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Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems.
Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing
(RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work,
we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic
computing concepts to reduce the hardware required to implement different arithmetic operations.The result is the development of
a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

1. Introduction

Introduction to Reservoir Computing. Recurrent neural net-
works (RNNs) [1] are a class of artificial neural networks
(ANNs) characterized by the existence of closed loops. RNNs
are inspired by the way the brain processes information
generating dynamic patterns of neuronal activity excited by
input sensory signals [2]. Reservoir Computing (RC) [3–10]
is a recently introduced efficient technique for implementing
and configuring recurrent neural networks (RNNs). It is
well suited for applications that require processing time
dependent signals such as temporal pattern classification
and time-series prediction [5]. In an RC system, all the
interconnection weights of the RNN are kept fixed and only
an output layer is configurable as illustrated in Figure 1. In
recent years, RNNs have been extensively used to successfully
solve computationally hard problems [11–15]. Nevertheless,
the complex training procedure of RNNs is very time-
consuming. On the other hand, RC presents an easy training
procedure, which can be performed, in practice, via a simple
linear regression.

The RC architecture is composed of three parts: an input
layer, the reservoir, and an output layer (see Figure 1). The

input layer feeds the input signals u(𝑡) = (𝑢
1
(𝑡), . . . , 𝑢

𝑘
(𝑡))

to the reservoir with fixed random weight connections
Win. The reservoir consists of a relatively large num-
ber of randomly interconnected neurons (𝑁) with states
x(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑁
(𝑡)) and internal weights W. Under

the influence of input signals, the network exhibits transient
responses which are read out at the output layer y(𝑛) =
(𝑦
1
(𝑛), . . . , 𝑦

𝐿
(𝑛)) by means of a linear weighted sum of

the individual node states. As the only part of the system
which is trained (assessment of the output weights Wout) is
the output layer, the training does not affect the dynamics
of the reservoir itself unless a recurrence exists between
the reservoir and the readout (recurrence weights given by
Wback).

The general expression to estimate the neuron states is
given by

x (𝑡 + 1) = f (Winu (𝑡 + 1) +Wx (𝑡) +Wbacky (𝑡)) , (1)

where f = (𝑓
1
, . . . , 𝑓

𝑁
) are the neuron transfer functions

(typically sigmoidal). In the simplest case of avoiding direct
connections between the input and the output layer as well as
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Figure 1: General architecture of RC systems. All connections in the
reservoir are randomly chosen and kept fixed except for the ones that
couple the reservoir on the output layer (dashed arrows).
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Figure 2: A simple cycle reservoir (SCR) topology. Units are
organized in cycle.

between the output and the reservoir, the output layer signals
are computed according to the next expression:

𝑦
𝑛𝑛
(𝑡 + 1) =

𝑁

∑
𝑖=1

𝑊
out
𝑖
⋅ 𝑥
𝑖
(𝑡 + 1) . (2)

A recent study [16] shows that a single reservoir ring is able
to operate with similar efficiency to standard RCmethodolo-
gies. The simplified topology is illustrated in Figure 2, where
the connections between internal units in the reservoir have
the same weight value 𝑟. The input layer is fully connected to
the reservoir with a connection weight that will be positive
or negative with equal probability and with the same absolute
value for the weight (V). Parameters 𝑟 and Vmust be scanned
in order to find the optimum weight configuration.

It has been observed that the reservoir configured with
a ring structure presents only a slightly worse performance
than the classical topology [16].Nevertheless, it presents some
geometrical advantages that make it particularly useful for
hardware implementation. The greatest benefit is that the
number of connections within the reservoir is independent
of the number of neurons 𝑁 (while it increases with 𝑁 in
the case of the classical structure). This fact allows a great
reduction of the number of required multipliers in the case

of implementations using a high number of neurons. On
the other hand, the design of the networks can be more
easily automatized since all neurons have the same number
of connections (one connection input from a neighboring
neuron and a second connection from the input layer).

Hardware Implementation of RC Systems. Microprocessors
are usually the preferred platform for implementing RC sys-
tems and, in general, ANNs. Nevertheless, there are specific
applications that necessitate the use of compact, reliable,
and energy efficient hardware realizations of ANN models
[17]. Specialized ANN hardware can offer advantages over
conventional PCs in terms of speed, power requirements,
and cost. In addition, parallel hardware implementations
offer substantial advantage in safety critical ANNapplications
where fault tolerance is crucial. FPGA is a suitable hardware
for ANN implementation as it preserves the parallel archi-
tecture of the neurons in the network and offers flexibility in
reconfiguration.

The RC principle can be used to implement computations
on dynamical systems treating them as reservoirs. For exam-
ple, it has been used to perform computation on hardware
platforms such as analog electronics [18] and optoelectronic
[19, 20] and optical systems [21]. Digital implementations of
RC systems are limited to the use of spiking neurons (Liquid
State Machine approach) [22]. To the best of our knowledge,
the present paper is the first hardware implementation
example of an RC system using classical sigmoid neurons
(echo state network approach).

Despite the potential benefits of the hardware realization
of ANNs, the implementation of massive neural networks in
a single chip is a challenging task due to the fact that ANN
algorithms are “multiplication-rich” and the multiplication
operation is relatively expensive to implement [23].

Stochastic computing (SC) has evolved as a feasible
alternative to implement complex computations due to the
simplicity of the involved circuitry. It is based on the result
of applying probabilistic laws to logic cells where variables
are related to the random switching activity of internal bits
[24, 25]. In general, stochastic logic considerably reduces the
use of hardware resources if compared to traditional digital
implementations. As an illustrative example, the product
is performed by using a simple AND gate (see Figure 4).
Several works have used the stochastic logic to implement
feed forward neural networks [26–29]. In addition, there
were some attempts to implement the RC framework using
stochastic bitstream neurons [30, 31]. In general, a stochastic
implementation is able to reduce the circuit area if compared
to the classical one [32].

While themajor benefits of SC are low hardware cost, low
power requirements, and its inherent high error tolerance,
the main drawback of SC is long computation time, which
tends to grow exponentially with respect to precision. Over
the years, SC has been recognized as potentially useful in
specialized systems, where small size, low power, or soft-
error tolerance is required and limited precision or speed is
acceptable [33].

Even though SC-based ANNs seem unlikely to achieve
speed-up compared to the conventional binary logic ones,
they can be an interesting solution for those electronic
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Figure 3: Basic concept of the stochastic codification. Information is coded as the probability “𝑝” of the pulsed signal being in the high level.

systems implementing computational intelligence techniques
and requiring low power dissipation but not demanding
very high computational speed such as wireless sensor net-
works [34], predictive controllers, or medical monitoring
applications. In the latter case, a software implementation
of RC was found to achieve state-of-the-art performance in
the classification of electrocardiographic signals [35]. Since
this medical application requires a sampling time of about
1ms, in general ECG classification would be compatible
with an FPGA-based stochastic implementation of Reservoir
Computing in real-time. Zhang and Li [36] present an
illustrative example of the use of a SC-based ANN for the
control unit of an inductionmotor exhibiting lower hardware
cost than conventional microprocessor-based designs for the
same application.

Another appealing feature of SC implementations is a
high degree of error tolerance. Stochastic circuits tolerate
environmental errors that seriously affect the behavior of
conventional circuits. A single bit flip (especially of a high-
significance bit) causes a huge error on a binary circuit, but
flipping a few bits in a long bitstream has little effect in the
value of the stochastic number represented. Therefore, SC
can be interesting for applications like spacecraft electronics
which operate under radiation-induced error conditions.

Objectives and Contributions. The aim of the present paper is
to analyse the practicality of stochastic computing to build
echo state networks (ESNs). We discuss the advantages and
limitations of the proposed approach compared to a binary
logic conventional implementation examining the hardware
resource saving.

We specifically focus on the implementation of the reser-
voir system with ring topology of Figure 2 (SCR), which rep-
resents a considerable improvement considering the wiring
optimization inside the integrated circuit. Results of the
resource saving using the cyclic architecture compared with
a standard ESN implementation presented in a preliminary
study [37] are also reported.

Furthermore, we propose an implementation scheme
for the stochastic ESNs which allows overcoming a major

challenge of stochastic computing regarding the significant
number of resources consumed by the stochastic number
generators (SNGs) [38]. In particular, our design makes it
possible to reduce the SNG count using common SNGs for
all neurons. On the other hand, each neuron of the reservoir
is constructed combining both stochastic and conventional
binary logic tominimize the hardware areawhilemaximizing
the precision of computations (stochastic to implement the
input weighting sum and classical for the activation func-
tion).

The proposedmethodology is used to implementmassive
reservoir networks and applied to a challenging time-series
prediction task.

2. Methods: Basic Concepts of
Stochastic Computing

In stochastic-based computations, a global clock signal pro-
vides the time interval during which all stochastic signals are
stable (settled to 0 or 1, LOWorHIGH). During a clock cycle,
each node of the circuit has a probability 𝑝 of being in the
HIGH state (see Figure 3). This probabilistic-based coding
provides a natural way of operating with analog quantities
(since probabilities are defined between 0 and 1) using digital
circuitry.

2.1. Basic Arithmetic Circuitry. Pulsed signals follow prob-
abilistic laws when they are evaluated through logic gates.
For instance, the AND gate provides at the output the
product of their inputs (i.e., the collision probability between
signals) as it is illustrated in Figure 4. Notice that the pulsed
signals do not follow any particular pattern. Furthermore,
they must be uncorrelated so that the operations can be
performed properly. Some basic stochastic arithmetic circuits
are depicted in Figure 5. A NOT gate converts the probability
𝑝 at the input to the complementary 1 − 𝑝 at the output. The
mean value of two switching signals is implemented using
a multiplexer and a binary counter. The counter supplies
the selection signal to the multiplexer so that the output
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Figure 4: Product operation of two stochastic signals with switching activities 𝑝 = 0.25 and 𝑞 = 0.5 performed by means of an AND gate.
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Figure 5: Stochastic arithmetic circuits. (a) Unipolar and bipolar multipliers. (b) Unipolar complementary operation and bipolar negation.
(c) Adder used for both unipolar and bipolar notation.

signal changes alternatively between 𝑝 and 𝑞. One of the
problems of this approach is that negative numbers cannot be
represented directly since probabilities are positively defined.
This inconvenience can be overcome by using a variable
change with the switching probability 𝑝∗ = 2𝑝 − 1 (this
represents the bipolar coding in contrast to the unipolar
coding used by just the probabilities). Therefore, since 𝑝 is
delimited between 0 and 1, 𝑝∗ is bounded in the interval
[−1, +1], and the zero value is located at 𝑝 = 1/2. Using
this notation the product is implemented by a single XNOR
gate, the negation is obtained with a NOT gate, and the

addition is implemented similarly to the unipolar codification
(Figure 5).

2.2. Data Conversion. Astochastic computing system requires
converting any real number (either in the unipolar [0, 1] or in
the bipolar [−1, 1] range) represented by a binary magnitude
𝑃 to its equivalent stochastic bitstream with probability 𝑝
before the probabilistic computations. Similarly, the resulting
pulsed signals must be finally converted into their equivalent
binary values.Thebinarymagnitude𝑃 representing the real num-
ber 𝑃real is obtained by the simple formula 𝑃 = [𝑃real ⋅ (2

𝑛 − 1)],
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where 𝑛 is the number of bits employed to represent the
real value. For example, the real value 𝑃real = 0.5 is
represented by the binary magnitude 𝑃 = 32767 when using
a 16-bit resolution. In the case of working with negative
values (bipolar codification range), the numbers must be
first normalized to the unipolar range. For instance, the real
number 𝑃∗real = −0.5 is represented by the value 𝑃real =
(𝑃∗real + 1)/2 = 0.25 in the unipolar range, which corresponds
to the 16-bit binary magnitude 𝑃 = 16383.

Binary numbers are converted to pulsed signals using
a Binary to Pulsed (B2P) block; see Figure 6(b). This block
is composed of a comparator and a linear feedback shift
register (LFSR) used as pseudorandom number generator.
Each clock cycle, the 𝑛-bit binary magnitude 𝑃 is compared
with a different random 𝑛-bit magnitude and the comparator
provides a “1” if 𝑃 is greater than the random magnitude
and a “0” otherwise. Therefore, the output of the comparator
provides a bitstream with probability (of getting a “1”) 𝑝.
On the other hand, pulsed signals are converted to binary
numbers using counters (Figure 6(a)). We define a pulse to
binary converter of order𝑁

𝑐
(a P2B(𝑁

𝑐
)) as the digital circuit

that evaluates the number of HIGH values provided by a
stochastic signal throughout 𝑁

𝑐
clock cycles. The output of

a P2B(𝑁
𝑐
) block is an 𝑛-bit number that changes every 𝑁

𝑐

cycles so that the evaluation time is 𝑇EVAL = 𝑁𝑐 ⋅ 𝑇CLK (where
𝑇CLK is the clock cycle).

A probabilistic error is always present during conversions.
When converting a switching signal with probability 𝑝 by
using a P2B(𝑁

𝑐
), the probability to obtain an output equal to

𝑋 is given by the binomial distribution:

𝑃 (𝑋) = (
𝑁
𝑐

𝑋
)𝑝
𝑋
(1 − 𝑝)

𝑁
𝑐
−𝑋

. (3)

The mean value of 𝑋 is the expected exact conversion (𝑋 =
𝑝𝑁
𝑐
), and the standard deviation at the output of the P2B

circuit is 𝜎 = √𝑁
𝑐
𝑝(1 − 𝑝). This standard deviation is related

to the error of the data conversion between the stochastic
signal and the binary output of the P2B. This inherent error
of the stochastic logic can be reduced by increasing the
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Figure 7: Operation and schematics of an artificial neuron with two
inputs.

evaluation time although it decreases the processing speed of
the system.

3. Methods: Proposed Stochastic
Implementation of Neural Networks

ESNs and, in general, ANNs are composed of individual
artificial neurons performing a mathematical function. In
particular, the neuron receives one or more inputs and sums
them to produce an output. The sums of each node are
weighted, and the sum is passed through a nonlinear function
known as an activation function that usually has a sigmoid
shape. Figure 7 shows the operation and schematics of such a
discrete-time artificial neuron with two inputs (here named
𝑢(𝑡) and 𝑥

𝑖−1
(𝑡 − 1)) weighted by their corresponding factors

(V
𝑖
and 𝑟). Note that the output of the neuron is stored in a



6 Computational Intelligence and Neuroscience

r

rr

r

r

r

r

r

r

r

Reservoir

Neuron 1

Neuron 2

Neuron 3

Neuron N

Neuron i + 1

Input

Configuration
parameters

Output

Out(t)

x1(t)

x2(t)

x3(t)

xN(t)

x2(t)

x3(t)
x3(t)

x2(t)

x1(t)

r

�1
�2
�3

�N

r

�i+1

xi(t − 1)

r

�i+1

r

�i

r

�i

Neuron i
Neuron i − 1

�1

�N

�1

�N
�2 �2

�3 �3

x2(t − 1)

x3(t − 1)

x1(t − 1)

x1(t)

xN(t − 1)

xN(t)

�i−1

xN(t)

�i−1
xi(t)

xi(t)

xi+1(t)

xi+1(t − 1)

xi+1(t)

xi−1(t − 1)

xi(t − 1)
xi−1(t)

x2(t − 1)

xi−2(t − 1)

xi−1(t − 1)

xi−1(t)

x1(t − 1)

xN(t − 1)
xN−1(t − 1)xN−1(t − 1)

u(t)

u(t) u(t)

u(t)u(t)

u(t) u(t)

u(t)u(t)

u(t)u(t)

u(t)u(t)

u(t) u(t)

...

...

∑wi · xi(t)
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register so that it can be used by another neuron unit in the
next time step in case the neurons are arranged in a recurrent
network.

Figure 8 shows how the individual neurons are organized
to form an ESN with the cyclic architecture introduced in
Figure 2.

The SC-based implementation of the operations per-
formed by the single neuron of Figure 7 is illustrated in
Figure 9. First of all, the binary values of the inputs (external
input and input coming from the output of another neuron)
and their corresponding weights are transformed to pulsed
signals (B2P blocks) so that they can be processed by the
stochastic circuit.Themultiplication and addition operations
are implemented in the stochastic computing framework by
means of an XOR gate and a multiplexer, respectively (when
using the bipolar codification). Finally, the result of the input
weighting and addition is evaluated by means of a sigmoid
function.

Regarding the computation of the sigmoid function,
which is a crucial issue for the neural implementation,
there are different stochastic approaches to reproduce the
hyperbolic tangent function [28, 29]. Nonetheless, for the
present research, we have adopted a classical approximation
of the hyperbolic tangent function called the SIG-sigmoid
[39], which has proved to be an effective strategy in terms of
accuracy, speed, and area resources. This classical approach
consists of a purely combinational circuit that does not need
arithmetic operators. A detailed description of this classical
approximation is given in [39]. Basically, each one of the
output bits of the sigmoid function is expressed in canonical

form as a sum of products of the input bits. That is to say, the
required input bits are firstlymultiplied usingANDgates, and
then the resulting products are summed by a multiple-input
OR gate. The SIG-sigmoid implementation concept using a
direct bit-level mapping is illustrated in Figure 10.

Experimental measurements of the SIG-sigmoid approx-
imation are presented in Figure 11(a). It can be noticed that
this function exhibits discontinuities due to the fact that
the precision of the implementation is limited to seven bits
(for both input and output signals). We have overcome this
limitation using a linear interpolation to obtain a greater
number of bits for the output signal. The resulting function
is displayed in Figure 11(b).

It can be appreciated in Figure 9 that the stochastic signal
resulting from the weighting and addition of the inputs is
converted (P2B block) to its corresponding binary value
before it can be processed bymeans of the hyperbolic tangent
classical approach. Therefore, we propose to combine the
use of stochastic and conventional deterministic computing.
Stochastic arithmetic allows reducing the computation hard-
ware area required to implement the arithmetic operations
present in neural networks while conventional binary logic
can be used to increase the accuracy of the nonlinear
activation function.

It is worth noticing that the four sequences of pseudo-
random numbers required by the B2P converters contained
in each neuron do not need to be different for each neuron
since the neurons communicate with each other using binary
magnitudes instead of probabilistic bitstreams (the output
of a neuron is sent to another neuron as a binary value).
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The use of common random number generators for all
the neurons allows reducing the number of required logic
elements per neuron. Actually, the three B2P converter blocks
(each containing a LFSR and an 𝑛-bit comparator) used for
the weight parameters and first input value can be totally
shared by all neurons since the weights and external input

values are common for all neurons.The structure of thewhole
SC-based reservoir network using common B2Ps and LFSRs
is depicted in Figure 12.

The greatest advantage of SC is the minimal use of
resources for addition and multiplication. However, uncor-
related bitstreams and therefore large numbers of stochastic
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Figure 12: SC-based implementation of an ESN with cyclic architecture. A few pseudorandom number generators are shared by all neurons.

number generators (SNGs) are required. Since SNGs can
account for a significant portion of the circuit [40], the
reduction of the SNG count is an important challenge for
SC. The NN implementation presented in this work enables
using a few SNGs that are shared by all neuron units. This
is possible since each individual neuron converts the output

pulsed signal to a binary value before sending it to other
neurons.

Thehardware resource consumed by our SC-based imple-
mentation of ESNs is presented in next section for different
network sizes. A breakdown indicating the logic elements
used by each component of the neuron is also included.
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Table 1: Spent hardware resources of the medium-sized Cyclone IV (EP4CE115F297C7N) FPGA for the 20-unit and 50-unit reservoir
networks.

Implementation approach Stochastic Conventional
Reservoir size 20 neurons 50 neurons 20 neurons 50 neurons
Total logic elements (LEs) 2186 (1.9%) 5306 (4.6%) 9013 (7.9%) 19975 (17.4%)
Combinational functions 2149 (1.9%) 5251 (4.6%) 9013 (7.9%) 19975 (17.4%)
Dedicated logic registers 858 (0.7%) 2054 (1.8%) 320 (0.3%) 800 (0.7%)

Furthermore, a classical digital implementation of the
ESN with cyclic architecture has been realized. The required
operations illustrated in Figure 7 have been implemented
using conventional binary logic. In particular, a 16-bit resolu-
tion has been used for the input and weight signals. A simple
piecewise linear approximation of the hyperbolic tangent
composed of three segments [41] has been used as activation
function.This conventional hardware implementation serves
as a reference to examine the hardware resource saving of the
proposed stochastic approach.

A software program has been developed which allows
the ESN structure (using either the SC approach or the
deterministic one) to be exported automatically to a VHDL
hardware description. The program generates the VHDL
code for the reservoir with any desired number of neurons
and weight configuration. This VHDL code can finally be
synthesised to an actual hardware implementation.

4. Results

4.1. Proof-of-Concept Example. As an example of functional-
ity of the proposed methodology, a small reservoir computer
was synthesized on a Cyclone IV medium cost FPGA (see
Table 1 for the spent hardware resources) and trained to
perform different tasks. The reservoir is composed of 20
sigmoid neurons organized in a ring configuration as shown
in Figure 2. No feedback connections are present between the
output layer and the reservoir.

The output layer, which only requires a multiplier-adder
circuit, was implemented using conventional binary logic
with a resolution of 8 bits for the output weights. At the same
time, a numerical model of the stochastic-based reservoir
hardware is also developedwithMATLAB for amore efficient
training and debugging. The resolution of each variable is
limited according to the hardware.

The first task selected to be performed is a nonlinear
transformation of the input: 𝑦(𝑡)teach = (3/4)𝑢(𝑡)

3. In
particular, a single-channel sinusoid input 𝑢(𝑡) = Sin[2𝜋⋅𝑡/𝑇]
with 20 points per period (𝑇 = 20) was used to drive the
system and supplied by an internal RAM memory to the
reservoir every time step. This simple task will be useful
to compare the FPGA implementation and the MATLAB
model. In Figure 13, we show this comparison, where the
dynamic of two randomly selected neurons from the reser-
voir is represented. As can be appreciated, a good agreement
between the numerical simulations and the experimental
results is obtained. Slight differences are mainly due to the
probabilistic nature of the approach.
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Figure 13: Traces of two arbitrarily selected neurons from the
reservoir when driven by a sinusoid input. Experimental values
(symbols) are plotted along with the numerical results (lines).

The MATLAB model of the stochastic hardware allows
us to perform a comprehensive assessment to find the
configuration of the stochastic reservoir network providing
optimum results. This is preferable to using a classical
reservoir model since the optimum configuration values can
be quite different between both scenarios. In Figure 14, we
show the mean square error (MSE) for all the possible weight
values of V and 𝑟 in the reservoir. Furthermore, Figure 14
compares the MSE values for a classical 20-neuron reservoir
(Figure 14(a)) and the MATLAB-simulated hardware imple-
mentation (Figure 14(b)).

Once the optimum parameters were determined, the
hardware was configured, trained, and experimentally tested.
The training (assessment of the output layer optimal weights)
was carried out using the experimental outputs of individual
neurons. This training consisted of a linear regression of
the teacher output 𝑦teach on the reservoir states. Although
the software implementation quite faithfully reproduces the
hardware results, it was not used to train the system since
smaller error results were obtained when directly using the
experimental outputs.

In the time-series experiment, we performed a total of
250 time steps. The first 20 time steps (the transient) are
neglected, from 𝑡 = 21 to 𝑡 = 125 we trained the reservoir,
and from 𝑡 = 126 to 𝑡max = 250 we tested the network.

An experimental training error MSEtrain = 1.41 ⋅ 10
−4

and a test error of MSEtest = 2.39 ⋅ 10
−4 were obtained

when using a 16-bit precision. Other evaluation periods
are represented in Figure 15, where we show both the MSE
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Figure 14: Simulation results for the mean square error (MSE) in the fitting task according to the classical and stochastic approaches.The two
scanned parameters are 𝑟 and V. The number of neurons was fixed to 20. A randomly generated distribution of the input weights was used.
The evaluation time is fixed to 𝑇EVAL = 2

16𝑇CLK for the stochastic approach.
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Figure 15: Simulation and experimental results of the mean square
error (MSE) for the optimum reservoir configuration. The perfor-
mance is represented for different evaluation periods.The estimated
deterministic error is also given as a reference.

results for the MATLABmodel of the FPGA implementation
and the circuit measurements. The good agreement between
simulations and experiments validates the MATLAB model
to estimate the hardware performance. Furthermore, it can
be observed that both stochastic reservoirs (MATLABmodel
and experimental measurements) gradually approach the
expected deterministic behavior when increasing the evalu-
ation time. The deterministic results were fixed with an 8-bit
resolution for the neuron outputs and output weights.

Finally, we show in Figure 16 measurements at the output
of the reservoir along with the expected behavior of the
reservoir (𝑦teach).

The evaluation time of the network is of the order of
1.3ms when using 16-bit counters in the P2B(𝑁) blocks (with
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Figure 16: Input signal (Sin[2𝜋⋅𝑡/20]) along with the desired output
signal 𝑦teach = (3/4)Sin

3
[2𝜋 ⋅ 𝑡/20] and the experimental FPGA

neural network output 𝑦
𝑛𝑛
for the case of 𝑇EVAL = 2

16𝑇CLK.

a 50MHz clock). The computation time can be reduced
by using smaller evaluation periods at the cost of a lower
accuracy. Note that, for larger reservoirs, the processing time
is kept fixed since this is only dependent on the number of
clock cycles used by the P2B converters.

4.2. Time-Series Prediction Task. A more complex task is
implemented for a proper validation of the proposedmethod-
ology.This task consists in a one-step ahead prediction of the
Santa Fe dataset [42].The Santa Fe dataset is an experimental
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Figure 17: Simulation results for the normalized mean square error (NMSE) in the time-series prediction task according to the deterministic
and stochastic approaches.The two scanned parameters are 𝑟 and V.Thenumber of neuronswas fixed to 50. A randomly generated distribution
of the input weights was used. The evaluation time is fixed to 𝑇EVAL = 2

14𝑇CLK for the stochastic approach.

recording of the output power of a far-infrared laser when
operating in a chaotic regime. We used 4000 samples from
the original dataset; the first 2000 were used for training, the
next 1000 for validation, and the remaining 1000 for testing.

The analysis of this task was conducted using the MAT-
LAB model of the stochastic hardware for two different
reservoirs (with 𝑁 = 20 and 𝑁 = 50 neurons, resp.) and for
different evaluation time periods. A procedure similar to the
one used in the previous section is followed, first determin-
ing the optimum configuration and posteriorly testing the
network. Figure 17 shows the normalized mean square error
(NMSE) as a function of the configuration parameters 𝑟 and
V for the 50-neuron reservoir and using a resolution of 14 bits.
In Figure 17(a), we show the classical reservoir approximation
and in Figure 17(b) we show the stochastic approach results
(in both cases obtained using MATLAB simulations). As can
be appreciated, the optimumvalues for 𝑟 and V (thatminimize
theNMSE value) are different for both approaches.Therefore,
the MATLAB model for the stochastic hardware is necessary
for a proper estimation of the optimum weight values.

The configuration parameters allowing the best perfor-
mance error for the validation dataset were applied to the
network when processing the test set. The final optimum
results as a function of the number of neurons in the reservoir
are depicted in Figure 18 with different bit precisions. It can
be observed that the stochastic results gradually approach the
deterministic ones when increasing the evaluation time.

In Figure 19, we show a fragment of the predicted and
targeted laser intensity values for the stochastic reservoir
when using𝑁 = 50 and a precision of 16 bits.

The hardware resources required to implement the pro-
posed stochastic-based reservoir networks together with the
resources used for the conventional deterministic imple-
mentations are presented in Table 1 and in Figure 20. It
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Figure 18: Normalized mean square error (NMSE) for the time-
series prediction task. The stochastic-based results are displayed
for a 20-unit and for a 50-unit reservoir using different values
of the evaluation time. The corresponding results obtained with a
deterministic approach are also represented.

can be observed that the stochastic architecture requires
about four times less area than the conventional hardware
implementation. It is worth noticing that the probabilistic
methodology allows themassive implementation of reservoir
networks in medium and even low cost FPGAs. However,
the conventional implementation of the 50-neuron reservoir
does not fit in low cost devices such as, for example, the
Cyclone III EP316 containing about 15000 logic elements [43].



12 Computational Intelligence and Neuroscience

3100 3150 3200 3250 3300

0

0.2

0.4

0.6

0.8

1

Time step

O
ut

pu
t

Desired
Predicted

Figure 19: Segment of the laser time-series (predicted and targeted
values). Predictions performed using the stochastic methodology
with𝑁 = 50 and 𝑇EVAL = 2

16𝑇CLK.

20 50
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Lo
gi

c e
le

m
en

ts

N

×104

SC-based 
Conventional

Figure 20: Comparison of the logic elements spent by the stochastic
implementation and the conventional one.

The implemented reservoir did not require any memory
bits except the ones used to store the input data values. The
values shown in Table 1 are referred only to the reservoir.

The use of the cyclic architecture allows significant
resource saving compared to the standard random ESN
implementation. A preliminary study [37], for instance,
reported a requirement of about 2400 logic elements to build
a 10-neuron ESN.

A breakdown of the hardware requirements of each
component of the SC-based neuron is illustrated in Figure 21.
A typical stochastic neuron consumes 103 LEs of which only 1
is required by the stochastic circuit performing the additions

37%

45%

17%

Comparator

P2B

Stochastic

Tanh(x)

circuit <1%

Figure 21: Breakdown of the hardware requirements of each
component of the SC-based neuron.

and multiplications. The area cost of the architecture is dom-
inated by the P2B converter (46 LEs) and by the hyperbolic
function (38 LEs). Finally, the comparator uses 18 LEs.

The B2P converters, which are used as common elements
by all the neurons, use 46 LEs each whereas the SNG (based
on a 26-bit LFSR) consumes 26 LEs. Therefore, significant
resource saving is achieved by sharing these components.

The proposed SC-based neuron design seems to be
optimum in terms of hardware resources. Further reduction
of the area requirements is only possible at the cost of a
loss in accuracy using, for example, a rougher approximation
of the sigmoid function or lower order P2B converters
(the presented results are for neurons using pulsed signal
conversions to 16-bit binary magnitudes).

5. Discussion

In this work, we have proposed and analysed an alternative
architecture that exploits stochastic computing for doing
time-series prediction with echo state networks. We have
found that the stochastic architecture requires less area than
a conventional hardware implementation. This characteristic
makes the ESN implementation possible using low cost FPGA
devices. Moreover, it has the advantage of being much more
tolerant to soft errors (bit flips) than the deterministic imple-
mentation, whichmakes it particularly useful for applications
that need to operate in harsh environments such as space.

However, it should be noted that the stochastic imple-
mentation requires relatively many clock cycles to achieve
a given precision compared to a binary logic conventional
implementation. For instance, to get a 16-bit resolution, a
computation time of 216 clock cycles is needed.

Therefore, in general, potential applications of the
stochastic implementations are specialized systems where
small size, low cost, low power, or soft-error tolerance is
required, and limited speed is acceptable. The presented SC-
based ESN approach can be an interesting solution, by way of



Computational Intelligence and Neuroscience 13

example, for electronic systems implementing computational
intelligence techniques and requiring low power dissipation
such as wireless sensor networks, predictive controllers, or
medical monitoring applications.

For the ESN, a ring topology has been selected since
hardware resources are minimized with this configuration
while the precision of the network is not decreased with
respect to a classical random one. In addition, we have pro-
posed an implementation area-efficient scheme that employs
probabilistic logic for the arithmetic operations and con-
ventional binary logic for the nonlinear activation function.
This scheme allows reducing the number of SNGs, which
are expensive in terms of hardware resources, using common
SNGs for all neurons. It has been observed that the area cost
of the proposed implementation is dominated by the P2B
converters and the sigmoid function.

The proposed methodology has been used to implement
a massive reservoir network and has exhibited considerable
performance in a chaotic time-series prediction task.

Reservoir networks present some advantages compared
to conventional recurrent neural networks that enable a
more efficient hardware implementation. A major benefit of
RC networks is their sparse connectivity. This characteristic
allows a simple wiring that matches the FPGA capabilities.
Additionally, a simple training process can be performed
offline.

The use of the stochastic logic implies certain constraints.
The shortcomings are the evaluation time and the precision.
Nevertheless, these drawbacks are compensated for by the
much simpler architecture and by the stochastic logic’s
inherent noise immunity which, all in all, allow a massive,
parallel, and reliable implementation.
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