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ABSTRACT

Purpose: To evaluate the biomechanical properties of a novel total hip replacement femoral stem. Methods: 
Eight pairs of femurs from dog cadavers were used. The femurs were separated into different groups. A novel 
femoral stem with a convex proximal portion (Stem B) was biomechanically evaluated and compared to a 
well-known veterinary collared stem (Stem A). Femoral stems were inserted into the contralateral femurs 
from the same dog, forming 16 constructs. A flexo-compression load was applied on the axial axis of each 
sample. Maximum strength, deflection, stiffness, and energy absorption were analysed. Results: Group B 
constructs showed significantly higher values (p ≤ 0.05) for the variables, except stiffness. The mean maximum 
strength was 1,347 ± 357 N for Group A and 1,805 ± 123 N for Group B (p ≤ 0.0069). The mean deflection was 
5.54 ± 2.63 mm for Group A and 10.03 ± 3.99 mm for Group B (p ≤ 0.0056). For the energy variable, the force 
was 6,203 ± 3,488 N/mm for Group A and 12,885 ± 5,056 N/mm for Group B (p ≤ 0.0054). Stem B had greater 
maximum strength, deflection, and energy. Conclusion: The new stem was effective in neutralizing the impact 
of axial flexion-compression stresses during biomechanical tests in cadaveric models.
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Introduction

Complication rates after canine total hip replacement 
(THR) range from 8 to 22% for both cemented and 
cementless techniques1,2. Recently, increasing numbers 
of cases require revision procedures3. The most common 
complications after THR in dogs are infection, aseptic 
loosening of implants, luxation, femoral fractures, and 
femoral stem subsidence4. Cementless systems are widely 
used in human patients and have been used in veterinary 
patients for the past two decades4,5. One of the reasons 
for their development was to eliminate the complications 
associated with the cement6. However, in spite of the good 
performance of canine cementless THR, many studies 
have described specific complications, especially those 
associated with the fixation of the femoral component 
such as catastrophic subsidence, peri-prosthetic fissures 
and femoral fractures1,2,7.

The longevity of cementless THR depends mainly on 
effective biological fixation. Anatomical fitting and correct 
insertion of the femoral stem are critical for bone ingrowth 
to occur8. Two basic types of cementless femoral stems 
are currently being used in dogs, press-fit and interlock 
system4,9,10. They have proved to be effective in allowing 
bone ingrowth11,12, but subsidence and femoral fractures 
are still reported10,12.

A number of femoral stem designs have been described 
and investigated for use in human THR. They promote better 
bone ingrowth and, thus, reduce complications. However, 
there is little information on the different canine femoral 
THR stem types available13. In an attempt to reduce the 
chance of subsidence or rotation of the femoral stem, 
a restricting medial collar has been used1,11. Recently, 
BioMedtrix has customized the BFX femoral component, 
including a lateral bolt, to provide additional resistance 
against subsidence11. In order to improve the problems 
that the stems have been suffering for some decades, 
new models have been tested to improve the resistance 
of the implant, improving the mechanical characteristics 
and the clinical result. Stems with lateral enlargement 
of the proximal portion were tested, and the results 
obtained show that these models enabled better filling of 
the medullary canal, greater resistance to axial forces and 
greater stability14-17. As these new designs of veterinary 
femoral stem are released, aiming to improve anatomical 
fit and bone ingrowth with reduced complication rates, 
they require further investigation to determine clinical 
effectiveness.

The objective of this study was to evaluate the 
biomechanical properties of a novel total hip replacement 
femoral stem (Stem B), which was compared to a well-known 

collared femoral stem (Stem A). The new stem model 
(Stem B) has as main features a convex proximal portion 
and a titanium plasma coating. Our hypothesis was that 
the novel femoral stem would provide more resistance 
to subsidence and better mechanical performance when 
compared to the collared stem.

Methods

Overall study design and specimen collection

The methodology adopted in this study was approved 
by the Ethics Committee on Animal Experimentation of 
Universidade Estadual Paulista “Júlio de Mesquita Filho” 
(UNESP), under the protocol no. 16,938/16.

The femoral stems (A and B) used in this study were 
made of surgical stainless steel and coated with a Cr-Co-Mo 
alloy (ASTM F75) (Cao Medica, Campinas, SP, Brazil). 
Femoral Stem A has a medial proximal collar and is covered 
with a titanium plasma coating on its proximal portion. 
Femoral Stem B has a more domed proximal region and 
is fully covered with a titanium plasma coating (Fig. 1). 
Both stems are available in two lengths (Stem A = 65.9 
and 71.63 mm and Stem B = 58.54 and 57.34 mm). For 
this study, a 17-mm-diameter femoral head (neck +0) was 
used for both stems. 

Figure 1 – Design of Stem A and Stem B. The dashed lines 
(a and b) show that the Stem A has a titanium coating 
only on its proximal portion, while Stem B is fully coated. 
Additionally, there is a collar in Stem A. Stem B has a 
convexity with oblique chamfers on its proximal portion.

(a)

(b)
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Sixteen femurs from skeletally mature male dog cadavers 
(25 ± 1 kg), euthanized for reasons unrelated to this study, 
were used. A randomized comparative experimental 
design was used, placing implant A in one of the femurs 
and implant B in the contralateral femur. Each femur was 
removed from its adjacent soft tissues and wrapped with 
surgical gauze soaked in a 0.9% NaCl solution. They were 
then placed in sealed bags and stored at -20ºC.

Radiographic projections (M1) (100 mA, 55 kV, 
4 mAs) were taken with a calibration marker of 100 mm. 
A specific acetate template was used on digital X-rays to 
determine the size of stem to be implanted in each femur. 
All samples were subjected to densitometric analysis to 
ensure uniform bone mineral composition (BMC) and bone 
mineral density (BMD). The values of BMC and BMD were 
measured in the X-ray absorptiometry device in two dual 
energy X-ray absorptiometry (DXA) hologic energies (DXA, 
Hologic, Marlborough, Massachusetts, United States). This 
device emits photons that are collimated in a beam that 
cross the analyzed structure until reaching the detector, in 
which the intensity of the transferred beam is registered. 
The mechanism moves from side to side, forming the 
scan lines that will compose the image. Measurements 
were made by emitting X-ray beams at different energy 
levels, creating photoelectric peaks between 80 and 
140 kV and 3 mA/s.

In order to check the quality control of the equipment, 
before scanning, the device was calibrated using a model 
(hologic DXA quality control spine phantom, hologic, 
Marlborough, Massachusetts, United States) provided 
by the manufacturer. This object has an area of 54.4 cm2, 
51.1 g of BMC and 0.94 g/cm2 of BMD. The specimen was 
placed on the table, proximal to the flow, and a scan was 
performed. The data values were automatically computed, 
and the value obtained, compared with the expected value 
(previously determined by the manufacturer, at the time of 
installation). For small samples, less than 50 cm, according 
to the manufacturer, a second calibration using another 
model (Rat Step Phanton) is required. Smaller and in a 
density scale, the object is used to determine the scan 
area of the sample. If the obtained value differs by more 
than 1.5% from the expected value, the measurement 
must be repeated, and maintaining the difference, it is 
recommended to discontinue the use. The images were 
analyzed with the aid of the Hologic Discovery Wi10 
software (Hologic, Marlborough, Massachusetts, United 
States). Once the regions of interest are obtained, in this 
case, the entire sample body of the femur (area) is selected.

It should be noted that all samples were previously 
weighed and measured, with respect to the length and 
area of the femur. Weighing was performed using a digital 

scale and, to measure the length of the femur, a 12-inch 
digital caliper was used, both properly calibrated. Then, 
the captured measurements were inserted in the software 
developed by the equipment manufacturer.

Stem implantation and instrumentation

The (left and right) femurs were thawed at room 
temperature. A femoral head and neck ostectomy was 
made ± 0.5 cm proximal to the lesser trochanter, using a 
cutting guide and oscillating saw. Using a specific set of rasps 
and drills, the medullary canal was prepared following a 
previously described technique11. The femoral component 
was inserted by holding the neck of the implant, without 
touching the porous parts. The stem was inserted up to 
3/4 of the total length of the stem and filled 85 to 90% of 
the medullary canal. Finally, a specialized impactor was 
used to push the stem down into the femur to achieve a 
press-fit fixation.

All specimens were radiographed (M2) before the 
biomechanical evaluation, to verify correct positioning 
of the implants.

Specimen preparation and data processing

A force of 250 N was applied to all specimens in the 
static flexo-compression test, corresponding to 50% of 
the maximum stress in the pilot test used to determine 
the strength limit of the system (failure of the construct). 
An EMIC universal testing machine (maximum capacity of 
10,000 kgf, Instron Brasil Equipamentos Científicos, São 
Jose dos Pinhais, PR, Brazil) was used to deliver a load cell 
of 1,961.33 N (200 kg). The rate of load was promoted 
displacement of the stem by 5 mm/min (Fig. 2). 

Figure 2 – The static flexion-compression test, in which 
a force of 250 N (red arrow) was used, corresponding 
to 50% of the maximum force observed during the pilot 
test. The load cell used was 1,961.33 N (200 kg) and the 
speed used to promote displacement was 5 mm/min, in 
the two sample models (A and B).
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A polymethyl methacrylate support base attached to the 
distal end of each femur was created to keep the specimens 
in place. In addition, the acetabular dome (28 mm) was 
adapted to maintain the specimen in a vertical position, 
while the flexo-compression stress was applied in the long 
axis of the samples. The convex surface of the acetabular 
implant was filled with polymethyl methacrylate through 
which a hex screw with fine, central threads on its vertex 
was inserted. The objective was to create a femoral axis 
at an angle of 15º in the coronal-vertical plane. All tests 
were performed with the samples at room temperature, 
average of 22ºC. After the flexion-compression tests, 
the machine software calculated the maximum force 
supported by the femur / implant set, the deflection, the 
relative stiffness, and the energy absorbed during the test 
for each sample. Failure in the axial compression test was 
defined as fracture of the specimen.

Statistical analysis

A randomized block design was used for the comparison 
of groups (A and B), with two treatments and 16 repetitions 
(eight for each treatment). Statistics were performed using 
R software (R Foundation for Statistical Computing, Vienna, 
Austria). Initially, the homoscedasticity of variances (Bartlett 
test) and the normal distribution (Shapiro-Wilk test) were 
tested. The variables from the bone densitometry analysis 
were compared between groups with the Student’s t-test 
(the independent samples t test) to verify the homogeneity 
of the sample units. The variables obtained from the static 
axial compression test were subsequently compared 
between groups through analysis of variance (one-way 
ANOVA) in a randomized blocks (animal) design. The 
significance level was set at 95% (p < 0.05) for all tests, 
and the data was presented as mean ± standard deviation 
(SD). When the test revealed a statistically significant 
difference, the Tukey test was also used.

Results

The pre-test radiographic examinations revealed 
homogeneity of the samples. The implants were inserted 
in accordance with the methodological description. The 
statistical analyses of the variables for BMD and BMC 
revealed similarity between the selected samples for both 
Group A and Group B—the samples were homogeneous, 
and there was no significant difference between groups 
(p = 0.05) regarding BMD and BMC.

The following variables were obtained during the 
biomechanical axial static flexo-compression test in the 
femurs with stems A and B: maximum strength (MS) 
supported by the implants, deflection (D), stiffness (S) 

of the construct, and energy (En) applied until failure. 
Group B had significantly higher values (p ≤ 0.05) for the 
variables (MS, D, En) resulting from this study, with the 
exception of S, which was statistically similar between 
groups (p = 0.05; Table 1). 

Table 1 – Comparison of biomechanical axial flexo-
compression test variables between two cementless 
implant models, Groups A and B. The corresponding 
values of the resulting variables are expressed as mean 
(±) and standard deviation (SD).

Variable
Flexo-axial 

compression
Group A Group B P-value

Maximum 
strength (MS) (N) 1.347 ± 357a 1.805 ± 123b 0.0069ab

Deflection 
(mm) 5.547 ± 2.639a 10.033 ± 3.998b 0.0056ab

Stiffness 
(N/mm) 860 ± 160a 1.011 ± 305a 0.2031aa

Energy 
(N.mm) 6.203 ± 3.488a 12.885 ± 5.056b 0.0054ab

a,bDifferent letters in the columns indicate significant difference, with 
p ≤ 0.05.

Discussion

Canine cementless total hip replacement provides 
excellent clinical outcomes. However, complications such 
as subsidence, periprosthetic fractures, stress shielding 
and infections still occur18,19. Despite improvements in 
existing systems over recent years1,2,11,12, the development 
of new implants should reduce the currently reported 
complication rate20,21. This study aimed to test and compare 
the biomechanics of a new model of femoral stem with 
specific characteristics, designed to promote better 
mechanical performance and adequate adjustment to the 
femur. The initial hypothesis was that the new femoral 
stem model (Stem B) would perform well, especially in 
relation to greater resistance and stress distribution. In 
fact, Stem B performed better than Stem A.

Some key features are crucial for biomechanical strength 
of a stem, including the construction material, dimensions 
and design22. The new femoral stem model is coated 
with a Cr-Co-Mo alloy. This material is widely used in the 
manufacture of dental and orthopedic implants, mainly 
for its properties involving biocompatibility, resistance to 
fatigue and corrosion23,24. The novel femoral stem (Stem B) 
has specific characteristics, such as a conical form, a convex 
and wider proximal portion and fully blasted surface, that 
result in greater resistance factors. Stem designs focused 
on a lateral enlargement of the proximal portion have 
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been described for human use, and these were created 
to maximize the proximal adjustment and the filling of 
the medullary canal, providing greater torsional and axial 
stability14-17. This design potentially increases the contact 
of the implant in the metaphyseal region, thus increasing 
the cross-sectional diameter of the stem, allowing the stem 
to have a broader base of metaphysical support25,26. As a 
result, there is a better distribution of endosteal compressive 
forces, which can potentially reduce complications such 
as subsidence and aseptic loosening25.

Walker et al.28 compared lateral extended and 
conventional straight human stems and concluded that 
the lateral extension resulted in better distribution of 
periprosthetic stress, allowing the use of smaller stems, 
facilitating implantation and causing less bone remodeling 
of the femur. Similarly, Leali and Fetto27 demonstrated 
that larger lateral proximal diameter stems produce an 
important effect on load transfer to the bone metaphysis. 
With these stems, the forces between the implant and 
the bone are concentrated around the level of the lesser 
trochanter, whereas in straight stems they are located 
more distally in the diaphysis. Long-term evaluations of 
these implants confirmed that the change in the proximal 
geometry provided greater stability and femoral bone 
preservation, which provides more resistance to migration 
of the implant. In addition, good femoral canal filling 
produces high circumferential tensile stresses, that can 
result in reduced loss of bone29.

Despite these positive features of the novel stem design, 
the lateral and proximal bulging can potentially create an over 
stress in the proximal femoral canal. Additionally, an over-
reaming of the femur is needed, leading to a higher risk for 
intraoperative fissures and postoperative femoral fracture29. 

The novel stem has a slightly conical shape, thus 
differing from the straight conventional stems30. Conical-
shaped stems have been widely used in human patients, 
particularly for surgical revisions in which bone loss has 
occurred in the proximal femur31. These provide greater 
primary rotational stability through continuous pressure in 
the diaphyseal portion of the bone and better distribution 
of axial loads and accommodation of the implants in the 
femoral bone bed, thus reducing complications30,32,33. 
Additional advantages such as simpler surgical technique, 
easier intramedullary positioning, better adjustment to 
different femoral anatomies and simpler correction of 
retroversion have also been reported31,32,34,35. As previously 
reported, during the implantation of the new stem model 
(Stem B), and in results of the mechanical tests, there was 
good coaptation of the implant to the femur. It is possible 
that this was one of the factors that resulted in the good 
biomechanical properties. 

The coating of implants with materials such as titanium 
spray plasma assists in the resistance to axial displacement of 
the stem, allowing a low index of distal micromovement36-38. 
Both implants had surface treatment with blasting of glass 
microspheres and a titanium plasma coating. This coating is 
thought to provide greater rigidity to the stems (A and B), 
promoting greater surface contact between the implant 
and the endosteum. Although the coatings were similar, 
a higher MS, D and En were observed for construct B. 
One potential explanation for this is that the differences 
between groups was due to the extent of the covered 
area, since Stem B had the coating along its entire length, 
while the coating of Stem A was restricted to the proximal 
portion. However, the differences between the proximal 
regions of each stem, represented by the presence of the 
collar in Group A, and by the bulging in Group B, might 
also have resulted in the statistical differences observed.

This research has a number of limitations. More targeted 
studies are needed to determine whether blasting of 
glass and titanium plasma microspheres are important 
for the rigidity and strength of the systems, and whether 
the extent of the coating is also relevant. Stems A and B 
in this study were slightly different in size, and it would 
be interesting to compare the results with a further study 
using identically sized stems. Additionally, this study was 
conducted in canine cadaveric models. Therefore, it was 
not possible to evaluate and compare the effect of the 
biological fixation obtained by bone growth after the 
insertion of the stems; further studies in living patients 
are necessary.

The number of different femoral stem models and 
designs has been gradually increasing as veterinary medicine 
advances. However, so far there is no reliable information 
on the effect of stem design on resistance to subsidence 
or other complications of total hip prosthesis surgery.

Since the collared femoral stem improves stability and 
promotes better transfer of stress to the calcar bone39, we 
believe that Stem B can, potentially, behave in the same 
manner as the collared stem. It is possible that femoral 
Stem B, due to its larger proximal portion (bulging), 
would adapt better to the anatomy of the proximal femur, 
preventing femoral displacement and contributing to 
adequate filling and osteointegration after implantation1,40,41.

Conclusions

The new stem model had some results similar to the 
collar model, mainly by effectively neutralizing the impact 
of axial flexion-compression stresses on dog femurs. 
Although the new stem model has achieved superior 
results to the collar model, and this hypothetically 



Biomechanical evaluation of a new femoral stem design for total hip replacement in a canine model

6  Acta Cir Bras. 2021;36(5):e360506

suggests greater mechanical strength, further studies 
are needed to determine whether the new model is 
superior mechanically or at least as effective as the 
model already known.
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