that epoch based on a specific scheme.

As far as the classification stage is concerned, while
the classification between postures is a relatively easy task
[17], in the case of dynamic activities (such as different
locomotion types), the classification task is more complex.
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This task is usually accomplished by using a multiplicity of
sensors, located in different body segments and able to record
the 3D components of acceleration for each segment [18].
Once an activity epoch has been detected and segmented,
features from different domains are then extracted from
these windowed data [19], and the classification is then
performed based on a combination or a subset of these
features [20]. Simple features to be extracted from windowed
data include energy or amplitude parameters [21], while more
complex approaches are based, for example, on dynamic
programming [22], wavelet coeflicients [23], and decision
trees [24]. Other approaches may include particle swarm
optimization, a technique that has been successfully imple-
mented for classification and prediction in different research
areas [25, 26]. Multiple accelerometers are usually added in
order to improve the classification accuracy [24], even if the
burdensomeness associated with the increased setup time
and computational complexity makes this approach to be
sought only when the increase in accuracy is significant.

In the present paper, we will thus focus on the presen-
tation of a technique able to incorporate the functions herein
described, by specifically presenting two different schemes for
classification, respectively, based on the use of the maximum
a posteriori approach and on a Support Vector Machine. The
general objective of this work is to evaluate these two schemes
in terms of their ability to distinguish among locomotor
activities by using a single sensor.

The paper is structured as follows: in the second section,
the structure of the two different classification schemes is
presented, after giving details on the experimental procedure
and providing information on the performance analysis that
has been set up for evaluation. Then, we will focus on the
results obtained in the experimental section, and the final
section draws the conclusions.

2. Methods

2.1. Experimental Setup and Data Collection. 10 healthy
young adults (age 25-35 years, 4 females) volunteered in
the study. They were requested to perform an 800 m path
composed of different locomotor activities: walking level
and incline at different slopes, stair climbing, and stair
descending. They were allowed to choose their own preferred
speed with which they could complete the path; in some
randomly chosen sections of the path, they were requested
to increase or decrease their speed, according to a command
by the experimenter. In order to have the reference values, the
experimenter manually noted the activity sequences.

Data were collected through a custom-made wireless
inertial sensor unit placed on the shank of the subject’s pre-
ferred leg (see Figure 1); the unit is able to collect acceleration
and angular rate data, as it incorporates a triaxial accelerom-
eter (ADXL345, from Analog Devices, Inc.) and a triaxial
gyroscope (ITG-3200, from Invensense, Inc.), and it includes
a microcontroller (Atmega328 from Atmel Corporation) to
collect and sync data from the sensors, and then send them
wirelessly to a portable unit through a bluetooth transceiver
(WT12, from Bluegiga Technologies Ltd.). For the purposes
of this study, just the proximal-to-distal component of the
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accelerometer sensor was used. Data were collected at a
sampling rate of 100 samples/s.

The overall data processing structure will be then detailed
in the following sections of the chapter. Figure 2 shows the
overall structure of the classification schemes.

2.2. Activity Detection and Feature Extraction. Upon digital
conversion, the acceleration data were first bandpass filtered
(2-20 Hz, Butterworth 4th order), underwent the segmenta-
tion process, which consisted of an integration and threshold
technique [8] with first-guess threshold set at 0.35 m/s, and
then were on-line adapted at 0.75 times the maximum value
of the detected activity integral (100 ms window) at the
previous step. Once an activity is detected, a refractory period
was used (i.e., a time range when no new activities were to be
detected). The first-guess refractory period was set at 600 ms,
and then updated on-line at 0.5 times the duration of the last
detected activity epoch. From each of the segmented activities
(a walking stride or an epoch corresponding to a descending
or climbing step), the procedure for the extraction of features
was performed.

Sixteen different features were extracted from each
detected activity: in the time domain (see Figure 3), those
were: the maximum value (and its relative timing with respect
to the start of the activity epoch, resp., (b) and (a) in Figure 3),
the minimum value (and its relative timing, (d) and (c)
resp.), the temporal distance between the maximum and the
minimum value (e), the number of zero-crossings (f), the
distance between two consecutive peaks (g), and the distance
between two consecutive valleys (h); the maximum value of
the time derivative of the epoch, and its minimum value, the
maximum value of its integral (as calculated along a 100 ms
window), and its minimum value; in the frequency domain,
for each activity epoch, the temporal variation of its mean
frequency was calculated, according to [27], and its minimum
and maximum values, both in linear and logarithmic scale.

These 16 features were chosen in this way, as they were
able to represent data variability on a different population
sample performing similar activities [28].

2.3. Feature Reduction and Training Data Use. In order to
reduce the number of features (yet maintaining relevant
information), Sammon’s Mapping Function (SME, [29]) was
applied to the 16-dimensional feature set, that was mapped
into a 2D output space. Nonlinear mapping was preferred to
other linear factorization methods, as it qualitatively showed
better results than PCA on a subsample of the training
dataset. Since the mapping procedure is a recursive one, and
the input-output relation cannot be determined analytically,
an Artificial Neural Network (Multilayer Perceptron, one
hidden layer with 40 neurons) was trained to mimic its
nonlinear behavior. ANNs are one of the possible choices to
solve MIMO problems that cannot be determined analytically
[30, 31]. Out of the overall dataset that was used, 15% of
its feature data points were used for the training of the
ANN able to mimic the SMF behavior, with the same
procedure that was used in [28] and in [32]. This 15%
was randomly extracted from epochs of all the subjects, in
order to maximize the generalization ability of the system.
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FIGURE I: Sensor unit placement, and picture of the sensor unit: top side (left) and bottom side (right).
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FIGURE 2: Structure of the classification schemes. Where not specifically denoted, same labels for each stage correspond to the same

implementation.

The ANN was trained through Levenberg-Marquardt [33]
backpropagation, following the same procedure proposed
n [34], and the ANN was deemed as trained if the Mean
Square Error fell below 0.1%. This actually happened with
approximately 10000 iterations. Figure 4 shows the results
of the mapping estimation through the ANN: as expected,
ANN was able to accurately predict Sammon’s features in
the training dataset, thanks to its ability to adapt to different
mapping and approximation [35] problems, as shown, for
example, in [36, 37]. Cross correlation of the training set data,
between features coming from SMF and the ones estimated
through the ANN, resulted to be higher than 0.98.

2.4. Classifiers. Once the two features were estimated with
the ANN, the following stage consisted of classifying among
the different locomotor activities. In order to complete this,
two different classifiers were implemented: the first relies
on the representation of Bayes’ Theorem and estimates the
activity based on a maximum a posteriori (MAP) criterion,
and it will be called as MAP in the following; the second
makes use of the Support Vector Machines, and it will be
denoted as SVM in the following. The structure of both the
classifiers is detailed in the following subsections.

2.4.1. Maximum A Posteriori (MAP) Approach. According
to Bayes” theorem, we will determine the estimated activity
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FIGURE 3: Samples of acceleration data for epochs of the three different activities performed by one participant. The corresponding features
extracted from time domain ((a)-(h), please refer to text for the definition) are also shown. Four additional features extracted from the
derivative in the time domain and four coming from the frequency domain are not shown here.
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FIGURE 4: Excerpt of Sammon’s features, as output from the SMF (left panel), and as estimated from the ANN (right panel), across three
locomotor activities, coded by color and marker. Differences in scale were not detrimental to the successive processing phases.

act, based on the calculation of the conditional probabilities
associated with the different locomotor activities act;, and the
current value of Sammon’s feature vector (2D) s, according to
the following equations:

P (act;)
p(s) ’ (1)

act = arg maxP (act; | s),
1€

P(act; | s) = p(s | act;) =

where I represents the domain of possible activities to be
classified.

In order for the MAP criterion to be utilized, we thus
need the conditional probabilities p(s | act;) and the prior
probabilities P(act;). The first ones were hypothesized as
coming from a 2D Gaussian probability density function,
with first- and second-order moments equal to the values
obtained from the training dataset. The prior probabilities
were hypothesized as equally distributed. In the current case,
this choice slightly underestimated the priors for walking
activities in the used set, but we chose this criterion, in
order for the classifier to be more general in classification
capabilities. The MAP classifier also incorporated an update
rule for the prior probabilities to be used in the current step,
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TABLE 1: Activity epochs for the dataset.

Requested ~ Self-selected =~ Requested

Activity slow speed speed fast speed Total
Walking 720 4265 463 5448
Stair climbing 322 2742 340 3404
Stair descending 296 2678 326 3300
Total 1338 9685 1129 12152

which was based on replacing, within a sample vector of 240
activity identifiers, the oldest sample for the classified activity
with the one classified at the previous step.

2.4.2. Support Vector Machine. In the case of the Support
Vector Machine, there was no kernel use, even if the transfor-
mation from the 16-dimensional space of the original features
into the 2D predicted Sammon’s features may be considered
as a kernel perse, as it incorporated a nonlinear mapping to
be considered as a kernel trick, with the major difference that,
in this case, the new space is low-dimensional as compared to
the original one.

With regard to the implementation, since we chose
a low-dimensional space for the SVM to be used, linear
classification was suboptimal, and we used a penalty coeffi-
cient to take into account misclassifications; concerning the
optimization, we used the Mitchell-Demyanov-Malozemov
(MDM) algorithm [38], with a regularization constant value
of 5. Given that three classes were to be used, multiclass
condition was solved by using the one versus one conditions,
with max-wins voting criterion.

2.5. Performance Indicators. In order to evaluate the per-
formance of both the classifying schemes, we calculated the
classification rate for both the training set and the testing
set. Confusion matrix and normalized mutual information
[39] were also reported for the testing set. With ten subjects
performing the requested walk path, a total of approximately
12000 activity epochs were collected. Table 1 shows the overall
number of activities as split among the different kinds and
speeds. It is here to be highlighted that speed was considered
as a confounding factor and not as a variable on which
classification was made. This is to mimic a natural scenario,
where differences in energy associated with each epoch can
be extracted directly on the data of each epoch, once the
classification is made.

3. Results

Classification rates for the training set and the testing set
are reported in Table 2. As expected, both classifiers perform
quite accurately in the training set, while there is a marked
difference between MAP and SVM in the case of the testing
set that favored the first as compared to the second.
Performance in the training set is almost independent
from the activity kind. Moreover, as reported in Table 3,
misclassification in the testing set more frequently occurs
between walking strides and strides of descending stairs.

5
TaBLE 2: Classification results.

Training set SVM MAP
Walking (%) 90.4 91.8
Stair climbing (%) 91.3 90.9
Stair descending (%) 90.1 90.0
Testing set SVM MAP
Walking (%) 77.2 85.1
Stair climbing (%) 77.7 87.2
Stair descending (%) 74.2 81.3

4. Discussion and Conclusions

Classification rates for both schemes were, on average, good
on the training dataset. Misclassifications, which occurred
most frequently with walking and stair descending, may be
associated with the fact that the features extracted from these
two activities are on average more similar than the ones
coming from stair climbing (see Figure 3); this similarity
may be even more exacerbated in the transition activities
(initiating a stair climbing or descending after walking or vice
versa).

For the testing dataset, the maximum a posteriori
approach performed better than the SVM. We speculate
that, based on the results obtained in the training dataset,
the structure of the MAP approach implemented in this
paper has a higher generalization ability than the SVM in
classifying these activities, since it includes an adaptation that
updates the prior probabilities based on the history of the
classification. This has not been implemented in the SVM
approach, which may consequently have a decreased ability to
track differences in the extracted features as a consequence of
subjective and environmental factors (fatigue and variations
in speed).

As far as the overall performance is concerned, classifica-
tion rates are similar to those reported in [40] and in [18],
where different accelerometer configurations and features
were tested, with classification accuracies lying in the range
68%-97% for triaxial sensors. It is here to be highlighted
that the obtained classification rates have been based on the
use of just a single component of an accelerometer. This was
done in order to check whether on-board processing might
be considered as a viable alternative to continuous raw data
communication. It is predicted that, if multiple instances of
the same classification schemes may be adopted on multiple
sensors placed on different body segments, the portable unit
may produce better results, possibly based on a max-wins
voting criterion.

As for the current implementation, the structure is
relatively easy to be implemented on-board; the detection
and feature extraction section is relatively light in terms
of computational complexity (with only frequency features
slightly weighing in), and, once the training modules are
appropriately determined based on an adequate number of
subjects, running the classifying modules and determin-
ing the decisions is a pretty straightforward step for both
approaches: for MAP, it corresponds to running the ANN
predictor and calculating the posterior probabilities and for
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TaBLE 3: Confusion matrix and Normalized Mutual Information (NMI) for the testing set.
Predicted SVM (NMI = 0.3550)
Activity Walking Stair climbing Stair descending
Walking (%) 77.2 8.1 14.6
Actual Stair climbing (%) 10.2 77.7 12.1
Stair descending (%) 15.8 9.9 74.2
Predicted MAP (NMI = 0.5134)
Activity Walking Stair climbing Stair descending
Walking (%) 85.1 4.8 10.1
Actual Stair climbing (%) 6.6 872 6.3
Stair descending (%) 12.8 5.8 81.3

SVM, it corresponds to running the ANN predictor and
then applying the hyperplane (in the current case of 2D
representation, a line) estimated through the SVM on the
training dataset.

In the future it would be useful to insert some update
rules in the SVM classification scheme, as it has been
done in the MAP approach, to let it take into account the
temporal variations of the accelerometer patterns in a long-
term scenario.

In conclusion, the availability of different classification
schemes that can be profitably applied to single sensor data
may help designing body sensor networks where the classifi-
cation may be done on-board in each node, so that the data
throughput can be substantially reduced, and the possibility
to have accurate parameters for long-term monitoring can be
pursued.
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