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Abstract: A map without equilibrium has been proposed and studied in this paper. The proposed
map has no fixed point and exhibits chaos. We have investigated its dynamics and shown its chaotic
behavior using tools such as return map, bifurcation diagram and Lyapunov exponents’ diagram.
Entropy of this new map has been calculated. Using an open micro-controller platform, the map is
implemented, and experimental observation is presented. In addition, two control schemes have
been proposed to stabilize and synchronize the chaotic map.
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1. Introduction

Discrete maps have attracted significant attention in the study of dynamical systems [1–4]. Discrete
maps appear in various disciplines including physiology, chemistry, physics, ecology, social sciences
and engineering [3,5–7]. It has previously been observed that simple first-order nonlinear maps can
generate complex dynamical behavior including chaos [8]. Chaotic maps such as Hénon map [9],
Logistic map [8], Lozi map [10], and zigzag map [11] are found. When investigating chaotic maps,
the stability of fixed point plays a vital role. The authors tried to find fixed points and studied the
behavior of orbits near fixed points. Relation of fixed points and critical transitions is illustrated in [12].
Previous studies have established that conventional chaotic maps often have unstable fixed points.

More recent studies have focused on chaotic maps related to the hidden attractor
category [13–15]. Hidden attractors in chaotic maps are reported in [16], where a 1D map with
no fixed point is extended from Logistic map. Jiang et al. introduced a list of two-dimensional
maps with no fixed point [17]. These maps are inspired by Hénon map. By applying a Jerk-like
structure, a gallery of 3D maps having hidden dynamics is investigated [17]. Ouannas proposed a
fractional map having no fixed point [18]. Xu et al. found hidden dynamics of a two-dimensional
map based on Arnold’s cat map [19]. The authors built a hardware implementation of the map using
Field-programmable gate array (FPGA). However, detailed investigation of chaotic maps without
fixed point should be examined further.
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Our work discovers a new no equilibrium map with chaos. In Section 2, the map’s model is
introduced, and its dynamics is reported. Realization of the map in an Arduino Uno board is presented
in Section 3. In Section 4, control approaches for such a map are designed. Section 5 summarizes our
work.

2. Chaotic Map

By using nonlinear functions, we construct a map described by:{
x (n + 1) = x (n) + y (n) ,
y (n + 1) = y (n)− a |y (n)| − x (n) y (n) + b(x (n))2 − c(y (n))2 + d,

(1)

where a, b, c, and d are positive parameters.
The fixed points E(x, y) of the map can be found by solving{

x = x + y,
y = y− a |y| − xy + bx2 − cy2 + d.

(2)

By rewriting Equation (2), we have

bx2 + d = 0. (3)

Therefore, there is no any fixed point in the map in Equation (1) for such positive parameters b
and d.

We observe chaos in the map for a = 0.01, b = 0.1, c = 2, d = 0.1 and the initial conditions
(x(0), y(0)) = (1.5, 0.5) (see Figure 1). Similar to the reported map in [18], the map in Equation (1)
belongs to a class of maps without fixed point. Compared with the map reported in [18], the map in
Equation (1) is not a fractional one.

Figure 1. Strange attractor of the map for a = 0.01, b = 0.1, c = 2, d = 0.1 and (x(0), y(0)) = (1.5, 0.5).

2.1. Dynamics of the Map

Dynamics of the proposed map were studied. It was found that the map displays interesting
dynamics when varying the parameter c and keeping a = 0.01, b = 0.1, d = 0.1 and
(x(0), y(0)) = (1.5, 0.5). Note that, since we wanted to keep the system NE (no equilibrium), we
have frizzed the parameters b and d. Changing parameter a as bifurcation parameter did not show
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a proper route to chaos and in some values resulted in unbounded solutions. Thus, we chose c as
the bifurcation parameter. In addition, note that the initial condition used in our simulations was not
dominant and affected only the initial transient regime. As seen in the bifurcation diagram (Figure 2a)
and the finite-time local Lyapunov exponents (Figure 2b), the map in Equation (1) displays a period
doubling route to chaos. The time interval for calculating finite-time local Lyapunov exponents [20]
is 10,000. Since it has no equilibrium, it has no period-1 cycle. The bifurcation starts from a period-2
cycle. Then, it continues with period-doubling until chaos is born a little before c = 2.

Figure 2. Bifurcation diagram (a); and Lyapunov exponents (b) when varying c for a = 0.01, b = 0.1,
d = 0.1 and (x(0), y(0)) = (1.5, 0.5).

2.2. Entropy of the New Map

Previous research has established that entropy is an effective index for estimating information in a
particular system [21–23]. The authors applied entropy measurement to consider the complexity/chaos
of dynamical systems [24–27]. In particular, approximate entropy (ApEn) [28,29] is useful to study
chaotic systems [19,30]. It is noted that there is no reported threshold to be achieve in the ApEn in
order to exhibit chaos [28,29]. Xu et al. reported the ApEn of a new system with chaos [19]. Their
values of ApEn ranged from 0 to 0.12. Wang and Ding presented a table of AnEn test for four chaotic
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maps [30]. Here, calculated approximate entropy (ApEn) for the proposed the map in Equation (1) is
reported in Table 1. Obtained entropy in Table 1 illustrates the complexity of the map when it exhibits
chaos.

Table 1. Calculated approximate entropy of the map in Equation (1) for a = 0.01, b = 0.1, d = 0.1 and
(x(0), y(0)) = (1.5, 0.5).

Case c ApEn

1 1.985 0.0306
2 1.99 0.2142
3 1.995 0.2184
4 2 0.2525

3. Implementation of the Map Using Microcontroller

Chaotic maps are useful for designing pseudorandom number generators [31–34], building
S-Box [35], proposing color image encryption [36] or constructing secure communication [37].
Therefore, implementation of chaotic maps is a practical topic in the literature. Some approaches
have been used to realize theoretical models of chaotic maps. Valtierra et al employed a skew-tent
map in switched-capacitor circuits [6]. Bernoulli shift map, Borujeni maps, zigzag, and tent are done
with a field-programmable gate array architecture [7]. Wang and Ding introduced FPGA hardware
implementation of a map with hidden attractors [30]. It is worth noting that using microcontroller is
an effective approach to implement chaotic maps [37,38]. The open-source platform named Arduino
provides a reasonable development tool because of its free development software [39–41]. In our work,
we used an Arduino Uno board based on microcontroller to realize the proposed map in Equation (1),
as shown in Figure 3. Pins 9 and 10 of the Arduino Uno board are configured as two digital outputs.
However, we could choose different pins for digital outputs because Arduino Uno board has 14 digital
pins. We wrote a program for the map in the Arduino development environment. It is noted that
the algorithm steps and program structure used in our implementation are similar to those reported
in [38]. The output pin 9 was activated when x > 1.8 while the output pin 10 was activated when
y > 0. Figure 4 displays the experimental waveforms at pins 9 and 10.

Figure 3. Arduino Uno board for implementing chaotic the map in Equation (1).
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Figure 4. Captured waveforms at pins 9 and 10 of the Arduino Uno board.

4. Control Schemes for the Proposed Map

When investigating chaotic maps, stabilization and synchronization are vital aspects. Two control
laws for stabilizing and synchronizing the proposed non-fixed-point map are introduced in this section.

4.1. Stabilization

The aim of stabilizing the proposed map is to devise an adaptive control law such that all system
states are stabilized to 0. The controlled map is{

x (n + 1) = x (n) + y (n) + ux,
y (n + 1) = y (n)− a |y (n)| − x (n) y (n) + bx2 (n)− cy2 (n) + d + uy,

(4)

where ux and uy are controllers to be determined.
The map in Equation (4) can be stabilized with the control law in Equation (5){

ux = − 1
2 x (n) ,

uy = − 1
2 y (n) + a |y (n)|+ x (n) y (n)− bx2 (n) + cy2 (n)− d

(5)

Substituting the control law in Equation (5) into Equation (4), we get{
x (n + 1) = 1

2 x (n) + y (n) ,
y (n + 1) = 1

2 y (n) .
(6)

The written form of the error system in Equation (6) is

(x (n + 1) , y (n + 1))T = M× (x (n) , y (n))T , (7)

where

M =

(
1
2 1
0 1

2

)
. (8)
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Therefore, the map in Equation (1) is stabilized.
We illustrated the result by selecting parameters (a, b, c, d) = (0.01, 0.1, 2, 0.1) and

(x(0), y(0)) = (1.5, 0.5). In Figure 5, the evolution of states verifies the control law.

Figure 5. Stabilization when applying the proposed control law: (a) x(n), (b) y(n), and (c) x− y plane.

4.2. Synchronization

Researchers have discovered synchronization of discrete systems [42–44]. We consider the drive
system in Equation (9){

xm (n + 1) = ym (n) ,
ym (n + 1) = xm (n) + a1x2

m (n) + a2y2
m (n)− a3xm (n) ym (n)− a4,

(9)

It has been shown in [17] that the map in Equation (9) exhibits chaotic behaviors with no fixed
points. The map in Equation (9) is one of the first example of discrete-time systems without fixed
points, i.e, the map in Equation (9) has hidden attractors. The map in Equation (9) is inspired by the
well-known Hénon map.

The subscript s denotes the response system’s states. The response is given by{
xs (n + 1) = xs (n) + ys (n) ,
ys (n + 1) = ys (n)− a |ys (n)| − xs (n) ys (n) + bx2

s (n)− cy2
s (n) + d,

(10)

where ui (t) (i = 1, 2) are synchronization controllers.
The error system is

e1 (n) = xs (n)− xm (n) , (11)

e2 (n) = ys (n)− ym (n) ,

We find the controllers u1 and u2 based on Theorem 1.

Theorem 1. By selecting
u1 = − 1

2 xs (n)− 1
2 xm (n)− 2

3 ys (n) + 2
3 ym (n) ,

u2 = 1
3 xs (n)− 2

3 xm (n)− 3
2 ys (n) + 1

2 ym (n)
a |ys (n)|+ xs (n) ys (n)− bx2

s (n) + cy2
s (n)− d

+ a1x2
m (n) + a2y2

m (n)− a3xm (n) ym (n)− a4,

(12)

the drive system in Equation (9) and the response system in Equation (10) are synchronized.
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Proof. The error system in Equation (11) is rewritten as
e1 (n + 1) = xs (n) + ys (n)− ym (n) + u1,
e2 (n + 1) = ys (n)− a |ys (n)| − xs (n) ys (n) + bx2

s (n)− cy2
s (n) + d

− xm (n)− a1x2
m (n)− a2y2

m (n) + a3xm (n) ym (n) + a4 + u2,
(13)

Substituting the control law in Equation (12) into Equation (13) yields the reduced dynamics{
e1 (n + 1) = 1

2 e1 (n) + 1
3 e2 (n) ,

e2 (n + 1) = 1
3 e1 (n)− 1

2 e2 (n) .
(14)

The Lyapunov function is V (e1(n), e2(n)) = e2
1(n) + e2

2(n),

∆V = V (e1(n + 1), e2(n + 1))−V (e1(n), e2(n))

=
1
4

e2
1 (n) +

1
3

e1 (n) e2 (n) +
1
9

e2
2 (n)

1
4

e2
1 (n)−

1
3

e1 (n) e2 (n) +
1
9

e2
2 (n)− e2

1 (n)− e2
2 (n)

= −1
2

e2
1 (n)−

7
9

e2
2 (n) < 0.

By means of Lyapunov stability theory, the maps in Equations (9) and (10) are synchronized.

Figure 6 depicts the time evolution of states of systems in Equations (9) and (10) after control.
As reported in Figure 7, synchronization is obtained.

Figure 6. Evolution of states when applying the control: (a) xm(n), xs(n) and (b) ym(n), ys(n).
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Figure 7. Synchronization errors.

5. Conclusions

This work has introduced a new chaotic map, which can be considered as a system with hidden
attractor. Having no fixed point is a notable feature of the proposed map. Chaos in the map is
observed and confirmed by positive Lyapunov exponent. Realization of the map using an open-source
electronic platform is given to illustrate its feasibility. Experimental results are recorded and displayed
by oscilloscope. Approximate entropy is calculated to determine the complexity of the map. We have
also presented stabilization and synchronization for the map. In future research, this map will be
embedded into practical applications such as data encryption, signal transmission or motion planning.
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