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The deregulation of apoptosis is a key contributor to tumourigenesis as it can lead to the
unwanted survival of rogue cells. Drugs known as the BH3-mimetics targeting the pro-
survival members of the BCL-2 protein family to induce apoptosis in cancer cells have
achieved clinical success for the treatment of haematological malignancies. However,
despite our increasing knowledge of the pro-survival factors mediating the unwanted sur-
vival of solid tumour cells, and our growing BH3-mimetics armamentarium, the applica-
tion of BH3-mimetic therapy in solid cancers has not reached its full potential. This is
mainly attributed to the need to identify clinically safe, yet effective, combination strat-
egies to target the multiple pro-survival proteins that typically mediate the survival of
solid tumours. In this review, we discuss current and exciting new developments in the
field that has the potential to unleash the full power of BH3-mimetic therapy to treat cur-
rently recalcitrant solid malignancies.

Introduction

Drugs known as the ‘BH3-mimetics’ trigger cell death by antagonising the action of the pro-survival
members of the BCL-2 protein family (Figure 1). These proteins, which include BCL-2, BCL-XL,
MCL-1, BCL-W and BFL-1, are key negative regulators of the intrinsic apoptosis pathway which is
deregulated in most, if not all cancers. Pro-survival BCL-2 proteins also contribute to resistance to
standard treatments such as chemo- and radiotherapies that act through cell death induction
(Figure 1). The BH3-mimetics are so-called because they mimic the natural ligands for pro-survival
proteins — the pro-apoptotic BH3-only proteins. As with BH3-only proteins, binding of
BH3-mimetics to their pro-survival targets leads to apoptosis induction via two mechanisms: (1) the
displacement of prebound pro-apoptotic BH3-only proteins to activate BAX or BAK, and (2) through
the release of activated BAX or BAK themselves [1,2]. This latter mechanism is sufficient for apoptosis
induction by BH3-mimetics as the absence of BH3-only proteins in cells does not negate their killing
activity [2,3]. The discovery of how these ligands bind their targets in the late 1990s inspired the
development of their small molecule counterparts. However, it was not until 2016 that the first of
these drugs, Venetoclax which specifically targets BCL-2, was granted FDA approval for relapsed
chronic lymphocytic leukaemia (CLL) patients with 17p deletion.

Venetoclax has now been approved as standard-of-care treatment for CLL in combination with
Rituximab or Obinutuzumab depending on the treatment status of the patient [4,5], with chemothera-
pies in acute myeloid leukaemia (AML) [6], and is undergoing >230 clinical trials in a variety of
haematological cancers. However, the clinical use of Venetoclax and other BH3-mimetics in solid
cancer treatment is not nearly as well-advanced. In this review, we primarily discuss the contributions
of BCL-2 pro-survival proteins in solid cancers and the challenges that remain in the application of
BH3-mimetics for their treatment.
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Figure 1. Anti-cancer drugs often work by the induction of apoptosis.

Many anti-cancer drugs exert their cytotoxic effects by indirectly up-regulating the pro-apoptotic BH3-only proteins or by
decreasing the expression of the pro-survival BCL-2 proteins. In contrast, BH3-mimetics directly antagonise the pro-survival BCL-2
proteins, bypassing defects in upstream signalling pathways such as those mediated by p53, which is commonly inactivated in
cancers. Direct activators of BAX or BAK have also been developed as an alternate mechanism for inducing apoptosis.

Pro-survival protein dependencies in solid cancers:

single-agent BH3-mimetic applications

BCL-XL

Prior to Venetoclax, Navitoclax was the first BH3-mimetic to enter clinical trials, binding with high affinity to
BCL-2, BCL-XL and weaker to BCL-W [7]. In pre-clinical studies, Navitoclax monotherapy elicited durable
tumour regression in small cell lung cancer (SCLC) comparable to clinically approved cytotoxic agents [7-9],
and enhanced the in vivo activity of multiple therapeutic agents, including anti-mitotics and DNA-damaging
agents in solid cancers including non-small cell lung (NSCLC), breast, mesothelioma and ovarian cancer [8,10-
13]. Other BCL-XL and BCL-2 dual inhibitors developed subsequently (e.g. AZD4320, BM-1197, S44563,
APG-1252) also demonstrated similar long-lasting tumour regression in SCLC, gastric and uveal melanoma
xenograft models [14-16].

Further studies demonstrated that responses to Navitoclax (or its predecessor ABT-737 with an identical pro-
survival binding profile) in solid cancers was mainly due to inhibition of BCL-XL and not BCL-2 [11]. This is
consistent with the amplification of the chromosomal region, encompassing the BCLX gene, found in many
solid tumours [17]. Further studies have now validated BCL-XL as the critical survival factor for a range of
solid cancers including colorectal, bladder, pancreatic and cervical cancers [18-21].

Due to the early promise seen with targeting BCL-XL in solid cancers, a programme to develop
BCL-XL-selective inhibitors was initiated. The first orally bioavailable BCL-XL-selective inhibitor A-1331852
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demonstrated modest single-agent activity in NSCLC, mesothelioma, breast, ovarian and colorectal cancer
xenograft models [8,11,22]. However, combinations with chemotherapies (e.g. docetaxel or irinotecan) led to
significant increases in the amplitude and durability of responses [11,22].

Whilst the pre-clinical data supporting BCL-XL targeting in solid cancers is compelling, its inhibition also
causes significant thrombocytopaenia due to the dependence of platelets on BCL-XL for their survival [23].
This dose-limiting toxicity resulted in several trials with Navitoclax being halted and probably underlines why
A-1331852 has yet to enter the clinic. It also fuelled the development of BCL-2-selective inhibitors like
Venetoclax for use in cancers reliant on BCL-2, circumventing the thrombocytopaenia arising from BCL-XL
inhibition [24].

MCL-1

Like BCL-XL, focal amplification of the MCLI-containing chromosomal region occurs in ~11% of solid
cancers [17] including NSCLC [25-27] and melanoma [28]. Gene knockdown studies proved that amplified
MCL-1 enabled the survival of these tumours [17,27,29]. MCL-1 is also highly expressed in most breast cancer
subtypes, for example, triple-negative and HER2-amplified breast cancers [30-32], enabling tumour cell sur-
vival and chemoresistance. Its overexpression also correlates with high tumour grade and poor patient survival
[33,34].

Several MCL-1 antagonists have now been successfully developed [35,36] with S63845 being the first applic-
able for in vivo use [37]. This was followed by several others including AMG 176, VU661013, AZD5991 and
AM-8621 [38-41]. As with single-agent BCL-XL inhibition, MCL-1 inhibitors used as monotherapy are only
marginally effective in solid tumour-derived cell lines [37] such as patient-derived xenograft (PDX) models of
breast cancer [31] and KRAS-mutant NSCLC [40]. However, co-treatment of S63845 with oncogenic kinase
inhibitors (e.g. Lapatinib, Tarceva, Trametinib) or other chemotherapeutic agents (e.g. docetaxel, trastuzumab)
enhances cytotoxic responses [31,37,40], emphasising the need for prioritisation of BH3-mimetic combination
therapies in the clinic, which will be discussed further below.

BCL-2

Although usually associated with haematological cancers, amplification of the BCL2 locus on chromosome
18921 leads to BCL-2 overexpression and occurs in up to 80% of SCLC [42,43]. In pre-clinical studies,
Navitoclax/ABT-737 demonstrated activity in SCLC cell lines and xenograft models [9,44] warranting entry
into Phase I/II clinical trials. However, outcomes were disappointing [45,46] and this failure was attributed to
the dose-limiting thrombocytopaenia from BCL-XL co-inhibition, restraining the magnitude of BCL-2 inhib-
ition achievable. Accordingly, Venetoclax was investigated for SCLC treatment [47] as BCL-2 expression was a
predictive biomarker for Venetoclax responsiveness. Venetoclax, in combination with chemotherapeutic agents,
entered clinical trials for SCLC (NCT04422210, NCT04543916) but these studies were halted citing strategic
prioritisation and broader development.

In addition to SCLC, ~20% of MYCN-amplified neuroblastoma cells are highly sensitive to Venetoclax [48].
BCL-2 is expressed significantly higher in neuroblastoma cells compared with other solid cancer lines, whilst
BCL-XL expression is reduced, consistent with their responsiveness to Venetoclax and Navitoclax when MYCN
is amplified [48-51]. In breast cancer, BCL-2 is an estrogen-responsive gene overexpressed in ~85% of estrogen
receptor (ER)-positive breast cancers [52]. Therefore, when Venetoclax was combined with endocrine therapy
central to the management of ER-positive breast cancer, marked improvements in tumour response in
ER-positive PDX models were observed [53]. These findings validated BCL-2 as a therapeutic target for the
treatment of ER-positive breast cancer and led to the very first clinical study with Venetoclax for a solid cancer.
Critically, the combination of Veneoclax with endocrine therapy had a tolerable safety profile with notable
activity in ER- and BCL-2-positive metastatic breast cancer in a Phase Ib study [54].

Whilst BCL-2 targeting has achieved remarkable clinical success in haematological malignancies, these
results demonstrate the potential of targeting this eponymous member of the BCL-2 family for the treatment of
solid cancers.

BCL-W and BFL-1

Whilst BCL-XL, MCL-1 and BCL-2 have received most of the attention in oncology drug development, the
lesser discussed pro-survival BCL-2 proteins, BCL-W and BFL-1, also have important roles in cancer. Elevated
levels of BFL-1 have been primarily described in blood cancers [55,56]. In solid tumours, aberrant BFL-1
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expression has been documented in the stomach [57] and breast cancers [58,59] as well as malignant melan-
oma, though its requirement for melanoma cell survival varies between studies [60-66]. As with BFL-1,
BCL-W is highly expressed in human B-cell lymphomas [67,68]. In solid malignancies, deregulation of BCL-W
expression has been reported in bladder cancer, colorectal carcinoma and lung cancer [69-71].

Importantly, BCL-W and BFL-1 are intrinsic resistance factors to BH3-mimetics targeting BCL-XL, MCL-1
and BCL-2 [72-76]. Currently, there are no known BFL-1- or BCL-W-specific inhibitors in development
despite programmes that initially set out to achieve this [77,78]. In the absence of such direct inhibitors, mole-
cules that indirectly modulate their levels could potentially be applied instead [73].

Targeting multiple pro-survival proteins with BH3-mimetics
for solid cancer treatment

Although rare, acute sensitivity to single-agent BH3-mimetics does occur, especially in haematological cancers
and some solid cancers, as discussed above. However, most solid tumours are dependent on more than one
pro-survival protein which dictates BH3-mimetic efficacy. These co-dependencies are discussed below.

BCL-XL and MCL-1 co-targeting

Systematic studies using BH3-mimetic ‘parsing’ defined the pro-survival protein dependency of a large panel of
cancer cell lines from ten tissues of origin and showed a striking co-dependency of ~90% of these on BCL-XL
and MCL-1 [20]. Notably, targeting this specific combination led to synergistic activity in ~50% of solid
tumour cell lines representing melanoma, breast, colorectal, brain, ovarian and pancreatic cancers. Multiple
solid tumour-specific studies have similarly highlighted the effectiveness of co-targeting BCL-XL and MCL-1.
In squamous cell lung carcinoma, dual inhibition of MCL-1 and BCL-XL induced synergistic tumour cell
death, and when combined with fibroblast growth factor receptor (FGFR)-targeted therapy, produced durable
treatment responses in FGFRI-overexpressing lung squamous cell carcinoma [79]. Similar results were also
observed in malignant pleural mesothelioma, NSCLC and colorectal cancer [8,12,19,40,80,81]. In these cancers,
BCL-XL is the dominant survival factor as its sole targeting had a greater effect compared with the targeting of
MCL-1 alone. In breast cancer, BCL-XL serves as a resistance factor to MCL-1-specific inhibitors, further exem-
plifying the need to target both these pro-survival proteins for effective killing [82-84]. In malignant melan-
oma, prostate, and KRAS-mutant NSCLC, no one pro-survival protein appeared to govern their survival as
targeting both MCL-1 and BCL-XL were highly efficacious [40,62,85]. Gene set enrichment studies have sug-
gested that the shifting dependence of solid tumours on both BCL-XL and MCL-1 or just BCL-XL alone is
associated with epithelial-mesenchymal transition (EMT) [20] where both proteins are required for survival of
epithelial cells, but mesenchymal cells become BCL-XL dependent due to induction of NOXA, an MCL-1
antagonist.

BCL-2 and MCL-1 co-targeting

Whilst BCL-XL and MCL-1 co-targeting with BH3-mimetics appears to be the ‘magic formula’ for delivering
the coup de grace to most solid cancers, the inhibition of BCL-2 and MCL-1 with BH3-mimetics has also been
shown to be effective in some cases. For example, in MYCN-amplified neuroblastoma detailed previously,
MCL-1 mediates resistance to Venetoclax, where sensitivity depends on MYCN-regulated NOXA expression to
antagonise MCL-1 [48,49,51]. Accordingly, agents that down-regulate MCL-1 (e.g. Aurora kinase A inhibitor
MLN8237, Cyclophosphamide, MYC activators) sensitise MYCN-amplified neuroblastoma cells to Venetoclax,
providing durable responses in xenograft models [48,51]. These promising pre-clinical results have now led to
Phase I clinical trials in this highly resistant cancer (NCT03236857, [86]).

Whilst BCL-XL and MCL-1 antagonism in melanoma leads to synergistic killing, co-inhibition of MCL-1
and BCL-2 is also effective in vitro, albeit to a lesser extent [62], and in in vivo models (e.g with Venetoclax
and the clinically applicable MCL-1 inhibitor S64315) [64]. Notably, BCL-2 expression in patients with
BRAF"!4"%P¢ melanomas, for which there is little in the way of targeted therapies, is higher compared with
BRAF™ 2 melanomas [87].
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Circumventing toxicities associated with BH3-mimetic
combinations

The use of BH3-mimetic combinations to target multiple pro-survival proteins appears to be an obvious means
to combating solid cancers. However, given the key and often compensatory roles these proteins play in non-
malignant cells, co-inhibition of two or more pro-survival proteins potentiates the opportunity for associated
toxicities. The simultaneous disarmament of BCL-XL and MCL-1 with BH3-mimetics in mice is lethal due to
acute liver toxicity [12,79] as both these proteins are critical for hepatocyte survival [88]. These pro-survival
proteins are also essential for megakaryocyte survival [89]. Likewise, the loss of a single allele each of BCL2 and
MCLI in mice leads to reduced organismal size due to a reduction in body cellularity [90]. Nevertheless,
co-targeting BCL-2 (with Venetoclax) and MCL-1 (with S64315 or AMG176) is in dose-finding clinical studies

Table 1. Some of the clinical trials conducted with BH3-mimetics in solid cancers

Chemotherapeutic Relevant
Disease BH3-mimetic Target agent Clinical study Status references
ER+ breast Venetoclax BCL-2 Tamoxifen ISRCTNO8335443  Closed [63,54,155]
cancer
ER + HER2— Venetoclax BCL-2 Fulvestrant NCT03584009 Completed [156]
breast cancer
HER2+ breast Venetoclax BCL-2 Trastuzumab Emtansine  NCT04298918, Terminated,
cancer C041863 Closed
Neuroblastoma Venetoclax BCL-2 Cyclophosphamide NCT03236857, Recruiting [49,51,86]
M13-833
SCLC Venetoclax BCL-2 Atezolizumab, NCT04422210 Terminated [47]
Carboplatin, Etoposide
SCLC Venetoclax BCL-2 Irinotecan NCT04543916 Withdrawn [157]
SCLC Venetoclax BCL-2 ABBV-075 NCT02391480 Completed [137,139]
SCLC, solid APG-1252 BCL-XL, — NCT03387332 Recruiting [16,158]
cancers BCL-2,
BCL-W
Solid cancers Navitoclax BCL-XL, Trametinib NCT02079740 Recruiting [114,159]
BCL-2,
BCL-W
Solid cancers Navitoclax BCL-XL, Gemcitabine NCT00887757 Completed [160]
BCL-2,
BCL-W
Solid cancers Navitoclax BCL-XL, Docetaxel NCT00888108 Completed [161]
BCL-2,
BCL-W
Solid cancers Navitoclax BCL-XL, Etoposide, Cisplatin NCT008878449 Completed [162]
BCL-2,
BCL-W
Solid cancers Navitoclax BCL-XL, Sorafenib NCT02143401 Active, not [163]
BCL-2, recruiting
BCL-W
Melanoma, solid  Navitoclax BCL-XL, Dabrafenib, Trametinib NCT01989585 Recruiting [164]
cancers BCL-2,
BCL-W
Solid cancers AZD0466 BCL-XL, - NCT04214093 Completed [147]
BCL-2
Solid cancers ABBV-155 BCL-XL Taxanes NCT03595059 Recruiting [149]
Solid cancers DT2216 BCL-XL — NCT04886622 Not yet [150]
recruiting
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for the treatment of haematological malignancies (NCT03672695, NCT03797261) [91]. However, the progres-
sion of this combination will rely on the evaluation of the cardiac toxicity signal that arose in Phase I trials
with AMG176/AMG397 (NCT03465540, NCT02675452).

One avenue to circumvent these toxicities is to combine BH3-mimetics with agents that indirectly modulate
the expression of BCL-2 family members in a tumour-specific manner — either by up-regulating pro-apoptotic
(Figure 1) or down-regulating pro-survival proteins. The role of BCL-2 proteins as mediators of the cytotoxic
response to chemotherapeutic agents is well-established [92]. Given the limited efficacy of BH3-mimetic mono-
therapy in solid tumours, the potential of combining BH3-mimetics with standard-of-care therapeutics has
already been demonstrated as described above, and multiple clinical trials of BH3-mimetics combined with
anti-cancer agents are in progress for the treatment of solid malignancies (Table 1).

BH3-mimetics and anti-mitotic agents

Systematic analysis of Navitoclax’s capacity to enhance the activity of clinically relevant agents across a spec-
trum of solid tumours revealed the greatest synergy with anti-mitotic drugs such as Docetaxel and Paclitaxel
[10]). This combination significantly improves responses in a range of solid cancers including NSCLC, ovarian,
gastric and breast cancer [10,13,93,94]. As mentioned above, the Aurora Kinase A inhibitor MLN8237 that also
induces mitotic arrest, enhances Venetoclax activity in MYCN-amplified neuroblastoma [48] and of Navitoclax
in pancreatic adenocarcinoma [95].

The synergy seen with anti-mitotic agents is attributed to MCL-1 phosphorylation and its proteasomal deg-
radation following mitotic arrest [96,97]. Anti-tubulin chemotherapeutics also result in BCL-XL phosphoryl-
ation causing its functional inactivation [98,99], or the up-regulation of pro-apoptotic BIM [100,101] or NOXA
[48,102]. The consequence of all these is the lowering of the apoptotic threshold, sensitising cells to direct
BCL-XL or BCL-2 antagonism.

BH3-mimetics and oncogenic kinases

A major class of drugs under investigation for use in combination with BH3-mimetics are oncogenic kinase
inhibitors. These include kinases along the mitogen-activated protein kinase (MAPK) pathway which serves as
a critical bridge between extracellular signals and intracellular responses, or the cyclin-dependent kinases which
co-ordinate cellular events including cell proliferation and survival (e.g. CDK9). Critically, such kinases regulate
BCL-2 proteins to favour cellular survival. This occurs by the up-regulation/stabilisation of pro-survival pro-
teins such as MCL-1 [103-106] or through post-translational modifications such as phosphorylation leading to
functional inactivation or proteasomal degradation of pro-apoptotic proteins such as BIM [107,108], BAD
[109,110] or BMF [111]. Notably, the predominant response to oncogenic kinase inhibition is cytostatic as
opposed to cytotoxic as the elevated pro-survival protein levels in cancer cells buffer any induced pro-apoptotic
BH3-only proteins [112]. Hence, BH3-mimetics can lower the apoptotic threshold to unleash the pro-apoptotic
power of oncogenic kinase inhibitors.

Cancer-associated alterations of MAPK signalling arise from activating mutations to any of the downstream
effector molecules along the pathway (e.g. RAS/RAF/MEK/ERK that converge on the PI3K/AKT pathway) or
to upstream tyrosine kinase receptors (e.g. EGFR). As most solid cancers possess mutations along this signal-
ling node [113] they are attractive targets to investigate in combination with BH3-mimetics. Such combinations
result in potent efficacy in solid cancer models including NSCLC [10,40,114-117], melanoma [37,112,118],
prostate [37,85] and colorectal cancers [112]. In almost all examples, kinase inhibition up-regulates
pro-apoptotic BH3-only proteins such as BIM, PUMA or BMF [85,111,112,114-117,119]. In some cases, it is
associated with decreased MCL-1 expression or its increased degradation [10,85]. Notably, these combinations
of BH3-mimetics are well-tolerated and in clinical trials in solid tumours (NCT02520778, NCT02143401,
NCT02079740, NCT01989585).

Another class of kinases being explored for use in combination with BH3-mimetics are cyclin-dependent
kinase inhibitors, specifically those involved in gene transcription such as CDK9. CDK9 regulates transcription
of oncogenic genes including MYC and is essential for the maintenance, growth and chemoresistance of many
solid cancers including breast [120], lung [121], osteosarcoma [122], pancreatic [123] and melanoma [124] and
is prognostic of worse overall and disease-free survival [122,123]. In all cases, CDK9 inhibition leads to the sup-
pression of tumour formation and induces apoptosis via reduction of MCL-1 expression [84,125-128].
Therefore, CDK9 inhibitors offer an alternative approach to target MCL-1 activity indirectly in combination
with BH3-mimetics [125,127,128]. Accordingly, the combination of Venetoclax and CDKY inhibitors (e.g.
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Voruciclib, A-1592668, AZD4573, LS-007) [128-131] provides superior efficacy over monotherapy in haemato-
logical malignancies, and is well-tolerated in vivo. In solid cancers, the combination of Dinaciclib (which
targets CDKs 1, 2, 5, 9) with A-1331852 or ABT-737 to target BCL-XL showed promising responses in soft-
tissue sarcoma cells [132]. However, in vivo this combination led to liver toxicity linked to hepatocyte apop-
tosis, likely due to the broad action of Dinaciclib against CDKs in multiple cellular processes, hence specific
CDK9 inhibitors will likely have more promise.

Based on pre-clinical studies, the scope for strategies based on BH3-mimetics in combination with oncogenic
kinases is vast and promising. Whilst only two classes of oncogenic kinases have been described in detail here,
other kinase families that contribute to the aetiology of solid tumours including the PI3K/Akt/mTOR pathway
are also being explored in combination with BH3-mimetics [133].

BH3-mimetics and epigenetic modulators

Another promising approach being explored in combination with BH3-mimetics in solid cancers is the inhib-
ition of epigenetic modulators such as bromodomain and extra-terminal (BET) family proteins or histone dea-
cetylases (HDAC). Originally demonstrated in haematological malignancies, epigenetic modulators such as the
HDAC inhibitor Vorinostat in combination with ABT-263/ABT-737 facilitated synergistic tumour cell apop-
tosis. Similarly, in solid cancers including rhabdomyosarcoma, breast cancer, SCLC and melanoma, synergistic
killing was achieved, either through transcriptional up-regulation of pro-apoptotic BIM, NOXA, PUMA or
BMF [134-139] or suppression of BCL-2 and/or BCL-XL expression [137,138,140,141]. In melanoma, the BET
inhibitor JQI suppressed BFL-1 expression through inhibition of its transcriptional regulator, NF-kB [138]. As
BFL-1 remains untargeted by BH3-mimetics, this effect of BET inhibition could be a strategy to circumvent
BFL-1 dependency of tumours such as melanoma [60,63,66].

Intriguingly, treatment with JQ1 can also lead to an increased tumour cell dependence on pro-survival pro-
teins resulting in resistance to pharmacological modulators of epigenetic regulation [142-144]. For example, in
triple-negative breast cancer, gain of a superenhancer was detected at the BCLX locus and served as a mechan-
ism of maintaining BCL-XL expression and resistance to JQ1 [143]. Accordingly, BH3-mimetics could serve to
target overexpressed pro-survival protein(s) or redistribute any pro-apoptotic BH3-only proteins they sequester.
Encouragingly, the synergistic killing afforded by combinations of BH3-mimetics and epigenetic regulators
appears confined to cancer cells [134,138].

Other combinations

In addition to the combinations of BH3-mimetics with the targeted therapies discussed above, combinations
with less specific DNA-damaging chemotherapies have also been explored in solid cancers. Like the drugs
described above, such agents can enhance the anti-tumour activity of BH3-mimetics in multiple solid cancers
including ovarian cancer [10,94], mesothelioma [8] and sarcomas [145,146] where chemotherapy is often the
mainstay treatment, though the mechanism(s)-of-action for the enhanced killing is not well explored. However,
it would be reasonable to assume that this is likely mediated by up-regulation of BH3-only proteins such as
BIM or the p53-responsive genes PUMA and NOXA, following DNA damage [92].

The future of BH3-mimetic therapy for solid cancers

Clinical susceptibility to single-agent BH3-mimetic therapy has been mostly limited to haematological cancers.
To broaden the range of cancers that can be tackled with BH3-mimetics, strategies that safely achieve the antag-
onism of multiple pro-survival proteins must be considered. Whilst combination therapies with agents that
preferentially impact cancer cells is being investigated, another exciting approach being explored are technolo-
gies that enable direct delivery of BH3-mimetics to tumour cells.

A Phase I global clinical trial to evaluate the safety and tolerability of the dendrimer-based nanoparticle for-
mulation of a dual BCL-2/BCL-XL inhibitor, AZD0466, in haematological and solid cancers is currently under-
way (NCT04214093) [147]. No combination trials of AZD0466 with either ‘unconjugated’” BH3-mimetics
targeting for example MCL-1, or chemotherapeutic agents have yet been announced. However, pre-clinical
studies investigating the co-administration of AZD0466 and Cisplatin in a mesothelioma xenograft model dem-
onstrate improved tumour killing with minimal thrombocytopaenia associated with BCL-XL targeting [80].
Another approach that directs BH3-mimetics to tumour cells is to conjugate them with antibodies targeting
unique or overexpressed antigens preferentially found on cancer cells. One such antigen is B7-H3, an immune
regulator protein widely expressed by solid tumours including melanoma and NSCLC [148]. The compound
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ABBV-155, which is a first-in-class antibody drug-conjugate comprising a BCL-XL inhibitor conjugated to an
anti-B7H3 antibody, is now in clinical trials either as monotherapy or in combination with taxanes for the
treatment of relapsed/refractory solid tumours including NSCLC, SCLC and breast cancer (NCT03595059).
The results to date demonstrate a tolerable safety profile and anti-tumour activity [149].

In addition to strategies exploiting antigens or microenvironmental properties unique to cancer cells, another
approach to reduce toxicities is to apply proteolysis-targeting chimeras (PROTACs) technology to
BH3-mimetics. For example, by targeting BCL-XL to the Von Hippel-Lindau E3 ligase, which is minimally
expressed in platelets, the PROTAC DT2216 resulted in reduced thrombocytopaenia and enhanced activity
with chemotherapeutics in solid cancer xenograft models of SCLC, triple-negative breast cancer, prostate, colon
and liver cancers compared with Navitoclax [150]. Importantly, these combinations were well-tolerated and
DT2216 is now in clinical trials (NCT04886622) for use in relapsed/refractory malignancies including solid
tumours.

The activation of BAX and/or BAK is the primary outcome essential to the killing activity of BH3-mimetics
therapy. Whilst not a focus of this review, it would be remiss of us not to highlight the active investigation into
the development of compounds to directly activate BAX or BAK [151-154]. For example, a small molecule
compound, BTSA1, was developed to directly activate BAX and, promisingly, demonstrated selective killing of
AML cells whilst sparing normal cells [154]. Likewise, a small molecule BAK activator, BKA-073, was shown to
be effective against SCLC and NSCLC in vivo. Furthermore, consistent with the overexpression of BCL-2 in
SCLC potentially blunting an apoptotic response, synergistic killing was observed when BKA-073 was used in
combination with Venetoclax [152]. Therefore, whilst still in proof-of-concept development, this promising
approach to induce apoptosis in cancer cells warrants further investigation.

Decades of research have yielded clinically applicable drugs targeting the pro-survival members of the BCL-2
family. Whilst the path to achieving killing efficacy is now clear, how we achieve this remains the challenge in
the application of BH3-mimetic therapy for the future treatment of solid cancers. The combination strategies
discussed above offer significant promise, so long as a safe therapeutic window or ‘sweet spot’ can be identified.

Perspectives

e BH3-mimetics drugs that directly antagonise the pro-survival proteins of the BCL-2 family to
induce apoptosis are clinically approved for the treatment of some haematological cancers.
However, the use of BH3-mimetics for the treatment of solid cancers is less established.

e Solid cancers are often reliant on multiple pro-survival proteins for their survival. Whilst simul-
taneous co-targeting of these survival factors with BH3-mimetics induces efficient killing, it
can also lead to adverse effects on normal cells.

e As such, combination strategies utilising BH3-mimetics with other anti-cancer agents that
indirectly modulate the pro-survival function of BCL-2 proteins, are being investigated in solid
cancers as an alternate and safer approach. In addition, tumour-directed BH3-mimetics are
being developed to circumvent the issues arising from the targeting of normal cells.
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