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Abstract

Most patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed with advanced 

disease and survive less than 12 months1. PDAC has been linked with obesity and glucose 

intolerance2-4, but whether changes in circulating metabolites are associated with early cancer 

progression is unknown. To better understand metabolic derangements associated with early 

disease, we profiled metabolites in prediagnostic plasma from pancreatic cancer cases and 

matched controls from four prospective cohort studies. We find that elevated plasma levels of 

branched chain amino acids (BCAAs) are associated with a greater than 2–fold increased risk of 

future pancreatic cancer diagnosis. This elevated risk was independent of known predisposing 

factors, with the strongest association observed among subjects with samples collected 2 to 5 years 

prior to diagnosis when occult disease is likely present. We show that plasma BCAAs are also 

elevated in mice with early stage pancreatic cancers driven by mutant Kras expression, and that 

breakdown of tissue protein accounts for the increase in plasma BCAAs that accompanies early 

stage disease. Together, these findings suggest that increased whole–body protein breakdown is an 

early event in development of PDAC.

PDAC is a leading cause of cancer–related death worldwide, and most patients have 

incurable disease at diagnosis1. The best–characterized predisposing factors, current tobacco 

use and a first–degree relative with PDAC, both impart an approximate 1.8–fold increased 

risk for the disease5,6. These risk factors, however, have thus far provided limited insight 

into the biology of early disease progression of sporadic tumors. Development and 

progression of PDAC is associated with altered systemic metabolism including obesity2, 

glucose intolerance3,4, and cancer-induced cachexia7. Nevertheless, no systematic 

examination of circulating metabolites has been performed to determine whether altered 
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metabolism may indicate subclinical pancreatic cancer or inform our understanding of early 

disease progression when interventions might improve patient outcomes.

Prior efforts to identify changes in circulating metabolites related to cancer have employed a 

cross–sectional design, comparing cancer–free controls to cases with blood samples 

collected at diagnosis8-10. This approach is problematic for discovery of changes related to 

early cancer progression, as consequences of advanced disease are likely to impact 

circulating metabolite profiles. This is particularly true for patients with pancreatic cancer, 

who commonly have significant anorexia, weight loss, and pancreatic insufficiency at the 

time of diagnosis1. To investigate how altered metabolism might contribute to pancreatic 

malignancy, we profiled plasma metabolites in cases with PDAC and matched controls 

drawn from four prospective cohort studies with blood collected at least two years before 

cancer diagnosis (Supplementary Table 1). The median time between blood collection and 

PDAC diagnosis was 8.7 years.

In conditional logistic regression models, 15 plasma metabolites were associated with future 

diagnosis of PDAC to P<0.05; 3 metabolites, the branched chain amino acids (BCAAs) 

isoleucine, leucine and valine were significant to P≤0.0006, the predefined significance 

threshold after correction for multiple–hypothesis testing (Fig. 1 and Supplementary Table 

2). To evaluate the magnitude of risk for PDAC diagnosis, we divided participants into 

quintiles of increasing BCAA levels. Compared to the bottom quintile, subjects in the top 

quintile had at least a 2–fold increased risk of developing PDAC (Table 1, Supplementary 

Table 3 and Supplementary Fig. 1). As noted previously11, circulating levels of the three 

BCAAs were highly correlated (Supplementary Table 4), reflecting their common pathways 

of metabolism12 and leading to similar results for the sum total of BCAAs (Table 1 and 

Supplementary Table 3).

Circulating BCAAs are elevated in obese individuals and those with insulin resistance13. In 

study participants, plasma BCAAs were modestly correlated with markers of energy 

balance, obesity and glucose intolerance (Supplementary Table 4). To evaluate the 

independent effect of BCAAs on PDAC risk, we assessed models that included these 

markers and found that the associations of BCAAs with PDAC remained largely unchanged 

(Table 1). Circulating levels of BCAAs are also associated with future risk of diabetes11,14. 

Since type 2 diabetes is a predisposing factor for PDAC15, we questioned whether the 

intermediate development of diabetes was underlying the BCAA association. Exclusion of 

subjects with diabetes at blood collection did not change our results (Table 1), indicating 

that we had not identified a signature of prevalent diabetes associated with later PDAC 

diagnosis. To determine whether circulating BCAAs were identifying a population at risk 

for diabetes, who are then at elevated risk of PDAC, we excluded subjects who developed 

diabetes between the time of blood collection and cancer diagnosis and found the results 

unchanged (Table 1). These data suggest that the association of BCAAs with future PDAC 

diagnosis is not dependent on intermediate development of diabetes.

To examine the contribution of circulating BCAAs to risk stratification models for PDAC, 

we evaluated area under the curve (AUC) of receiver–operating–characteristic (ROC) 

curves16 and net reclassification improvement (NRI)17 with low–risk and high–risk 

Mayers et al. Page 3

Nat Med. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



categories. Compared to the base model, including circulating BCAAs led to a significant 

increase in AUC (Supplementary Table 5a and Supplementary Fig. 2), and a net 8.2% of 

cases moving to the high–risk category with a NRI of 5% (Supplementary Table 5b). Thus, 

in our population, inclusion of circulating BCAAs improved the ability of risk stratification 

models to identify future PDAC cases.

In stratified analyses, we noted no significant differences in the association of BCAAs with 

PDAC by cohort, sex, smoking status, BMI, or fasting status at blood collection 

(Supplementary Fig. 3, all P–interaction ≥0.14). To examine when circulating BCAAs were 

most associated with PDAC, we stratified cases and matched controls by time interval 

between blood collection and PDAC diagnosis (<2 years, 2–<5 years, 5–<10 years, ≥10 

years). These analyses demonstrated particularly strong associations between 2 and 5 years 

prior to diagnosis (Fig. 2a and Supplementary Table 6).

Experimental studies indicate years elapse between formation of the initial malignant clone 

and cancer diagnosis18, suggesting that occult PDAC might be present when we observe the 

strongest associations with elevated BCAAs. We therefore hypothesized elevated circulating 

BCAAs were a marker of early PDAC. To test this possibility, we conducted a prospective 

serial blood sampling study utilizing LSL–KrasG12D/+;LSL–Trp53R172H/+;Pdx–1–Cre 

(KPC) mice which develop PDAC with variable latency19. KPC mice progress through all 

histological stages of disease from normal pancreata to invasive adenocarcinoma with a 

median survival of approximately 21 weeks19 (Supplementary Fig. 4a). KPC mice initially 

displayed similar BCAA levels to littermate controls, but developed significant elevations 

from 15–17 weeks prior to sacrifice (Fig. 2b and Supplementary Fig. 4b). These data suggest 

circulating BCAA elevations accompany early PDAC.

LSL–KrasG12D/+; Trp53flox/flox;Pdx–1–Cre (KP–/–C) mice develop PDAC with more 

consistent kinetics, displaying precursor lesions (PanINs) with limited invasive cancer by 3–

4 weeks of age (Fig. 2c) and a median lifespan of 10-12 weeks20. At 3–4 weeks of age we 

observed no difference in weight or food consumption between KP–/–C mice and littermate 

controls suggesting animals with early PDAC had not yet developed overt constitutional 

symptoms (Fig. 2d and Supplementary Fig. 4c). Consistent with findings in patients and 

KPC mice, circulating BCAAs were higher in KP–/–C animals with subclinical PDAC when 

compared with controls (Fig. 2e), a pattern not observed for most other amino acids (Fig. 2f 

and Supplementary Fig. 4d-e).

We observed no significant differences in fasting blood glucose, response to glucose load, 

response to insulin challenge, or fasting insulin levels during intraperitoneal glucose and 

insulin tolerance tests in four–week–old KP–/–C and control mice (Fig. 2g–h and 

Supplementary 4f-i). These findings argue that BCAA elevations are not reflective of 

hyperglycemia or insulin resistance and instead represent an early consequence of 

subclinical PDAC.

We examined whether other malignancies induced by the same genetic lesions caused 

elevated plasma BCAAs. Cre–recombinase introduction into lung or muscle of mice with 

the Kras and Trp53 alleles from the KP–/–C model leads to non–small cell lung cancer and 
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sarcoma, respectively21-23. Neither model displayed the BCAA alterations seen with early 

PDAC (Supplementary Fig. 5). Re-implantation of cell lines derived from the KP–/–C model 

into immunocompetent syngenic hosts also failed to cause BCAA elevations 

(Supplementary Fig. 6). These data argue BCAA elevations are associated with early stage 

autochthonous tumors arising in the pancreas and are not a general feature of Kras–driven 

cancer. They also suggest re–implanting cells from end–stage disease does not model the 

early disease state that produces BCAA elevations.

Chronic pancreatitis is a risk factor for PDAC24, and pancreatic inflammation can promote 

PDAC development and progression in mice25,26. Therefore, we examined whether BCAA 

elevations might be a cause or consequence of pancreatic inflammation in early disease. 

Mild, chronic pancreatitis in the absence of tumorigenesis failed to recapitulate BCAA 

elevations (Supplementary Fig. 7a-h), and prolonged increases in plasma BCAAs from 

dietary intervention did not cause pancreatic inflammation or pancreatitis (Supplementary 

Fig. 7i-o). Further studies are needed to understand the relationship between BCAAs and 

more severe pancreatitis.

Unlike other amino acids, the liver does not regulate plasma BCAAs levels27,28; instead, 

levels are determined by dietary uptake, tissue utilization, and breakdown of muscle and 

other body protein stores27,29. Therefore, plasma BCAAs may originate from short–term 

pools related to dietary uptake and disposal or long–term pools related to breakdown of 

tissue proteins. To interrogate the short–term pool, we fed four–week–old KP–/–C and 

control mice an amino acid defined diet, in which 20% of leucine and valine were 13C–

labeled. KP–/–C and control mice consumed similar amounts of food when exposed to 

labeled diet for two hours, (Supplementary Fig. 8a) and we observed no difference in 

appearance and disappearance of plasma 13C–label (Fig. 3a and Supplementary Fig. 8b), 

arguing that gut uptake and peripheral disposal are similar in mice with or without PDAC.

To determine the contribution of long–term BCAAs pools to plasma levels, we exposed 

mice to labeled diet during a period of rapid growth in early life, and then switched them to 

unlabeled diet for three days to chase label from the short–term pool (Fig. 3b). Despite 

similar peripheral tissue protein labeling (Fig. 3c and Supplementary Fig. 8c), the fraction of 

labeled BCAAs in plasma was elevated in four–week–old KP–/–C mice relative to littermate 

controls (Fig. 3d). Furthermore, by comparing plasma label under fed conditions, which is 

determined by both labeled long–term and unlabeled short–term pools, and fasted 

conditions, in which only labeled long–term pools contribute, we calculated that increased 

liberation of BCAAs from long–term body stores was solely responsible for BCAA 

elevations in KP–/–C mice (Fig. 3d–e and Supplementary Fig. 8d). These data suggest that 

an early consequence of PDAC is enhanced breakdown of tissue proteins leading to plasma 

BCAA elevations. Consistent with this hypothesis, KP–/–C mice with early PDAC have 

smaller fast–twitch muscles with sparing of slow–twitch and cardiac muscle (Fig. 3f and 

Supplementary Fig. 9). Notably, muscle atrophy associated with prolonged fasting and late–

stage malignancy exhibits a similar pattern30-32.

Increased muscle catabolism represents one aspect of cancer–associated cachexia, a wasting 

syndrome frequently affecting patients with advanced PDAC and contributing to worse 
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outcomes33-36. Our findings, however, suggest that protein breakdown begins much earlier 

than previously appreciated and pre–dates onset of clinical cachexia. Inflammatory 

cytokines produced by immune and/or tumor cells have been implicated in cachexia31,37 and 

the low disease burden at the time of BCAA elevations suggests hormonal factors may be 

involved here as well. Liberation of tissue amino acids could support the elevated amino 

acid requirements of pancreatic cancer cells38,39, with BCAAs and/or other amino acids 

derived from tissue breakdown contributing to disease progression. Because hepatic 

metabolism maintains relatively constant plasma levels of all amino acids except 

BCAAs27,29,40, increased liberation of tissue amino acids are expected raise BCAA 

concentrations in blood. The association between elevated BCAAs and other metabolic 

disease states11,13,14,41 suggests that plasma BCAAs could be a general marker of increased 

protein turnover, and elevated BCAAs could contribute to the peri-diagnostic hyperglycemia 

commonly found in patients with PDAC42.

In participants from four large prospective cohorts, circulating BCAAs were associated with 

future development of PDAC. We observed similar BCAA elevations in two mouse models 

of PDAC, and demonstrated these elevations result from breakdown of peripheral protein 

stores. These findings provide new insight into how early disease impacts whole-body 

metabolism and suggest that muscle protein loss occurs much earlier in disease progression 

than previously appreciated.

ONLINE METHODS

HUMAN STUDIES

Study Population—Our study population included pancreatic cancer cases and controls 

from four prospective cohort studies: Health Professionals Follow–Up Study (HPFS), 

Nurses’ Health Study (NHS), Physicians’ Health Study I (PHS), and Women's Health 

Initiative–Observational Study (WHI–OS). HPFS was initiated in 1986 when 51,529 U.S. 

men 40–75 years working in health professions completed a mailed biennial questionnaire. 

NHS was established in 1976 when 121,700 female nurses aged 30–55 years completed a 

mailed biennial questionnaire. PHS is a completed trial initiated in 1982 of aspirin and β–

carotene among 22,071 male physicians, aged 40–84 years. After trial completion, study 

participants were followed as an observational cohort. WHI–OS consists of 93,676 

postmenopausal women, aged 50–79 years, enrolled from 1994–1998 at 40 U.S. clinical 

centers. Participants completed a baseline clinic visit and annual mailed questionnaires. The 

study was approved by Human Research Committee at Brigham and Women's Hospital 

(Boston, MA) and participants provided consent.

We included incident pancreatic adenocarcinoma cases diagnosed after blood collection 

through 2010 with available plasma and no prior history of cancer. Cases were identified by 

self– report or follow–up of deaths. Deaths were ascertained from next–of–kin, postal 

service, or National Death Index; this method captures >98% of deaths43. Medical records 

were reviewed by physicians blinded to exposure data to confirm pancreatic cancer 

diagnoses. Similar to prior studies in these cohorts4,44-46 and based on a predefined analysis 

plan, we included only cases diagnosed ≥2 years after blood collection, as the weight loss 

and insulin resistance which develop due to pancreatic cancer manifest in the 2 years before 
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diagnosis42,47. For each case, we randomly selected two controls, matching on cohort (also 

matches on sex), year of birth (+/–5 years), smoking status (never, past, current, missing), 

fasting status (<8 hours, ≥8 hours), and month/year of blood collection (+/–3 months in 

HPFS, +/– 3 months in NHS, +/–6 months in PHS, and exact matching in WHI). Controls 

were alive without cancer at the case's diagnosis date and provided a blood sample. 

Covariate data were obtained from baseline questionnaires in PHS and WHI and 

questionnaires prior to blood collection in HPFS and NHS, as described previously4,45. In 

HPFS, NHS, and PHS, cancer stage among cases was directly classified based on medical 

record review as: (1) local disease amenable to surgical resection; (2) locally advanced 

disease that is unresectable, but without distant metastases, or (3) distant metastatic disease. 

In WHI, medical records were coded using Surveillance Epidemiology End Results 

summary staging, which classifies tumors as localized, regional, or distant. These stages 

were then classified in the same manner as in HPFS, NHS and PHS, as local, locally 

advanced and metastatic disease, respectively.

The initial dataset included 454 cases and 908 controls. Seven controls had insufficient 

plasma for metabolite profiling. One case and control were excluded due to missing data for 

>10% of metabolites.

Plasma Samples—Blood samples in EDTA tubes were collected from 18,225 men in 

HPFS from 1993–1995, 14,916 men in PHS from 1982–1984, and 93,676 women in WHI–

OS from 1994– 1998, and in Heparin tubes for 32,826 women in NHS from 1989–1990. 

Comparisons of participant characteristics in the blood collection cohort and the full cohort 

are provided for each study in Supplementary Table 7. Blood samples in HPFS and NHS 

were collected by participants, mailed overnight on cold–packs, and then spun to collect and 

store plasma (delayed processing), while PHS and WHI participants’ whole blood was 

separately immediately into plasma and stored. An overview of procedures for collection 

and storage of samples from each cohort is provided below and summarized in 

Supplementary Table 8.

Health Professionals Follow–up Study: Upon arrival at the blood lab, vials were 

centrifuged in order to separate the various component parts. Cryo storage tubes were 

labeled with the appropriate study members ID number and the separated blood components 

were pipetted into them. This process produced 5 tubes of plasma, 2 tubes of white blood 

cells, and 1 tube of red blood cells for each cohort member. The tubes were then stored in 

liquid nitrogen freezers. A bulk tank, holding up to 3,000 gallons of LN2 automatically 

feeds each individual freezer whenever the freezer's sensors indicate that coolant is required.

Nurses’ Health Study: Blood samples were separated into components (plasma, white 

blood cells and red blood cells) and pipetted into 8 cryotubes with 5 tubes of plasma, 2 tubes 

of white blood cells and 1 tube of red blood cells. Samples were immediately frozen in 

vapor phase liquid nitrogen freezers. The NHS Blood Lab stores all biologic samples 

associated with the Blood Study in–house in a large liquid–nitrogen (LN2) freezer farm. The 

cryotubes are stored in the vapor phase of LN2 freezers; the highest freezer temperature is –

130°C near the top of the freezer and the lowest temperature is –196°C at the bottom near 
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the liquid nitrogen. All freezers are alarmed and monitored continuously either by NHS 

laboratory staff or a central security desk (nights and weekends).

Physicians Health Study: Blood collection kits were sent to all participants with 

instructions to have blood drawn into the EDTA tubes that were provided. Two tubes were 

centrifuged for plasma, and a third tube was for whole blood. The specimens were received 

in the laboratory on chill packs within 24 hours of being drawn. Upon receipt, the samples 

were refrigerated and re–aliquotted into nine 1.2 mL tubes (three whole blood and six 

plasma), all frozen at –82°C.

Women's Health Initiative: Blood samples were collected on all WHI–OS participants at a 

baseline clinic visit in the fasting state. Blood samples were maintained at 4°C for up to one 

hour until plasma or serum was separated from cells. Centrifuged aliquots were put into –

70°C freezers within two hours of collection. Samples were shipped frozen by overnight 

delivery to a central facility and kept within –70°C freezers.

Plasma samples were grouped based on cohort, so that all cases and controls from a single 

cohort study underwent metabolite profiling as a batch. Sample triplets (pancreatic cancer 

case, matched control #1, and matched control #2) were distributed randomly within the 

batch, and the order of the case and two matched controls within each triplet was also 

randomly designated. Therefore, the case and its two controls were always run in the same 

batch and were always directly adjacent to each other in the analytic run, thereby limiting 

variability in platform performance across matched case–control triplets.

For participants from all four cohorts, plasma samples were thawed once to aliquot them 

from large volume vials into the smaller volumes needed for shipment to the Broad Institute 

of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA). The 

samples were refrozen at the Broad Institute and then thawed a second time to perform 

metabolite profiling. Therefore, for all cases and controls, plasma samples had been thawed 

twice at the time of metabolite profiling.

We previously measured hemoglobin A1c (HbA1c) in 389 cases and 757 controls in the 

laboratory of Dr. Nader Rifai (Children's Hospital, Boston, MA) using reagents from Roche 

Diagnostics (Indianapolis, IN). We measured plasma insulin in 386 cases and 743 controls, 

plasma proinsulin in 388 cases and 746 controls, and plasma C–peptide in 408 cases and 785 

controls using reagents from Diagnostic Systems Laboratory (Webster, TX) and Millipore 

Corporation (Billerica, MA). Randomly inserted samples from quality control (QC) plasma 

pools had mean intra–assay coefficients of variance (CVs) of 2.0% for HbA1c, 5.4% for 

insulin, 3.1% for proinsulin, and 4.9% for C–peptide4.

Metabolite Profiling—Profiles of endogenous, polar metabolites were obtained using 

liquid chromatography–tandem mass spectrometry (LC–MS) at the Broad Institute of the 

Massachusetts Institute of Technology and Harvard University (Cambridge, MA). The LC–

MS methods were designed to enable broad measurement of metabolic markers and 

intermediates, including metabolites from central metabolism and amino acid metabolism, 

using low plasma sample volumes48. LC–MS parameters for targeted analyses, including 
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chromatographic retention times and mass spectrometry multiple reaction monitoring 

settings (declustering potentials, collision energies, and lens voltages), were determined 

using over 300 commercially available reference compounds. A subset of 133 polar 

metabolites were measurable in plasma using a combination of two distinct hydrophilic 

interaction liquid chromatography (HILIC) methods, one operated under acid mobile phase 

conditions with positive ion mode MS detection and the other under basic elution conditions 

with negative ion mode MS detection.

The acidic HILIC method using positive ionization mode MS analyses was similar to the 

method described in Wang et al11. Briefly, the LC–MS system consisted of a 4000 QTRAP 

triple quadrupole mass spectrometer (AB SCIEX) coupled to an 1100 Series pump (Agilent) 

and an HTS PAL autosampler (Leap Technologies). Plasma samples (10μL) were extracted 

using nine volumes of 74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing 

stable isotope– labeled internal standards (valine–d8, Isotec; and phenylalanine–d8, 

Cambridge Isotope Laboratories). The samples were centrifuged (10 min, 9,000 x g, 4°C) 

and the supernatants (10 μL) were injected onto an Atlantis HILIC column (150 x 2.1 mm, 3 

μm particle size; Waters Inc.). The column was eluted isocratically at a flow rate of 250 

μL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in 

water) for 1 minute followed by a linear gradient to 40% mobile phase B (acetonitrile with 

0.1% formic acid) over 10 minutes. The ion spray voltage was 4.5 kV and the source 

temperature was 450°C.

A second method using basic HILIC separation and negative ionization mode MS detection 

was established on an LC–MS system consisting of an ACQUITY UPLC (Waters Inc.) 

coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX). Plasma 

samples (30μL) were extracted using 120 μL of 80% methanol (VWR) containing the 

internal standards inosine–15N4, thymine–d4, and glycocholate–d4 (Cambridge Isotope 

Laboratories). The samples were centrifuged (10 min, 9,000 x g, 4°C) and the supernatants 

were injected directly onto a Luna NH2 column (150 x 2.0 mm, 5 μm particle size; 

Phenomenex) that was eluted at a flow rate of 400 μL/min with initial conditions of 10% 

mobile phase A (20 mM ammonium acetate and 20 mM ammonium hydroxide (Sigma–

Aldrich) in water (VWR)) and 90% mobile phase B (10 mM ammonium hydroxide in 75:25 

v/v acetonitrile/methanol (VWR)) followed by a 10 min linear gradient to 100% mobile 

phase A. The ion spray voltage was –4.5 kV and the source temperature was 500°C.

Raw data were processed using MultiQuant 1.2 software (AB SCIEX) for automated LC– 

MS peak integration. All chromatographic peaks were manually reviewed for quality of 

integration and compared against a known standard for each metabolite to confirm 

compound identities. Internal standard peak areas were monitored for quality control, to 

assess system performance over time, and to identify any outlier samples requiring re–

analysis. A pooled plasma reference sample was also analyzed after sets of 20 study samples 

as an additional quality control measure of analytical performance and to serve as reference 

for scaling raw LC–MS peak areas across sample batches. Metabolites with a signal to noise 

ratio <10 were considered unquantifiable. Metabolite signals were analyzed in relation to 

pancreatic cancer risk as LC–MS peak areas, which are proportional to metabolite 

concentration and appropriate for metabolite clustering and correlative analyses.
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Of the 133 metabolites measured (Supplementary Fig. 10), 83 were included in the analyses 

of our nested pancreatic cancer case–control population (Supplementary Table 9). In pilot 

work49, we determined that 32 metabolites had poor reproducibility in samples with delayed 

processing, so these metabolites were excluded as they could not be reliably measured in 

two of the participating cohorts. In the current study, three Heparin plasma pools (57 total 

QC samples) and three EDTA plasma pools (128 total QC samples) were randomly 

interspersed among participant samples as blinded QC samples. We calculated mean CVs 

for each metabolite across QC plasma pools and set an a priori threshold of ≤25% for 

satisfactory reproducibility. Based on this criterion, 13 metabolites with mean CV>25% 

were excluded from our analyses. Five metabolites had undetectable levels for >10% of 

participants and were also excluded. We evaluated plasma from ten volunteers with plasma 

collected simultaneously in Heparin and EDTA tubes. For the branched chain amino acids, 

Spearman correlation coefficients between Heparin and EDTA samples were 0.85 for 

isoleucine, 0.88 for leucine, and 0.95 for valine.

For metabolites meeting the threshold for statistical significance after multiple– hypothesis 

correction (isoleucine, leucine and valine), LC–MS peak areas were converted to absolute 

concentrations using stable isotope–labeled standards. Briefly, external calibration curves of 

MS response were determined using solutions of isotope–labeled 13C6, 15N–

leucine, 13C6, 15N–isoleucine (Cambridge Isotope Laboratories), and d8–valine (Isotec). A 1 

μg/μL solution of each standard was prepared in water. 20 μL of each stock solution were 

added to 180 μL of reference pooled plasma and the resulting solution was then serially 

diluted using pooled plasma to generate a calibration curve. For multiple reaction 

monitoring MS analyses, the bond cleavage products and collision energy and declustering 

potential settings were the same as those used for the endogenous metabolites: natural 

leucine 132/86, CE=18 and DP=50; 13C6, 15N– leucine 134/87, CE=18 and DP=50; natural 

isoleucine 132/86, CE=18 and DP=50; 13C6, 15N– isoleucine 139/92, CE=18 and DP=50; 

natural valine 118/72, CE=18 and DP=25, and d8–valine 126/80, CE=18 and DP=25. Three 

separate plasma samples were prepared at each concentration and were analyzed using the 

acidic HILIC LC–MS method described above. The median concentrations of endogenous 

isoleucine, leucine and valine in the reference pooled plasma were calculated and the 

concentration of each metabolite in each study sample was determined from the response 

ratio relative to the nearest reference pooled plasma sample in the analysis queue.

Statistical Analysis—To compare baseline characteristics, we used conditional logistic 

regression conditioned on the matching factors and including the covariate of interest. 

Partial Spearman correlation coefficients were calculated for metabolites and covariates. 

Metabolites were log– transformed to improve normality and included as continuous 

variables in conditional logistic regression models conditioned on matching factors and 

adjusted for age at blood draw (years, continuous), fasting time (<4, 4–8, 8–12, ≥12 hours, 

missing) and race/ethnicity (White, Black, other, missing). Using a conservative Bonferroni 

correction for multiple–hypothesis testing50, metabolites with P≤0.0006 (0.05/83) were 

considered statistically significant.

To provide estimates of effect magnitude, significant metabolites were examined in 

conditional logistic regression models after categorization into quintiles based on log– 
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transformed metabolite levels in controls. Separate quintiles were generated for fasting (≥8 

hours since last meal) and non–fasting (<8 hours since last meal) participants, given the 

possible effect of fasting time on metabolite levels. Quintiles were generated from the 

population of selected controls, which may not exactly reflect the characteristics of the full 

cohort population. Odds ratios (OR) and 95% confidence intervals (CI) were also calculated 

per standard deviation (SD) change in log–transformed metabolite levels. To control for 

possible confounding, we evaluated regression models adjusted for body–mass index (BMI), 

physical activity, history of diabetes mellitus, HbA1c, plasma insulin, plasma proinsulin, 

and plasma C–peptide. We also evaluated regression models after excluding subjects with 

diabetes by self–report or HbA1c≥6.5% at blood collection (prevalent diabetes). We further 

evaluated models that excluded subjects who developed diabetes after blood collection but 

>2 years prior to cancer diagnosis (incident diabetes not thought to be recent onset from 

pancreatic cancer)42,47.

Metabolite values were considered missing when an LC–MS peak was below the limit of 

detection. In the primary analysis, any case or control with missing data for a metabolite was 

excluded from the analysis of that metabolite. However, we also conducted sensitivity 

analyses, in which participants with missing values were assigned the lower limit of 

detection or half of the lower limit of detection, and our results were unchanged.

We assessed heterogeneity of metabolite associations with pancreatic cancer risk across 

cohorts using Cochran's Q–statistic51. We examined associations in predefined subgroups by 

sex, smoking status, BMI, and fasting status. Statistical interactions were assessed by 

entering into models the main effect terms and cross–product terms of metabolites and 

stratification variables, evaluating likelihood ratio tests. We also examined associations by 

time between blood collection and the case's cancer diagnosis. In these time–based analyses, 

one stratum included 40 pancreatic cancer cases with blood collected within 2 years of 

diagnosis and their matched controls. These cases and controls were not part of the primary 

analysis population, but were included in the stratified analyses by time to more fully 

delineate the association of metabolites with pancreatic development by time before 

diagnosis. Associations were also examined for circulating BCAAs with previously explored 

risk factors for pancreatic cancer in our cohorts (Supplementary Table 10) and with cancer 

stage at diagnosis (Supplementary Table 11).

Since association of a marker with disease does not indicate the suitability of the marker to 

serve as a screening test for the disease, we examined two approaches to quantify the value 

of metabolites in a multi–factor risk discrimination tool for pancreatic cancer. 

Discrimination quantifies the ability of one or more disease markers to separate cases 

(individuals with the disease) from controls (individuals without the disease). We 

investigated the discrimination of risk models for predicting pancreatic cancer diagnosis in 

the ten years after measurement of circulating BCAAs, i.e. the 10–year risk of pancreatic 

cancer.

In the first approach, we investigated receiver–operating–characteristic (ROC) curve 

analysis and calculated of the area under the ROC curve (AUC), also known as the 

concordance (C) statistic16,52. The base model included age at blood collection (continuous), 
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cohort (HPFS, NHS, PHS, WHI; which also accounts for sex), race/ethnicity (white, black, 

other/missing), smoking status (never, past, current, missing) and fasting time (<4, 4–8, 8–

12, ≥12 hours, missing). Three subsequent models mirrored the base model, but additionally 

included: (1) body–mass index, physical activity, and history of diabetes, (2) circulating 

BCAAs, or (3) body– mass index, physical activity, history of diabetes, and circulating 

BCAAs. Each point on the ROC curve shows the effect of a rule for turning a risk estimate 

into a prediction of the development of an event. The y axis of the ROC curve is the true 

positive rate or sensitivity (i.e., the proportion of individuals with pancreatic cancer who 

were correctly predicted to have the disease). The x axis shows the false positive rate, which 

is the complement of specificity (i.e., the proportion of individuals without pancreatic cancer 

who were incorrectly predicted to have pancreatic cancer). The area under the ROC curve, 

the AUC, measures how well the model discriminates between case subjects and control 

subjects. An ROC curve that corresponds to a random classification of case subjects and 

control subjects is a straight line with an AUC of 50%. An ROC curve that corresponds to 

perfect classification has an AUC of 100%. The improvement in AUC for a model 

containing a new marker is defined as the difference in AUCs calculated using a model with 

and without the new marker of interest53.

For context, the Breast Cancer Risk Assessment Tool, commonly referred to as the Gail 

Model54,55, estimates a woman's risk for breast cancer using clinically available information 

including current age, age at menarche, age of first live birth, number of first degree 

relatives with breast cancer, number of previous breast biopsies, breast biopsies that show 

atypical hyperplasia, and race/ethnicity. The Gail Model is used to counsel women on 

appropriate screening tests for breast cancer56, the use of tamoxifen as a chemopreventative 

agent57, and for determining sample size calculations in randomized clinical trials of 

prevention strategies58. Several studies have evaluated the discrimination of the Gail model 

using ROC curve analysis and calculated the AUC to be 0.58 to 0.6352,59-61. Follow–up 

studies have described an AUC of 0.62 to 0.66 when breast density is added as an additional 

predictor in the original Gail Model59,60,62.

Although ROC curves are commonly used, they have a number of limitations and may 

underestimate the ability of a new marker to contribute to risk prediction when added to 

previously defined predictors63-66. Another approach to evaluating model discrimination is 

to evaluate the ability of a new marker to shift an individual's risk up or down between pre–

defined risk categories. This is known as the prediction increment of a marker and has been 

codified in an approach known as net reclassification improvement (NRI)17. The NRI 

(sometimes referred to as the net reclassification index) constructs reclassification tables 

separately for participants with and without events, and quantifies the correct movement 

between categories of risk; namely, to higher risk categories for participants with events and 

to lower risk categories for those without events. Furthermore, incorrect movement in 

categories of risk (downwards for events and upwards for non–events) reduces the net 

correct reclassification of individuals within the study population.

The NRI calculation is represented by the following formula:
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Upward movement (up) is defined as a change into a higher risk category based on the new 

model and downward movement (down) as a change into a lower risk category based on the 

new model, where P indicates probability and D denotes the event indicator (1, event; 0, 

non–event).

Using the NRI, we evaluated the ability of the prediction model including circulating 

BCAAs to appropriately reclassify individuals into risk groups compared to the base model. 

The base model was calculated using conditional logistic regression conditioned on 

matching factors and adjusted for race/ethnicity, body–mass index, physical activity and 

history of diabetes. The subsequent model included the covariates in the base model with the 

addition of circulating metabolites. As in prior studies67-69, we defined the high–risk group 

as those individuals with risk for pancreatic cancer at least 2–fold greater than an individual 

with average risk.

For context, the Emerging Risk Factors Collaboration70 has examined the integration of 

novel risk factors into risk prediction models for cardiovascular disease. In these studies, 

additional potential risk predictors were added to a model of known risk predictors for 

cardiovascular disease, including age, sex, smoking status, blood pressure, history of 

diabetes, and cholesterol. The net reclassification improvement was then calculated for three 

10–year risk categories for cardiovascular disease. C–reactive protein is a marker of 

systemic inflammation, and elevated CRP has been associated with an increased risk for 

cardiovascular events in numerous studies71-73. Circulating CRP is currently used to inform 

decisions in the clinic regarding screening and risk reduction strategies74,75 and to design 

clinical trials testing novel treatments to reduce cardiovascular events76,77 In an analysis of 

nearly 250,000 individuals78, the addition of CRP to know cardiovascular disease risk 

factors was associated with a statistically significant improvement in the area under the ROC 

curve and a NRI of 1.52% for 10–year risk of cardiovascular disease. In contrast, additional 

analyses demonstrated a <1% improvement in the NRI for body–mass index, waist 

circumference, waist–to–hip ratio, plasma fibrinogen, and circulating apolipoproteins78-80, 

such that the clinical utility of these additional predictors remains unclear75.

All analyses were performed with SAS 9.2 statistical package. All P–values were two– 

sided.

MOUSE STUDIES

All studies were approved by the MIT committee on animal care (IACUC).

Experimental Mice—All experimental groups were assigned based on genotype. All 

animals were numbered and experiments conducted blinded. After data collection, 

genotypes were revealed and animals assigned to groups for analysis.

KPC: Experimental KPC mice were male mice on a mixed background, heterozygous for 

the conditional lox–stop–lox KrasG12D allele, heterozygous for the conditional lox–stop–lox 
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Trp53R172H allele and expressed Cre–recombinase under control of the Pdx–1–promoter 

(Tg(Ipf1-cre)1Tuv)19. Littermate controls lacked either the LSL–KrasG12D allele, the Cre 

allele, or both. Control mice were sacrificed at the same time as their tumor–bearing 

littermates.

KP–/–C: Experimental KP–/–C mice were male mice on a mixed background, heterozygous 

for the conditional lox–stop–lox KrasG12D allele, homozygous for loxP sites flanking exons 

2–10 of Trp53 and expressed Cre–recombinase under control of the Pdx–1– promoter 

(Tg(Ipf1-cre)1Tuv)20. Littermate control mice lacked either the Cre–recombinase allele, LSL–

KrasG12D allele, or both. Inbred C57B6/J male mice containing the same alleles were also 

examined where indicated, and cancer cell lines derived from these mice were used for 

syngenic re–implantation studies.

Non–small cell lung cancer: Six–month–old male mice on a pure 129 background, 

heterozygous for the conditional lox–stop–lox KrasG12D allele, homozygous for loxP sites 

flanking exons 2–10 of Trp53 were administered 2.5x107 pfu of Cre–expressing adenovirus 

as previously described21,22. High–titer adenovirus was obtained from the Gene Transfer 

Vector Core (University of Iowa).

Hindlimb sarcoma: Four–week–old male mice on a mixed background, heterozygous for 

the conditional lox–stop–lox KrasG12D allele and homozygous for loxP sites flanking exons 

2–10 of Trp53 were administered 2.5x108 pfu of Cre–expressing adenovirus as previously 

described23. High–titer adenovirus was obtained from the Gene Transfer Vector Core 

(University of Iowa).

Re–implantation, Pancreatitis and BCAA diet studies: Male C57B6/J mice aged 4–6 

weeks at the start of the study were used for these experiments.

Diets—Standard Chow Diet: RMH 3000 (Prolab).

Amino Acid Defined Diet: 1x BCAA (TD.110839) and 2x BCAA (TD.110843) were 

designed in consultation with and subsequently obtained from Harlan Teklad.

Labeled Amino Acid Defined Diet: 20% 13C–leucine and 20% 13C–valine labeled diets 

were based on diet TD.110839 and produced by Cambridge Isotopes and Harlan Teklad.

Plasma for Metabolomics—Plasma was collected for each experiment at the time points 

indicated. Mice were anesthetized under 2% isofluorane–oxygen mixture and retro–orbitally 

bled approximately 4.5 hours after the onset of the light cycle. Blood was immediately 

placed in EDTA–pretreated tubes and centrifuged to separate plasma. Plasma was aliquoted 

and frozen at –80°C for further analysis. Fasting blood samples were harvested in the same 

manner first thing in the morning after a 16–hour overnight fast.

Food Consumption—Mice were housed individually for 48 hours and remaining food 

pellets weighed at zero, 24 and 48 hours. A two–day average was then calculated for each 

mouse. Body weight was determined on the second day. To assess consumption of BCAA 
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defined diets, mice were housed individually and fed diets for 5 days. Food was weighed 

after 2 days of feeding and again on day 5, and the average consumption per 24hrs over the 

72hr period was calculated.

Blood glucose, plasma insulin, glucose tolerance test, and insulin tolerance 
test—Four–week– old KP–/–C mice were fasted overnight and blood glucose measured 

using a One Touch Ultra handheld glucometer. 25μL of plasma from the same mice was 

harvested in heparinized tubes, aliquoted, and frozen at –80°C for further analysis. Plasma 

insulin levels were determined using an ultrasensitive mouse insulin ELISA kit (Crystal 

Chem, #90080). After measuring fasting parameters, a glucose tolerance test was performed 

in accordance with published protocols81. Briefly, conscious mice received an 

intraperitoneal injection of 2g/kg glucose at time zero. Blood glucose was subsequently 

measured at 15, 30, 60, 90 and 120 minutes post–injection as described above. For insulin 

tolerance test, four–week–old KP–/–C mice were fasted for 6 hours during daytime hours. 

Following initial blood glucose measurement, conscious mice received an intraperitoneal 

injection of 0.75 IU/kg recombinant human insulin (Novolin, Novo Nordisk). Blood glucose 

was subsequently measured at 15, 30, 60 and 90 minutes post–injection as described above.

KP–/–C Cell Lines and Re–implantation Studies—End–stage tumors were dissected 

from C57B6/J KP–/–C mice and mechanically chopped prior to trypsin disaggregation, with 

tumor cells then propagated in DMEM with 10% FBS, 2mM glutamine and penicillin/

streptomycin. Cell lines were negative for mycoplasma. For subcutaneous re–implantation 

studies, recipient mice were anesthetized with inhaled 2% isofluorane–oxygen mixture, low 

passage cell lines (passage 5 for each line) were resuspended at 2.5 x 105 cells/100μL in 

sterile PBS, and100μL of either PBS (control) or cell suspension was injected in the flank of 

syngeneic mice. For orthotopic re–implantation studies, recipient mice were anesthetized 

with inhaled 2% isofluorane–oxygen mixture, a vertical incision made in the abdomen at the 

left mid–calvicular line, the spleen mobilized, and 25μL of either PBS or PBS containing 1.0 

x 105 cells (passage 3 for each line) was injected into the tail of the pancreas.

Caerulein–induced Chronic Pancreatitis—Mice were treated with either USP–grade 

saline or 5μg caerulein (Sigma) via intraperitoneal injection daily, 5 days per week for 10 

weeks as previously described25. Blood was obtained and the mice sacrificed on the final 

day. Tissues were fixed in 10% formalin for subsequent histological analysis.

Plasma Markers of Pancreatitis—Plasma amylase and lipase measurements were 

performed by IDEXX BioResearch Laboratory (North Grafton, MA).

BCAA Diet Studies—Mice were fed either 1x or 2x BCAA diets for 10 weeks. Blood was 

obtained and mice sacrificed on the final day of the experiment. Tissues were fixed in 10% 

formalin for subsequent histological analysis.

Studies to determine source of BCAA elevations

Acute uptake and disposal: Following a 16– hour overnight fast, mice were fed 20% 13C–

leucine and valine containing diet for two hours before removal of food, and food 

Mayers et al. Page 15

Nat Med. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consumption during this period quantified as described above. At the time points indicated 

by the red arrowheads in Figure 3a, 10–25μL of plasma was harvested from the tail vein of 

conscious mice in a heparinized tube and centrifuged to separate plasma. Plasma was 

aliquoted and frozen at –80°C for subsequent GC–MS analysis. Total ion counts from GC–

MS analysis of leucine and valine were then normalized to norvaline internal standard and 

multiplied by fractional labeling to determine the amount of label present. This number for 

each animal was then normalized to that animal's food intake to control for inter– animal 

variation in labeled food consumption.

Long–term pool contribution of BCAA to plasma: Mice were exposed to 20% 13C–

leucine and valine labeled diets from 7 days to age to 24 days of age followed by three days 

of unlabeled diet (according to the protocol depicted in Figure 3b). Two cohorts of mice 

were used in this study. One cohort of mice was sacrificed on day 27 in the fed state and a 

second cohort of mice was sacrificed on day 28 after a 16–hour overnight fast (the points 

indicated by the red arrowheads in Figure 3b). At sacrifice, anesthetized mice were 

terminally bled and tissues harvested within 5 minutes, snap frozen in liquid nitrogen using 

Biosqueezer (BioSpec Products), and stored at –80°C for subsequent GC–MS analysis. 

Plasma was aliquoted and frozen at –80°C for subsequent GC–MS analysis.

Total contributions from short and long–term pools were calculated according to the 

following equations:

Raw data and calculations are summarized in Supplementary Table 12.

Tissue and body weights—For measurement of tissue weights, mice were weighed 

prior to sacrifice, then gastrocnemius, tibialis anterior, soleus and heart were subsequently 

dissected and weighed. Muscle weights for each individual mouse were normalized to the 

body weight of that mouse.

LC–MS Plasma Amino Acid Measurements—Plasma amino acids were measured by 

LC–MS at the Koch Institute of the Massachusetts Institute of Technology (Cambridge, 

MA) using similar methods used for assessment of metabolites in human plasma. Raw data 

were analyzed as peak area tops using the open–access MAVEN software tool82.

GC–MS Assessment of13C–leucine and valine Labeling—Plasma polar metabolites 

were extracted in ice–cold 4:1 methanol:water with norvaline internal standard (5μL plasma 

in 200μL extraction solution). Extracts were clarified by centrifugation and the supernatant 

evaporated under nitrogen and frozen at –80°C for subsequent derivitization. Dried polar 

metabolites were dissolved in 20μL of 2% methoxyamine hydrochloride in pyridine 

(Thermo) and held at 37°C for 1.5hr. After dissolution and reaction, tert–butyldimethylsilyl 

derivatization was initiated by adding 25μL N–methyl–N–(tert–

butyldimethylsilyl)trifluoroacetamide + 1% tert– butyldimethylchlorosilane (Sigma) and 
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incubating at 37°C for 1hr. The acid hydrolysis protocol was adapted from Antoniewicz and 

colleagues83. Briefly, acid hydrolysis of tissue proteins was performed on snap frozen 

tissues by boiling 1–5mg tissue in 1mL 18% hydrochloric acid overnight at 100°C. 50μL 

supernatant was evaporated under nitrogen and frozen at –80°C for subsequent 

derivitization. Dried hydrolysates were re–dissolved in pyridine (10μL/1mg tissue) prior to 

tert–butyldimethylsilyl derivatization, which was initiated by adding N–methyl–N–(tert– 

butyldimethylsilyl)trifluoroacetamide + 1% tert–butyldimethylchlorosilane (12.5μL/1mg 

tissue, Sigma) and incubating at 37°C for 1h.

GC/MS analysis was performed using an Agilent 7890 GC equipped with a 30m DB– 35MS 

capillary column connected to an Agilent 5975B MS operating under electron impact 

ionization at 70eV. One microlitre of sample was injected in splitless mode at 270°C, using 

helium as the carrier gas at a flow rate of 1mlmin−1. For measurement of amino acids, the 

GC oven temperature was held at 100°C for 3min and increased to 300°C at 3.5°Cmin−1. 

The MS source and quadrupole were held at 230°C and 150°C, respectively, and the 

detector was run in scanning mode, recording ion abundance in the range of 100–605 m/z. 

MIDs were determined by integrating the appropriate ion fragments83 listed in 

Supplementary Table 13 and corrected for natural isotope abundance using an algorithm 

adapted from Ferandez and colleagues84.

Statistics—Appropriate statistical tests were performed where required. Two–sided 

unpaired student's t–tests were performed for all statistical analyses unless otherwise 

specified using Mircosoft Excel for Mac:2011 (Microsoft) or GraphPad Prism 6 (GraphPad 

Software). Two– sided repeated–measures ANOVA was performed to compare mean 

plasma glucose levels in the glucose tolerance test and insulin tolerance tests85, using SAS 

9.2 statistical package.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Plasma metabolites and risk of future pancreatic cancer diagnosis
P–values of the log–transformed, continuous metabolite levels from human plasma 

comparing pancreatic cancer cases and controls in conditional logistic regression models 

conditioned on matching factors and adjusted for age at blood draw (years, continuous), 

fasting time (<4, 4–8, 8–12, ≥12 hours, missing) and race/ethnicity (White, Black, other, 

missing). The dashed green line indicates the statistically significant P–value threshold after 

Bonferroni correction for multiple–hypothesis testing, P–trend ≤0.0006 (0.05/83). The 

dashed blue line indicates P– trend of 0.05.
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Fig. 2. Plasma BCAAs are elevated during subclinical disease
a, Graph of odds ratio (95% confidence interval) for future pancreatic cancer diagnosis 

among cohort cases and matched controls comparing highest versus lowest quintiles of 

circulating BCAAs stratified by time from blood collection to the case's cancer diagnosis. 

Odds ratio (95% confidence interval) from conditional logistic regression models 

conditioned on matching factors and adjusted for age at blood draw (years, continuous), 

fasting time (<4, 4–8, 8–12, ≥12 hours, missing) and race/ethnicity (White, Black, other, 

missing). Red horizontal line marks an odds ratio of 1.0. b. Graph of total plasma BCAAs in 

Mayers et al. Page 24

Nat Med. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KPC mice over time and in littermate controls. Each control data point is an average for one 

mouse over the course of the study (Supplementary Fig. 3b) and values for KPC mice living 

longer than 19 weeks are averaged for the >19 weeks time point. For weeks 15-17, n = 6 

KPC and n = 9 control, t-test, P=0.001. c, H&E staining of pancreatic tissue obtained from 

KP–/–C mice and littermate controls at 3-4 weeks of age. Tissue are shown from a control 

mouse with histologically normal pancreas (left); a KP–/–C mouse with areas of PDAC 

adjacent to areas of normal pancreas (middle); and a KP–/–C mouse with areas of PDAC and 

pancreatic intraepithelial neoplasia (closed arrow heads) (right); scale bar = 50μM. d, Mean 

(±SEM) body weights at 3-4 weeks of age for KP–/–C mice and littermate controls (n = 7 

KP–/–C, n = 11 control mice). e, Mean (±SEM) total plasma branched chain amino acid 

levels from KP–/–C mice and littermate controls at 3-4 weeks of age (n = 10 KP–/–C, n = 14 

control mice, t-test, P=0.002). f, P–values for comparison of circulating amino acid levels in 

KP–/–C mice and littermate controls at 3-4 weeks of age, cys = cystine (n = 10 KP–/–C, n = 

14 control mice), The dashed red line indicates P–value of 0.05. g, top, glucose tolerance 

test in KP–/–C mice and littermate controls at the time of weaning (n = 7 KP–/–C, n = 11 

control mice) and bottom, insulin tolerance test in KP–/–C mice and littermate controls at 

four weeks of age (n = 7 KP–/–C, n = 15 control mice). h, Mean (±SEM) fasting plasma 

insulin levels from KP–/–C mice and littermate controls at four weeks of age (n = 7 KP–/–C, 

n = 11 control mice).
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Fig. 3. BCAA elevations are derived from a long–term pool of amino acids
a, Plasma levels (mean ± SEM) of 13C–labeled leucine and valine normalized to food intake 

over time following a two–hour exposure to diets containing 13C–labeled leucine and valine. 

The time points correspond to the red arrowheads in the diagram. b, Diagram of experiment 

using labeled diets to investigate contributions to plasma BCAA levels from long–term 

pools. Two cohorts of mice were used for these experiments, one sacrificed in the fed state 

and a second sacrificed in the fasted state at the time points indicated by the red arrowheads. 

c, Fractional labeling of total amino acids in protein hydrolysate of gastrocnemius muscle 
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from fasted KP–/–C mice and control littermates (n = 8 KP–/–C, n = 6 control). d, Fractional 

labeling of plasma amino acids in KP–/–C and control mice in the fed state (n = 3 KP–/–C, n 

= 4 control). e, The calculated contribution of the short– and long–term BCAA pools to the 

BCAAs present in plasma . f, Mean (±SEM) gastrocnemius weight (left panel, t-test, 

P=0.01), a predominantly fast–twitch muscle, and heart weight (right panel) normalized to 

body weight (n = 6 KP–/–C, n = 10 control).
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