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Wnt/β-catenin signalling controls development and tissue homeostasis. moreover, activated  
β-catenin can be oncogenic and, notably, drives colorectal cancer. Inhibiting oncogenic β-catenin 
has proven a formidable challenge. Here we design a screen for small-molecule inhibitors of β-
catenin’s binding to its cofactor BCL9, and discover five related natural compounds, including 
carnosic acid from rosemary, which attenuates transcriptional β-catenin outputs in colorectal 
cancer cells. Evidence from nmR and analytical ultracentrifugation demonstrates that the 
carnosic acid response requires an intrinsically labile α-helix (H1) amino-terminally abutting the 
BCL9-binding site in β-catenin. similarly, in colorectal cancer cells with hyperactive β-catenin 
signalling, carnosic acid targets predominantly the transcriptionally active (‘oncogenic’) form 
of β-catenin for proteasomal degradation in an H1-dependent manner. Hence, H1 is an ‘Achilles’ 
Heel’ of β-catenin, which can be exploited for destabilization of oncogenic β-catenin by small 
molecules, providing proof-of-principle for a new strategy for developing direct inhibitors of 
oncogenic β-catenin. 
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Wnt signalling induces a context-specific transcriptional 
programme, which controls numerous developmental 
processes and adult stem cell niches1. In the absence 

of Wnt, the key effector of this pathway, β-catenin, is continu-
ously degraded. Axin together with the Adenomatous polyposis 
coli (APC) tumour suppressor promotes the phosphorylation of  
β-catenin by glycogen synthase kinase 3 (GSK3), which earmarks it 
for proteasomal degradation. If this fails in the colonic epithelium, 
because of inactivating mutations of APC, β-catenin is stabilized 
inappropriately and thus initiates tumourigenesis. Moreover, muta-
tions in the phosphorylation sites of β-catenin have been found in 
many other cancers2. Unphosphorylated β-catenin accumulates and 
associates with the DNA-binding T-cell factor/lymphoid enhancer 
factors (TCF/LEF), to recruit a range of transcriptional co-activa-
tors to its carboxy terminus3. The transcriptional switches induced 
by β-catenin-TCF are the key outputs of Wnt/β-catenin signalling, 
and determine both normal and malignant cell fates1. Below, we use 
‘activated’ or ‘oncogenic’ interchangeably, referring to unphosphor-
ylated transcriptionally active β-catenin.

The case for β-catenin as a target for therapeutic intervention in 
cancer is overwhelming. However, developing direct inhibitors of 
oncogenic β-catenin has proven a formidable challenge: there are 
no well-established enzymatic activators of β-catenin that could be 
inhibited, and its main ligand interaction surface is extensive and 
shared between positive and negative regulators4. Nevertheless, 
there have been several successes in developing indirect small- 
molecule inhibitors of oncogenic β-catenin, which reduce its activ-
ity or stability by targeting one of its regulators5–8.

BCL9 proteins and their molecular interfaces with β-catenin and 
Pygo proteins have emerged as promising new targets for interfer-
ence in cancer. BCL9 proteins are adaptors between β-catenin and 
Pygo9, and assist their Pygo cofactors in recognizing modified his-
tone H3 tails by their plant homeodomain (PHD) fingers10. BCL9 
and Pygo thus promote β-catenin-mediated transcription during 
normal development and in colorectal cancer cells9,11–14. BCL9 can 
be overexpressed in cancers and exhibits tumour-promoting effects 
in mouse xenograft models15. Mouse knockout studies have uncov-
ered key roles of Bcl9 and Pygo2 in controlling β-catenin-dependent 
transcription of stem cell markers in normal intestinal crypts and 
neoplasias16, and in the mammary progenitor cell compartment17. 
Indeed, Pygo is one of the targets destabilized by a small-molecule 
kinase agonist6.

Here we focus on BCL9 and its interaction with β-catenin. We 
developed an ELISA-based ‘plus–minus’ assay to screen for small 
compounds that disrupt selectively the binding of β-catenin to 
BCL9 without affecting its binding to TCF. We thus identified a 
small group of chemically related natural compounds, one of which, 
carnosic acid (CA) from rosemary, acts in a dose-dependent manner 
to inhibit BCL9-β-catenin binding in vitro, and β-catenin-depend-
ent transcription in colorectal cancer cells. Our biophysical analysis 
pinpointed a key element required for the CA response, namely a 
structurally labile α-helix (H1) at the amino terminus of the β-cat-
enin Armadillo repeat domain (ARD), abutting the BCL9-binding 
site. We provide evidence that CA acts through H1 to exacerbate an 
intrinsic tendency of the ARD N-terminus to aggregate, thus atten-
uating in vitro binding to BCL9. In vivo, CA promotes selectively 
the proteasomal degradation of unphosphorylated β-catenin in an 
H1-dependent manner. H1 is thus an Achilles’ Heel of β-catenin, 
and our discovery of a β-catenin-destabilizing compound provides 
proof-of-principle for new strategies to identify direct small-mol-
ecule inhibitors of oncogenic β-catenin.

Results
A screen for inhibitors of the -catenin-BCL9 interaction. The 
BCL9 homology domain 2 (HD2) binds to the first repeat of the 
ARD9,18, which is critical for β-catenin-dependent transcription in 

colorectal cancer cells14. To identify inhibitors of this interaction, we 
developed an in vitro assay that monitors the binding of His-HD2 to 
glutathione S-transferase (GST)-ARD (immobilized on glutathione-
coated microplates), using a colorimetric assay to quantify bound 
His-HD2 after addition of compounds (Fig. 1a). Competition with 
untagged soluble ARD or HD2 shows dose-dependent saturable 
inhibition, whereas chymotrypsin has no effect (Fig. 1b). L363F 
and L366K HD2 mutants (defective in β-catenin binding14) show 
reduced binding to GST-ARD (Fig. 1c). Importantly, we also 
monitored the binding of the N-terminus of TCF-4 (His-nTCF) to 
GST-ARD (Fig. 1a), as a ‘counter-screen’ to remove unspecific hits.

We thus screened two 1250-compound libraries—LOPAC 
(known pharmacological inhibitors) and Phytopure (chemically 
diverse natural compounds), obtaining similar Z′ values and hit 
rates for the primary screens (Supplementary Table S1). All LOPAC 
hits also scored positive in the counter-screen, and were thus dis-
carded as non-selective. However, three phytopure hits with similar  
Ki values for HD2-ARD binding (Supplementary Fig. S1 and Table S2)  
did not score in the counter-screen. Two of these harbour a com-
mon catechol core, allowing us to identify three related compounds  
in the PubChem database (Fig. 2a): totarol, CA and carnosol (CO). 
Totarol nonspecifically precipitated the proteins in our assay, and 
was therefore discarded. CA and CO inhibited HD2-ARD bind-
ing dose dependently (Fig. 2b), with Ki values of 3.3 ± 1.8 µM and 
8.2 ± 4.3 µM, respectively (Supplementary Table S2), but only CA 
was specific. CO also inhibited nTCF-ARD binding (Ki 23 ± 15 µM; 
Supplementary Table S2) and so did not pass this specificity test.

We adapted this format for higher throughput, to screen the 
45,000-compound MRC Technology (MRCT) library, by switching 
to a 384-well format and changing the detection method to lumi-
nescence-based, which produced a more robust assay (Z′ = 0.70; 
Supplementary Fig. S2). This identified 12 hits, each of which scored 
positive in the counter-screen and so were discarded (Supplemen-
tary Table S1). We thus focussed on CA for subsequent analysis.

CA binds to the ARD N-terminus. To identify the target of CA, we 
used NMR saturation transfer difference (STD) spectroscopy as a 
highly sensitive method to probe the interaction between CA and its 
target domain. As the ARD is large, we decided to use the minimal 
HD2-binding domain within its N-terminus9, that is, its first four 
repeats (called R4): R4 binds to HD2 with similar affinity as ARD18 
(Supplementary Table S3), and the Ki values for CA-mediated inhi-
bition of GST-R4-HD2 and GST-ARD-HD2 are identical.

We next sought to confirm that R4 forms a well-structured ARD 
subdomain, and thus solved its crystal structure in its apo form, 
and in complex with HD2, at 2.5 and 2.2 Å resolution, respectively 
(Supplementary Table S4). These structures superimpose very well 
on each other, and onto the corresponding segments of the ter-
nary ARD-HD2–nTCF complex18 and of the ARD itself19, with 
root-mean-square deviation values of 0.41–0.54 Å (Supplementary  
Table S4). Notably, the first α-helix (H1) of the ARD is unstructured 
in the crystal, but H1 adopts a helical structure when in complex 
with HD2 (Supplementary Fig. S3), as previously observed18. The 
high similarities between these structures further validated our use 
of R4 for functional analysis.

To identify the CA-binding domain, we performed STD assays 
with purified R4 or HD2 +/− CA. R4 tested positive in this ligand-
observed binding assay whereas HD2 was negative (Fig. 2c). Titra-
tion with varying concentrations of R4 (Fig. 2d) indicates saturable 
binding (Supplementary Fig. S4), allowing us to estimate a Kd in the 
low micromolar range (5–20 µM). Importantly, these STD assays 
unequivocally identify R4 as the molecular target of CA.

CA exacerbates an intrinsic tendency of R4 to aggregate. To fur-
ther characterize the interaction between CA and R4, we acquired 
1H–15N heteronuclear single-quantum correlation (HSQC) spectra. 
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15N-Labelled HD2 produces well-resolved HN–N correlation peaks 
corresponding to its 49 non-proline backbone amides (Supplemen-
tary Fig. S5), with homogeneous peak intensities across the spectrum 
(Fig. 3a), consistent with a well-folded helical domain18 (Supplemen-
tary Fig. S3). This spectrum is unchanged by stoichiometric (that 
is,  > 10 times Ki; Supplementary Table S2) addition of CA (Fig. 3a; 
Supplementary Fig. S5), confirming that CA does not bind to HD2.

The HSQC of 15N-labelled R4 is well dispersed, exhibiting  > 130 
resolvable peaks (Fig. 3b). However, in contrast to HD2, we observe 
unequal peak intensities across the R4 spectrum: peaks within the 
8–8.6 p.p.m. range of the 1H axis (Fig. 3b, shaded grey) tend to be 
stronger, broader and poorly resolved, compared with those out-
side this range, indicative of aggregation. Indeed, NMR relaxation 
properties of R4 (1H T2 relaxation time constants, as measured 
from one-dimensional spin-echo20) are consistent with a molecu-
lar mass of  > 65 kDa (expected monomer mass 21 kDa), support-
ing the notion of R4 oligomerization, although we emphasize that 
R4 remains predominantly monomeric at the concentrations used 
for NMR. Also, highly concentrated R4 solutions ( > 4 mg ml − 1) 
become cloudy above 15 °C, but re-clear upon cooling to 5 °C, sug-
gesting reversible oligomerization, or aggregation, of R4 mediated 
by hydrophobic interactions (all biophysical experiments were thus 
conducted at 5 °C unless otherwise stated).

R4 aggregation was increased at the high protein concentrations 
required for resonance assignment spectra, which precluded direct 
assignments; however, we obtained unequivocal assignments of 138 
peaks to individual R4 residues by overlaying the R4 HSQC with the 
highly similar HSQC of an R4 derivative (R4∆H1). The correlation 
of these assignments with secondary structure likelihood (based on 
TALOS + )21 revealed that the α-helices match those in the crystal 
(Supplementary Fig. S6), indicating similar crystal and solution 
structures of R4.

Next, we challenged 15N-labelled R4 with equimolar amounts 
of CA (100 µM each), but this resulted in protein precipitation 
and  > 90% loss of the overall signal HSQC intensity relative to that 
of untreated R4. To avoid precipitation, we reduced the CA and R4 
concentrations to 50 µM each, which resulted in an HSQC show-
ing signs of exacerbated R4 aggregation because of CA (with sig-
nal intensities tending to be higher within the 8–8.6 p.p.m. range, 
but lower outside it; Fig. 3c). We used right-angle light scattering 
to demonstrate directly that CA stimulates R4 aggregation (Supple-
mentary Fig. S7).

The R4 + CA spectrum also reveals a small subset of discrete 
peaks (including 9 that can be correlated confidently with the 
assigned HSQC; Supplementary Fig. S6) that exhibit a more pro-
nounced exchange broadening upon CA exposure (Fig. 3d, purple) 
compared with the majority of the peaks. Mapping these onto the 
R4 crystal structure (Fig. 3e) reveals an internal cluster underneath 
H1 (Fig. 3d, black dots), possibly responding to CA binding to the 
surface above, and two CA responsive valines (Fig. 3d, arrowheads) 
at the HD2-binding surface, which contribute to the ‘acidic knob’ 
crucial for the HD2 interaction18 (whereby V167 directly contacts 
HD2; Fig. 3f), perhaps explaining why CA disrupts ARD-HD2 
binding. A third site is revealed at the C-terminus, which may be 
involved in oligomerization (see below, Supplementary Fig. S8).

The structurally labile H1 is required for the CA response. The 
above-described experiments did not allow us to probe the H1 resi-
dues (N141–A149) for their CA response, as these are intrinsically 
unstructured and missing in the assigned HSQC (Supplementary 
Fig. S6). Recall that H1 adopts a helical structure if the ARD is com-
plexed with BCL9 (ref. 18; Supplementary Fig. S3), and also with 
other ligands (Supplementary Table S5) including E-cadherin22 and 
α-catenin23, the latter being the only known ligand that interacts 
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with H1 directly. Intriguingly, the aromatic ring of Y142 at the H1 
N-terminus contributes to the hydrophobic core of a four-helix 
bundle between α- and β-catenin23, and it was proposed that the 
hydrophobic C-terminus of E-cadherin (which binds to the hydro-
phobic surface of the ARD N-terminus) could shield β-catenin from 
aggregation and proteasome-mediated destruction22. We thus con-
jectured that H1 might be responsible for the observed oligomeriza-
tion of R4, and perhaps even contain the CA-binding site.

To test this, we deleted amino acids N141–A149 from R4 
(R4∆H1), which resulted in a much improved HSQC, stable over 
weeks (at 5–15 °C) and with relatively homogeneous peak inten-
sities throughout (Fig. 4a), indicating that R4∆H1 is less prone 
to aggregation than R4. This allowed us to assign 138 backbone 
amide peaks to individual R4∆H1 residues (Supplementary Fig. S6). 
As mentioned, the overlay of the R4∆H1 and R4 spectra exhibits 
a high similarity, indicating an overall similar structural fold. The 
projection of the chemical shift differences onto the R4 sequence 
and crystal structure reveals that the majority of the R4 residues 
affected by the presence of H1 cluster at the R4 N-terminus, imme-
diately adjacent to H1 (Supplementary Fig. S8). A second cluster is 
observed at the R4 C-terminus (Supplementary Fig. S8, asterisks), 
highlighting a surface-exposed hydrophobic patch that might be 
involved in oligomerization.

Importantly, the HSQC of R4∆H1 remains essentially unchanged 
upon stoichiometric addition of CA (Fig. 4a; Supplementary Fig. S9).  
Likewise, there is virtually no CA response of R4∆H1 as judged by 
right-angle light scattering (Supplementary Fig. S7). Consistent 
with this, ligand-observed binding assays (STD and WaterLOGSY) 
demonstrate that CA does not bind to GST-R4∆H1 (Fig. 4b,c). Thus, 
H1 contains, or contributes to, the primary CA-binding site within 
R4. This implies that the CA-induced line broadenings described 
above (Fig. 3d) largely reflect indirect consequences of CA’s binding 
to H1—for example, increased R4 aggregation and/or conforma-
tional modulation.

Close inspection of the R4/R4∆H1 HSQC overlay reveals a small 
number of major unassigned peaks that are R4 specific (that is, 
likely to originate from H1 residues), all poorly resolved and exhib-
iting random coil-like HN chemical shifts in the 7.9–8.6 p.p.m. range 
(Supplementary Fig. S10, boxed), consistent with unstructured 
polypeptide. A subset of these undergo CA-induced line broaden-
ing or slight chemical shift perturbations, and may thus reflect H1 
residues within the primary CA-binding site.

To obtain NMR-independent evidence that the CA response 
depends on H1, we conducted analytical ultracentrifugation (AUC). 
Velocity AUC reveals a sedimentation coefficient of 1.38 for R4, cor-
responding to an apparent molecular mass of ~21 kDa for a spheri-
cal globular protein (demonstrating that R4 is monomeric under 
these conditions). Stoichiometric addition of CA shifts this coeffi-
cient to 1.29, corresponding to an apparent reduction in molecular 
mass (19.8 kDa; Fig. 4d, top), consistent with a CA-induced shape 
change of R4 towards a less compact state (oligomerization is not 
apparent under these conditions). In contrast, R4∆H1 sediments 
with a coefficient of 1.23 (corresponding to an apparent molecular 
mass of 19.6 kDa), which remained unchanged upon addition of CA 
(Fig. 4d, bottom), confirming that the CA response of R4 depends 
on H1.

CA inhibits -catenin-dependent transcription. Having identified 
β-catenin as a direct CA target, we asked whether CA would affect 
its activity in cell-based assays. Toxicity assays showed that CA, 684 
and 291 are well tolerated by cells, whereas CO and 986 compro-
mised cell viability at high concentrations (≥40 µM), and totarol was 
highly toxic (Supplementary Fig. S11). The latter two were not pur-
sued as their substantial cell toxicity would complicate the interpre-
tation of their effects on specific β-catenin-dependent readouts.

We tested the non-toxic compounds for their ability to inhibit 
β-catenin activity, monitoring the transcript levels of the univer-
sally Wnt-inducible gene AXIN2 (ref. 24), and also of another Wnt 
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target gene, B9L14, relative to an internal control (TBP). Treatment 
of HeLa cells with 20 mM LiCl (to block GSK3) increased the tran-
script levels of the Wnt target genes two to six times (Fig. 5a), which 
was unaffected by 291 or 684, possibly because these compounds are 
not taken up by the cells. In contrast, 25 µM CA reduced Wnt target 
gene transcripts to 40% (AXIN2) and 60% (B9L) of mock-treated 
control cells, without affecting HPRT expression, whereas CO 
decreased expression of all three genes indiscriminately (Fig. 5a). 
Similar results were obtained with colorectal cancer cells (SW480 
cells expressing mutant APC, and HCT116 cells expressing unphos-
phorylatable β-catenin): no effects of 291 and 684, selective attenu-
ation of Wnt target genes by CA, and indiscriminate effects of CO 
(Fig. 5b; Supplementary Fig. S12).

We also used the well-established TOPFLASH reporter assay25 
in SW480 cells, to test our compounds in this direct and highly spe-
cific assay for β-catenin-dependent transcription. Again, 291 and 
684 showed no effect while both CA and CO consistently inhibited 
TOPFLASH to ~10% of the control (Fig. 5c), but CO also reduced 
the absolute renilla values (used as internal control) at ≥25 µM, con-
firming that this compound lacks specificity. Importantly, a VP16-

LEF1 chimera whose transcriptional activity depends exclusively 
on the viral transactivation domain26 was completely refractory to 
CA inhibition in this assay (Fig. 5d), demonstrating that the CA 
response of this transcriptional assay is conferred by β-catenin.

CA targets activated -catenin for proteasomal degradation. 
Given that CA destabilizes R4 in vitro, we wondered whether it 
would also destabilize β-catenin in vivo, earmarking it for proteaso-
mal degradation27. We thus monitored the levels of active β-catenin 
in CA-treated SW480 cells (which are high, because of their APC 
mutation) with an antibody specific for unphosphorylated β-cat-
enin (called α-ABC28). Strikingly, exposure of these cells to 25 µM 
CA reduces the α-ABC-reactive β-catenin pool relatively rapidly, 
and time dependently, to  < 30% of control levels (Fig. 6a; for a dose 
response, see Supplementary Fig. S13). By contrast, there is no sig-
nificant reduction if the same lysates are probed with antibodies 
against phosphorylated β-catenin, total β-catenin (most of which, in 
epithelial cells, represents the E-cadherin-bound pool; see Discus-
sion), E-cadherin or α-catenin (Fig. 6b; Supplementary Fig. S13). 
Importantly, high levels of unphosphorylated β-catenin are restored 
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in CA-treated cells if their proteasomes are inhibited by MG132 
(Fig. 6b), lactacystin or epoxomycin (Supplementary Fig. S14). By 
contrast, the levels of inhibitor of κB (IκB; whose proteasomal deg-
radation is controlled by the same SCFβ − TrCP ubiquitin ligase as 
β-catenin29) are barely affected by CA (Fig. 6b), even after 20 h of 
treatment. Thus, CA promotes selectively the proteasomal degrada-
tion of oncogenic β-catenin in colorectal cancer cells. In support of 
this, the half-life of unphosphorylated β-catenin is reduced signifi-
cantly by CA, from ~7 h in untreated cells to 3–4 h in CA-treated 
cells (Supplementary Fig. S15).

As an independent measure of the transcriptionally active β-cat-
enin, we quantified the levels of TCF4-associated β-catenin in CA-
treated SW480 cells by TCF4 co-immunoprecipitation. Once again, 
the total β-catenin levels are little affected by CA, but the levels of 
TCF4-associated β-catenin are substantially reduced compared 
with their controls (Fig. 6c). In contrast, the E-cadherin-associated 
β-catenin and α-catenin are barely affected by CA (Fig. 6d). We 
note that MG132 does not restore the association of β-catenin with 
TCF4 in CA-treated cells (Fig. 6c), possibly because the CA-induced 
conformer of β-catenin that accumulates during proteasome inhibi-
tion may not be fully folded and, thus, unable to gain access to the 
nucleus and/or chromatin-bound TCF4.

Next, we asked whether H1 is responsible for the CA-induced 
degradation of activated β-catenin. LiCl treatment of HEK 293 cells 
transfected with FLAG-β-catenin causes an increase of unphos-

phorylated FLAG-β-catenin, which is reduced in a dose-depend-
ent manner by CA (Fig. 7a). Importantly, FLAG-β-catenin with an 
internal deletion of H1 (FLAG-β-catenin∆H1) does not respond to 
CA, and its levels are maintained up to 25 µM CA (Fig. 7a). This is 
fully consistent with our biophysical evidence that the CA response 
of R4 depends on H1.

Interestingly, overexpressed BCL9 protects β-catenin slightly 
from CA destabilization in SW480 cells, whereas the L366K mutant 
provides no protection (Fig. 7b). Protection is also afforded by 
an overexpressed C-terminal truncation of BCL9, but not by its 
L366K mutant version (Supplementary Fig. S16). Thus, the bind-
ing of BCL9 to the ARD N-terminus can protect β-catenin against  
CA-induced destabilization.

Discussion
We described a ‘plus–minus’ screen that led to the discovery of the 
rosemary compound CA, which inhibits the binding of β-catenin to 
BCL9 in vitro, and which reduces the levels of oncogenic β-catenin  
in vivo, thus attenuating its transcriptional outputs. Our counter-
screen allowed us to distinguish general chaotropic agents from com-
pounds that specifically affect the HD2-ARD but not the nTCF-ARD 
interaction, which proved invaluable to discard unspecific hitters, 
which were prevalent in all three screens. The only three hits that 
survived the counter-screen came from the Phytopure library, sug-
gesting that natural product libraries provide a useful source of com-
pounds for disrupting protein–protein interactions. These Phytopure 
hits led us to identify CA, the major phenolic diterpene in rosemary 
leaf extracts (constituting ~4% of their dry weight; see also ref. 30). 
Together with CO, CA is responsible for the antioxidant activity 
of rosemary extracts31, which apparently accounts for their potent  
anti-inflammatory and anti-tumourigenic effects32, and also for the 
neuroprotective effects of CA in cell culture and mouse brains33.

Our NMR studies identified β-catenin as a direct molecular tar-
get of CA. Three lines of evidence argue that the observed in vitro 
effects of CA on R4 could explain its in vivo effects on β-catenin. 
First, the CA-induced reduction of the cellular β-catenin levels 
is relatively rapid and dose dependent, consistent with a direct 
response. Second, the IC50s of the cellular responses of CA over-
lap its Ki for interfering with HD2-ARD binding, its Kd for bind-
ing to R4, and they are within the range of CA concentrations that  
promote in vitro aggregation of R4. Third, and most important, 
deletion of H1 eliminates the CA response of R4 in vitro, and that 
of β-catenin in vivo. This excellent correlation between in vitro and  
in vivo effects of CA is consistent with the latter reflecting the former, 
which we shall take to be the case below—bearing in mind that CA 
could have additional cellular targets that might affect β-catenin  
stability and outputs.

Our biophysical data suggest that H1 contains, or contributes to, 
the CA-binding site of R4, and that CA acts through H1 to exac-
erbate an intrinsic tendency of the ARD N-terminus to aggregate. 
Given that H1 is intrinsically unstructured19, and our evidence 
from AUC for a CA-induced R4 shape change, it is conceivable that 
CA, on binding to the ARD N-terminus, induces a conformational 
change of H1, which favours aggregation. Indeed, CA may fix H1 in 
a conformation that is incompatible with its folding into the helical 
structure necessary for accommodating HD2 (ref. 18; Supplemen-
tary Fig. S3), which would explain why CA interferes with HD2-
ARD binding. Recall also that CA does not interfere with ARD 
binding to nTCF (predominantly involving residues downstream of 
R4 (ref. 34)), further supporting the notion that the CA-induced 
perturbations are limited to the ARD N-terminus.

In the light of our in vitro observations, we propose that the 
metastable H1 also predisposes β-catenin to low-grade aggregation 
in vivo, and that this is exacerbated by CA, which could earmark  
β-catenin for proteasomal degradation27,35 (Fig. 8). This model 
could explain why the phosphorylated pool of β-catenin (which 
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Figure 4 | The CA response of R4 depends on H1. (a) overlay of HsQCs 
of 15n-labelled R4∆H1 + CA (100 µm each; blue) onto R4∆H1-CA (100 µm; 
red), and inverted spectral overlay (right-hand panel). (b,c) sTD and 
WaterLoGsY spectra of 50 µm CA alone (reference), or  + 10 µm GsT-
tagged proteins, as indicated. (d) sedimentation velocity AuC of His-R4 
or His-R4∆H1 ± CA (25 µm each), as indicated. molecular masses were 
determined from corresponding sedimentation coefficient values (s), by 
modelling R4 and R4∆H1 as spherical proteins, using sedFit53.



ARTICLE   

�

nATuRE CommunICATIons | DoI: 10.1038/ncomms1680

nATuRE CommunICATIons | 3:680 | DoI: 10.1038/ncomms1680 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

in epithelial cells includes junctional β-catenin)36,37 is refractory 
to CA: this β-catenin pool is complexed with E-cadherin, a high-
affinity ligand (with a Kd of ~100 times below the Ki for CA inhibi-
tion)38 that confers a helical structure on H1, and protects it from 

CA inhibition. Note also that β-catenin associates with E-cadherin 
co-translationally39,40, which would safeguard it against H1-medi-
ated CA effects from its de novo synthesis.

According to our model, H1 constitutes an Achilles’ Heel of 
β-catenin, which, in the absence of ligands that stabilize its struc-
ture in a helical conformation18,22,23, earmarks it for proteasomal 
turnover in cells by promoting localized structural perturbations 
that favour low-grade aggregation. Notably, an unstructured H1 is 
also found in β-catenin of other species (Supplementary Table S5),  
so this Achilles’ Heel appears to be conserved. Perhaps, this fea-
ture serves as a last-resort tagging mechanism to prevent fortuitous 
activation of β-catenin, should it fail to bind to its negative regula-
tors. Indeed, H1-dependent proteasomal degradation of β-catenin 
could be particularly important when its negative regulators are 
rate limiting, or absent—for example, in colorectal cancer cells with 
dysfunctional APC, and low E-cadherin levels37. This may render 
oncogenic β-catenin particularly vulnerable and prone to degrada-
tion, a property shared by other oncogenes whose stability is reliant 
on chaperones such as HSP90 (refs 41,42).

BCL9 family proteins shuttle in and out of the nucleus43, and 
could thus convey β-catenin from the cytoplasm to chromatin-
bound Pygo at TCF-target genes44. Interestingly, excess BCL9  
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protects unphosphorylated β-catenin against CA-induced degrada-
tion, possibly by promoting a helical structure of H1. BCL9 may thus 
have a chaperone-like (‘shepherding’) role in protecting oncogenic 
β-catenin against H1-dependent degradation. We note that BCL9 
is a lower-affinity ligand of β-catenin compared with E-cadherin, 
and may thus need to be present at high levels to afford protection. 
BCL9 proteins are overexpressed in colorectal cancer cells and car-
cinomas12–15 and may thus be effective in safeguarding oncogenic 
β-catenin against H1-dependent degradation.

β-Catenin is an unattractive drug target, because of its extensive 
interaction surfaces with TCF and negative regulators4. Our discov-
eries of an Achilles’ Heel at its N-terminus, and of a H1-dependent 
compound destabilizing oncogenic β-catenin, open up avenues for 
new screen designs, such as inhibiting R4’s interaction with other 
‘shepherding’ ligands of β-catenin—similar to a promising strat-
egy aimed at inhibiting oncogene interactions with their stabilizing 
HSP90 chaperone42. Indeed, as exemplified by a recent study with c-
Myc45, the targeting of intrinsically disordered stretches of proteins 
such as H1 is an emerging strategy in drug discovery46.

Methods
Chemicals and antibodies. Chemicals: dimethyl sulphoxide (DMSO), totarol, 
CO, CA (Sigma); glutathione-coated 96- and 384-well microtiter plates (Pierce); 
15N-ammonium chloride, 13C-glucose (Isotec). Antibodies: α-β-catenin (BD 
Transduction Laboratories); α-ABC, α-α-catenin (Upstate); α-phospho-β-catenin 
(Ser33/37/Thr41; Cell Signalling); α-IκB (Santa Cruz); α-actin (Abcam);  
α-E-cadherin, α-FLAG (Sigma).

Plasmids and protein expression. Plasmids: FLAG-β-catenin (from H. Clevers); 
FLAG-BCL9 and mutants14; and GST-ARD19. For FLAG-β-catenin∆H1, amino 
acids 141–149 were excised by quick-change mutagenesis (Stratagene). nTCF (1–53 
from hTCF4) and HD2 (343–396 from hBCL9) were cloned into pET30a, and  
mutations were introduced into pET30a-HD2 by quick-change mutagenesis. R4 
(141–305) and R4∆H1 (149–305) were cloned into pETM11 or pGEX-4T1. Protein 
was expressed at 18 °C in Escherichia coli BL21, induced by 1 mM isopropyl β-D-1-
thiogalactopyranoside at 1.0 OD for 16 h, and purified with glutathione Sepharose 
2B (AP Biotech) or Ni-NTA Agarose (Qiagen), followed by Superdex-75 size 
exclusion chromatography, with phosphate-buffered saline (PBS, pH 7.4) as run-
ning buffer for GST-ARD, GST and His-nTCF, or with PBS (pH 6.8) plus 100 mM 
NaNO3 for His-R4 and His-HD2. For NMR, untagged versions of R4 and R4∆H1 
were generated by thrombin digestion, followed by size exclusion chromatography. 
His-HD2 was cleaved with enterokinase, and tag and undigested protein were 
cleared from tag-free HD2 by negative absorption with Ni-NTA Agarose. For 
HSQC, 15N-, 2H/13C- and 2H/13C/15N-labelled domains were produced from  

bacteria grown in minimal media containing 15N-ammonium chloride or,  
additionally, 13C6-glucose and/or in D2O instead of water.

Compound libraries and screening. For the LOPAC (Sigma) and Phytopure 
(Phytoquest Ltd) screens, 10 µg of GST-ARD (or GST as control) in PBS containing 
1% bovine serum albumin and 0.1%. Tween-80 (blocking buffer) was adsorbed to 
wells in 96-well glutathion-coated microplates (Pierce; we could not detect binding 
after direct coating of ARD or GST-ARD onto plastic, nor after immobilization of 
GST-HD2 or His-HD2 on microplates); volumes were kept at 50 µl. Wells were in-
cubated with His-HD2 or His-nTCF (10 µM) in blocking buffer and, subsequently, 
with 20 µM of compounds diluted in PBS; remaining His-HD2 or His-nTCF was 
detected by adsorption of horse radish peroxidase-coupled α-His antibody fol-
lowed by development with 100 µl O-phenylenediamine reagent (Sigma) and spec-
trophotometric quantification. A hit was defined as a signal  > 3 standard deviations 
below that of mock-treated wells containing GST-ARD and His-HD2. Hits were 
defined as confirmed if the signal in the counter-screen was within 0.5 standard 
deviations of mock-treated wells. The MRCT library and its screen are described in 
the Supplementary Table S1 and Figure S2.

Cell-based assays. SW480, HCT116, HeLa and HEK 293 cells (obtained from the 
European Collection of Cell Cultures) were grown and transfected, and reporter  
assays and real-time quantitative PCR were done as described14. Cytotoxicity  
assays are described in the Supplementary Figure S11.

NMR spectroscopy. All NMR experiments were recorded using Bruker spec-
trometers equipped with 5 mm cryogenic inverse triple resonance probes, at a 
sample temperature of 5 °C unless stated otherwise. 1H, 15N-fast-HSQC spectra47 
were acquired on 700 or 800 MHz spectrometers. Raw data (1,024 points in t2, 96 
complex points in t1 extended to 128 by forward linear prediction) were processed 
with 85° shifted square-sine-bell functions in both directions before Fourier trans-
formation. The digital resolution of processed data was 5.4 Hz per point in f2 (1H) 
and 2.7 Hz per point in f1. Effective molecular weight estimates were obtained from 
two one-dimensional spin-echo spectra, used to estimate average amide-1H T2 for 
1H frequencies  > 8.6 p.p.m., and to infer an approximate rotational correlation time 
and, hence, molecular weight, as described20. Samples were maintained at 5 °C in 
PBS (pH 6.8) containing 100 mM NaNO3, 5% (v/v) D2O. Chemical shifts were in-
ternally referenced using the frequency of H2O resonance as secondary reference. 
Resonance assignments of R4∆H1 and HD2 are described in the Supplementary 
Figures S5 and S6.

Ligand-observed NMR experiments were carried out with excitation sculpting 
water signal suppression at 500 MHz. WaterLOGSY spectra48 were acquired with 
4,096 points, 6 kHz spectral width, 25 ms 3-Gaussian 180° water selection pulse, 
0.9 s NOE mixing time, and 2.5 s relaxation delay, 2,000 scans, and a T1ρ filter 
(50 ms square pulse with 2.2 kHz B1 field) to suppress signals from protein. STD 
spectra49 were acquired using a pseudo-2D pulse sequence (unmodified Bruker 
pulse program stddiffesgp.3), 16k or 8k points, 8 kHz spectral width, 512 scans, 
interleaving on-resonance ( − 0.2 p.p.m.) or off-resonance (25.2 p.p.m.) pre-satura-
tion (repeating 50 ms 1% truncated Gaussian pulses with 105 Hz B1 field) through-
out the 7.0 s recycle delay, and a 15 ms T1ρ trim pulse (square pulse, 5.8 kHz B1). 
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Figure 8 | Model of CA-induced proteasomal degradation of -catenin. unphosphorylated β-catenin (signalling pool, accumulating during Wnt signalling;  
or oncogenic pool, accumulating in colorectal cancer cells due to APC or β-catenin mutations) is inherently prone to low-level aggregation due to the 
structurally labile H1 (red, at the ARD n-terminus). H1 adopts a helical conformation (red ribbon) upon binding to ligands (for example, BCL9), which is 
reversed towards a less ordered state by CA; this exacerbates the intrinsic tendency of β-catenin to aggregate, earmarking it for proteasomal degradation. 
Phosphorylated β-catenin is targeted for proteasomal degradation upon binding to Axin (not shown), or stabilized by binding to E-cadherin or α-catenin 
(destined for the junctional pool), which ensure a helical conformation of H1.



ARTICLE   

�

nATuRE CommunICATIons | DoI: 10.1038/ncomms1680

nATuRE CommunICATIons | 3:680 | DoI: 10.1038/ncomms1680 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

Titrations based on STD were done as described50; average spectral intensities 
at varying protein concentration were fitted to single-site-binding using Prism 
software. Addition of CA (in DMSO), or DMSO only, to all NMR samples was 
standardized to 4.5% total sample volume. All NMR spectra were processed with 
TopSpin version 2 (Bruker). Multidimensional spectra were analysed using Sparky 
3.110 (T. D. Goddard & D. G. Kneller, University of California, San Francisco).

X-ray crystallography. Laboratory of Molecular Biology (LMB) crystallization 
screens were carried out in 96-well sitting-drop format (100 nl drops)51. Crystals 
were grown at 19 °C by the vapour diffusion method, and emerged after a week 
under multiple conditions. Crystals for data collection were from the follow-
ing conditions: 0.98 M sodium acetate trihydrate, 30% glycerol, 0.07 M sodium 
cacodylate (pH 6.5), 30% (w/v) galactose (R4); 0.12 M ethylene glycol, 1 M MES 
and 1 M imidazole (pH 6.5), 10% PEG 4K, 20% glycerol (R4-HD2). Crystals were 
flash-cooled in liquid nitrogen, and diffraction data were collected at SLS X06SA 
and ESRF ID14-2 for the R4 and R4-HD2 structures, respectively, at wavelength 
0.93 Å. Structures were solved by molecular replacement (with phaser52 based on 
the ARD-HD2–nTCF complex18), processed and refined as described in the Sup-
plementary Table S4 and Figure S3.

Analytical ultracentrifugation. AUC was performed with a Beckman Coulter 
Optima XL-I ultracentrifuge (Beckman Coulter) and data collected with Rayleigh 
interference optics. Samples in PBS (pH 6.8) containing 100 mM NaNO3 were 
equilibrated in the cell at 5 °C for  > 3 h before the run, during which interference 
data were collected. 
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