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We report anomalous heating in a colloidal system, an experi-
mental observation of the inverse Mpemba effect, where for two
initial temperatures lower than the temperature of the thermal
bath, the colder of the two systems heats up faster when cou-
pled to the same thermal bath. For an overdamped, Brownian
colloidal particle moving in a tilted double-well potential, we find
a nonmonotonic dependence of the heating times on the initial
temperature of the system. Entropic effects make the inverse
Mpemba effect generically weaker—harder to observe—than the
usual Mpemba effect (anomalous cooling). We also observe a
strong version of anomalous heating, where a cold system heats
up exponentially faster than systems prepared under slightly
different conditions.

inverse Mpemba effect | forward Mpemba effect | thermal relaxation |
Fokker–Planck equation | feedback traps

Can an initially cold system heat up faster than an initially
cool system that is otherwise nominally identical? Naively,

one would assume that a slowly heating object relaxes to the
temperature of its surroundings exponentially, passing through
all the intermediate temperatures. A system that is initially at a
cold temperature should then take longer to heat than a system
initially at a cool temperature. However, for rapid heating, a
system may evolve toward equilibrium so that its intermediate
states are not in thermal equilibrium and are not characterized
by a unique temperature. In such cases, the possibility of anoma-
lously fast heating has recently been predicted and confirmed
in numerical studies of an Ising antiferromagnet (1). Further
numerical studies suggest that these effects may be seen in a wide
variety of systems, including fluids with inelastic (2–4) and elastic
(5, 6) collisions and spin glasses (7).

Although anomalous heating is a recent prediction, an anal-
ogous anomaly for cooling and freezing has been noted in ob-
servations of water dating back to 350 BC (8). Its first systematic
study was done in 1969 by Mpemba and Osborne, who concluded
that hot water could begin to freeze in a time shorter than that
required for cold water (9). This phenomenon has since been
dubbed the Mpemba effect and was followed up with further ex-
periments on water (10–16), accompanied by some controversy,
tracing back to the difficulty of obtaining reproducible results (17,
18). Proposed mechanisms for the effect include evaporation (10,
19, 20), convection currents (21–23), dissolved gases and solutes
(11, 14, 21), supercooling (12, 13), and hydrogen bonds (24, 25).

In an effort to understand the Mpemba effect in more generic
terms, Lu and Raz introduced a theoretical picture that related
the effect to the geometry of system dynamics in a state space
whose elements are defined by the amplitudes of eigenmodes
of linear dynamical systems (1). A fast quench can then lead a
system to follow a nonequilibrium path through state space to
equilibrium that is shorter than the path traced out by a slowly
cooling system. In recent work, we showed that this kind of
Mpemba effect is present in a system consisting of a colloidal
particle immersed in water and subject to a carefully designed
potential (26). From this point of view, the dynamics of cooling
and heating obey similar principles, and anomalous heating rep-
resents an inverse Mpemba effect. Yet, despite a formal similarity
between the cases of heating and cooling (1, 27), anomalous

heating has not previously been seen experimentally, neither in
systems that exhibited the anomalous cooling effect (10–16, 26,
28–30) nor in any other system.

Here we present experimental evidence for the inverse
Mpemba effect. We also observe a strong version (31) of the
effect, where, for a carefully chosen initial temperature, a system
heats up exponentially faster than systems that were initially
at different temperatures. Surprisingly, as we shall see, subtle
differences between high- and low-temperature limits generically
make the inverse effect more difficult to observe experimentally.
Moreover, the mechanism for the inverse effect that we find to
be relevant in our experiments does not depend on the presence
of metastability (32), which played a crucial role in the forward
cases explored in previous experiments.

Experimental Setup
In our experiment, a Brownian particle (silica bead, Ø1.5 μm)
is subjected to forces exerted by an external potential. These
forces are generated by rapidly shifting the focus of an optical
tweezer according to a feedback rule (Fig. 1). Such feedback traps
based on optical tweezers have been used to create arbitrary,
complex energy landscapes having high spatial and temporal res-
olution (33, 34). Here we create a one-dimensional tilted double-
well potential U (x ) in a finite domain, with a very low barrier
(Fig. 2) (Materials and Methods). The geometric asymmetry in
the potential is defined by the parameter α= |xmax/xmin|. Our
setup has steep walls at the domain boundaries corresponding
to the maximum force Fmax ≈ 20 pN ≈ 5 kBTb /nm applied by
the optical tweezers (Materials and Methods). The nearly vertical
walls confine particle motion to a box with size L≡ xmax − xmin =
240 nm and asymmetry α≈ 2.
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Fig. 1. Feedback trap based on optical tweezers. (A) Schematic of the feedback trap setup. FI, Faraday isolator; M, mirror; SF, spatial filter; BS, beam splitter
(nonpolarizing); L, lens; MO, microscope objective; SC, sample chamber; PBS, polarizing beam splitter; HW, half-wave plate; F, short-pass filter; QPD, quadrant
photodiode; DM, dichroic mirror; CS, cover slip; Cam, camera; FPGA, field-programmable gate array. Planes conjugate to the back focal plane of the trapping
objective are shown in red dashed lines. (Inset) An image of the cage system consisting of the trapping and detection objectives. (B) One cycle of a feedback
trap consists of three stages: (i) measurement of the current position of the particle, (ii) calculation of the force based on the potential (black) to be imposed,
and (iii) application of the force by shifting the trapping laser (green). Optical tweezers apply a linear restoring force, where k is the stiffness of the harmonic
trap and Δx is the expected trap displacement.

Experimental Protocol
The inverse Mpemba effect occurs if, for three different tempera-
tures Tcold < Tcool < Tb, the equilibration time tcold of an initially
cold system at temperature Tcold is smaller than the equilibra-
tion time tcool of the initially cool system at temperature Tcool,
when coupled to a common thermal bath at temperature Tb. To
study the effect, we impose an instantaneous heating quench in
our experiments via a three-step process: 1) prepare the initial
state of the system corresponding to the Boltzmann distribu-
tion π(x ;T0)∝ exp[−U (x )/kBT0] at an initial temperature T0,
2) release a particle at a position sampled from the initial distri-
bution π(x ;T0), and 3) record the trajectories of the particle as it
relaxes in a bath at temperature Tb. The initial positions are sam-
pled assuming U (x ) to have infinite potential walls at the domain
boundaries. Once the particle is released into the bath, it is always
at the bath temperature. We repeat the quenching protocol N =
5,000 times, with each cycle 60 ms long, to create a statistical
ensemble of the state of the system at each time step Δt = 10
μs. The dynamics of the particle after the quench in the potential
U (x ) can be described by the overdamped Langevin equation

ẋ =− 1

γ
U ′(x ) +

√
2kBTb

γ
η(t), [1]

where γ is the Stokes friction coefficient and η is Gaussian white
noise, with 〈η(t)〉= 0 and 〈η(t) η(t ′)〉= δ(t − t ′).

Although the initial and final states in our experiment obey
Boltzmann distributions at temperaturesT0 and Tb, the interme-
diate states p(x , t) are not in equilibrium: they are not a Boltz-
mann distribution for any temperature T. For this reason, instead
of trying to define an intermediate effective temperature, we
measure the distance D between the intermediate state p(x , t)
and the equilibrium state π(x ;Tb) (1, 26). From equivalent al-
ternatives (1), we choose the L1 distance (35) for the analysis of
particle trajectories in our experiments. This distance is defined
as the integrated absolute value of the difference between the
densities p and π,

D[p(x , t);π(x ;Tb)]≡
∫

dx |p(x , t)− π(x ;Tb)| ≡ D(t)

≈
Nb∑
i=1

|pi − πi | . [2]

Here pi ≡ p(xi , t) is the frequency estimate of the probability
for a measured position x at a time t in the interval [xi , xi+1),
where xi ≡ xmin + (i − 1)Δx , with Δx = (xmax − xmin)/Nb and
Nb the number of bins. Similarly, πi is the frequency estimate
of the Boltzmann distribution at Tb.

We note that other choices of distance functions may have a
more physical interpretation. For example, the Kullback–Leibler
(KL) divergence connects the nonequilibrium free energy of a
system to the entropy produced during the relaxation process
(36–41). However, for analyzing our experiments, theL1 distance
is simpler to evaluate and thus more convenient than the KL
divergence. Nevertheless, we confirm, as predicted in earlier
theoretical work (1), that the detection of the inverse Mpemba

Fig. 2. Schematic of the energy landscape U(x) used to explore the inverse
Mpemba effect, set asymmetrically (α = 2) within a box [xmin, xmax] with
potential walls with finite slope at the domain boundaries.
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effect is robust to the choice of distance metrics: whenever we
observe it using the L1 distance, we see it also when using the KL
divergence (SI Appendix).

Inverse Mpemba Effect in an Asymmetric Potential
To determine how the inverse Mpemba effect depends on the
initial temperature of the system, we release the particle in a bath
of fixed temperature (Fig. 2). After a particle is released in the
bath at t = 0 at a low temperature T0, it moves stochastically in
response to thermal fluctuations and potential gradient forces
and finally equilibrates with the bath, which is at temperature
Tb > T0.

Fig. 3 A–C shows example time traces of evolution in the
potentialU (x ). Fig. 4 shows the measured times to reach equilib-
rium for systems that start at different initial temperatures. The
equilibration teq is defined to be the time when the distance curve
D(t) reaches the noise-limited final distance (SI Appendix). As
the initial temperature of the system decreases from T0/Tb = 1
to ≈ 10−3, the equilibration time increases monotonically and
follows normal heating (dteq/dT0 < 0). However, for the lower
initial temperature range 10−3 > T0/Tb > 4× 10−5, the equi-
libration time decreases as the initial state of the system gets
colder. Such a behavior corresponds to anomalous heating where
a cold system takes less time to heat up than a cool system,
i.e., dteq/dT0 > 0. For lower temperatures (T0/Tb < 4× 10−5),
the equilibration time increases again, exhibiting normal heating.
Thus, we observe a sequence of normal, anomalous, and normal
regimes for relaxation to thermal equilibrium (Figs. 4 and 5).

Analysis in the High–Bath Temperature Limit
In Fig. 2, the variations in U0(x ) throughout the domain
[xmin, xmax] are � kBTb, implying that dynamics at the bath
temperature approximate ordinary diffusion, i.e., Brownian
motion or Wiener process. To simplify the analysis of the
relaxation trajectories in U (x ) at a finite temperature Tb, we

Fig. 3. Dynamic trajectories relaxing to equilibrium at a hot temperature.
Ten trajectories of a particle released from the equilibrium distribution at
temperatures T0 = 4 × 10−5Tb (black), 4 × 10−3Tb (blue), and Tb = 1 (red)
into the hot bath, with the evolving probability density p(x, t) shown for
three times (estimated based on 5,000 trajectories) on a logarithmic time
scale. The shaded gray region corresponds to a box size L = 240 nm.

Fig. 4. Equilibration times for systems at different initial temperatures.
Red markers denote initial temperature points whose D(t) dynamics are
displayed in Fig. 5.

model the bath as being at an effectively infinite temperature with
no energy barrier. Further, we approximate the walls ±Fmaxx
as being infinitely steep. The particle then freely diffuses in a
domain with walls at xmin and xmax.

Approximating the bath as being at a very high temperature
and the walls as infinitely steep simplifies the analysis in three
ways: 1) the equilibrium state π(x ;Tb →∞) is a uniform distri-
bution; 2) the Fokker-Planck operator is self-adjoint, so that left
and right eigenfunctions are identical; and 3) the eigenfunctions
have simple analytic expressions.

The free-diffusion picture also allows us to understand more
intuitively why the inverse Mpemba occurs in this system. At
very low initial temperatures, the tilt in the potential leads to
a probability density of initial particle positions that is con-
centrated in the middle of the domain (i.e., within the lower
well depicted in Fig. 2). At the high-temperature equilibrium, it
is approximately uniformly distributed throughout the domain.
Because the dynamics of the system in the bath are dominated
by diffusion, most particles diffuse a distance that is typically ≈
L/4. At intermediate temperatures, the initial probability density
is split between the two well positions. A significant number
of particles in the left well will need to diffuse a distance ≈
L/2, implying an equilibration time ≈ [(L/2)/(L/4)]2 = 4 times
longer. Indeed, Fig. 4 shows that the equilibration time at a
cold temperature can be roughly four times faster than that at
intermediate temperatures (40 ms/10 ms = 4).

In the high-temperature approximation, the Fokker–Planck
equation describing the probability density p(x , t) of particle
positions reduces to the heat equation,

∂p

∂t
=

[
− 1

γ

∂

∂x
U ′(x ) +

kBTb

γ

∂2

∂x2

]
p(x , t)

≈ kBTb

γ

∂2p

∂x2
≡ Lfree p, [3]

subject to no-flux boundary conditions at x = {xmin, xmax}, where
Lfree is the Fokker–Planck operator for a freely diffusing particle
(U (x ) = 0). Note that this high-noise limit is complementary

Fig. 5. L1 distances D(t) for systems that heat up in a bath at temperature
Tb = 1, starting at the temperatures T0 indicated above each graph. The thin
vertical lines indicate the times when systems first reach thermal equilibrium
(within noise levels).
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to but less familiar than the low-noise limit, which leads to
metastability phenomena (42). Indeed, the high-noise limit of
diffusion processes has recently stimulated wide interest because
of its relation to the strong-measurement limit of quantum mea-
surements (43, 44).

In the heat equation limit, the probability density p(x , t) can
be written as an infinite sum of eigenfunctions vk of Lfree with
associated eigenvalues

− λk =
kBTb

γ

π2(k − 1)2

L2
, [4]

ordered so that 0 = λ1 < λ2 < · · · . Since the contribution of the
eigenfunctions vk (x ,Tb) decreases exponentially with k, the term
k = 2 dominates at large but finite times. Thus, in that regime, the
probability density can be approximated by

p(x , t) ≈ π(x ;Tb) + a2(T0)e−λ2t︸ ︷︷ ︸
a2(t)

v2(x ;Tb), [5]

where the coefficient a2 depends on the initial temperature T0,
as well as on the bath temperature Tb, and a2(t) represents the
dynamics of the second mode amplitude during thermalization.
Generally, a2 is a measure of the overlap between the second left
eigenfunction of the operator written within squared-brackets in
Eq. 3 and the initial state of the system (26),

a2(T0) = 〈v2(x ;Tb)|π(x ;T0)〉. [6]

In the high-temperature limit, the spatial eigenfunctions of the
diffusion equation are (45)

vk =
1

Z ′ cos
[
(k − 1)π

(x − xmin

L

)]
, [7]

where Z ′ is the normalization constant, defined such that
〈vk |vk 〉= 1 with k = 1, 2, · · · .

Since anomalous heating (inverse Mpemba) is associated with
a2 coefficients where |a2(Tcool)|> |a2(Tcold)| for cool and cold
temperatures, respectively, a nonmonotonic temperature depen-
dence of the a2 coefficients leads to anomalous heating effects.
However, these coefficients are not directly accessible in exper-
iments. Instead, we extract them from decay curves of the dis-
tance function D(t) defined in Eq. 2. Measuring differences ΔD
between the initial distance and noise-limited final distance gives
a quantity proportional to |a2| (26). We measure this difference
as a function of initial temperature.

Fig. 6 shows the nonmonotonic temperature dependence of
ΔD. The ΔD values correlate with the measured equilibration
times. To see the agreement of the measured values ofΔD for the

Fig. 6. Measurements of decay amplitude ΔD for different initial tempera-
tures T0. Markers denote experimental measurements, and the solid red line
is based on the |ΔD| values calculated from the Fokker-Planck equation in
the high-temperature limit. The arrow indicates the temperature at which
the strong inverse Mpemba effect occurs. Error bars represent 1 SD and are
calculated from the fits.

potential at finite temperature with theoretical predictions based
on the potential at a high temperature, we explicitly calculate a2
coefficients using Eqs. 6 and 7. We fit the data to a single param-
eter, an overall proportionality constant. The fit leads to 1.48±
0.03, which agrees to ≈ 5% with the calculated value, ≈ 1.56.
Thus, we have very good agreement between the experimental
a2 coefficient and its theoretical prediction. Note that although
ΔD is nonmonotonic with the initial temperature of the system,
the L1 distance at t = 0 is a monotonically decreasing function of
T0 (SI Appendix). As a consequence, even if the system is initially
close to thermal equilibrium, it may not heat up more quickly
than a system that starts farther away.

At initial temperature T0 = 4× 10−5, where a2(T0)≈ 0
(Fig. 6, blue arrow), the decay is dominated by λ3 and represents
an exponential speed-up of the heating process compared to
decays at temperatures where a2(T0) 
= 0. Such a situation
corresponds to the strong inverse Mpemba effect (46). The
transient decay at the time scale set by the eigenvalue λ−1

2 ≈
16.66 ms disappears, and the system decays instead at a rate
λ−1
3 ≈ 4.15 ms. In summary, for |a2(Tcool)|> |a2(Tcold)|, the

initially cool system lags the initially cold system, and the
inverse Mpemba effect is observed. For even lower temperatures
T0 < 4× 10−5, the coefficient a2(T0) changes sign, leading to a
low-temperature increase in ΔD.

Discussion
Our results give clear experimental evidence for the inverse
Mpemba effect in a simple setup. The nonmonotonic depen-
dence of the equilibration time on the initial temperature of
the system can be understood through the nonmonotonicity of
a2 coefficients. We observed the inverse Mpemba effect for a
quench for the case of a heat bath whose average energy greatly
exceeded the range of potential variation. We used this feature to
model system dynamics in a high–bath temperature limit where
the relaxation dynamics are governed by a simple heat diffusion
equation. Using numerical integrals of analytic expressions for
the eigenfunctions, we obtained the a2 coefficients as a function
of initial temperature. We found evidence for the strong inverse
Mpemba effect, special temperatures where the systems heat up
exponentially faster than those at other initial temperatures.

One interesting feature of our system is that it shows that
the inverse Mpemba effect can be observed in a system where
metastability does not play an important role. Indeed, although
our potential has two wells, we can accurately model dynamics
in the bath state using an infinite-temperature approximation,
where the potential is flat and the motion is purely diffusive. In
this case, the form of the potential is important only for defining
low-temperature probability densities for the system state. After
the quench, it plays no role. By contrast, most scenarios explored
previously for continuous-state systems for the forward Mpemba
effect depend on the slow time scales corresponding to barrier
hopping at low temperature (32). Note, however, that a recent
study predicts the forward Mpemba effect in potentials with a
single well (47).

Previous experiments on the forward Mpemba effect showed a
clear separation of the time scales determined by the eigenvalues
λ2 and λ3 (26). We can offer some insight as to why it is easier
to observe the forward Mpemba effect than the inverse effect:
when a system relaxes to a bath at temperature Tb, the time scale
separation between the decay curves corresponding to λ3 and
λ2 depends on the ratio Λ = λ3/λ2. In particular, in order to
measure the ΔD values, one fits the part of the decay curve that
corresponds to λ2. Thus, the greater the value Λ, the easier the
accurate measurement of the ΔD values.

For the forward Mpemba effect studied in ref. 26, the sys-
tem cools from a hot temperature to a cold temperature in a
double-well potential, and the ratio Λ of eigenvalues λ3 to λ2

4 of 6 PNAS
https://doi.org/10.1073/pnas.2118484119

Kumar et al.
Anomalous heating in a colloidal system

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118484119/-/DCSupplemental
https://doi.org/10.1073/pnas.2118484119


PH
YS

IC
S

Fig. 7. Ratio Λ of eigenvalues λ3 to λ2 of the Fokker–Planck operator as a
function of barrier height Eb at the bath temperature Tb = 1. The red curve
is for the double-well potential used in ref. 26 for the forward Mpemba
experiments, and the blue curve is for the approximately flat potential used
in the inverse Mpemba experiments. The hollow red marker denotes the
ratio Λ∗

for used in the forward Mpemba experiments, which corresponds to
Eb ≈ 2. The hollow blue marker denotes the ratio Λ∗

inv for the flat potential
(Eb ≈ 0) used in the inverse Mpemba experiments.

(i.e., Λ∗
for ≡ λ3/λ2) is ≈ 16.1. However, for the inverse Mpemba

effect studied here, the ratio of eigenvalues is Λ∗
inv ≈ 4.0. Thus,

Λ∗
inv is about four times smaller than Λ∗

for in the case of heating,
implying that the forward effect will be easier to observe than
the inverse effect. Indeed, our observations of the inverse effect
required an ensemble of 5,000 trajectories to obtain results that
are statistically similar to results for the forward case obtained
with only 1,000 trajectories.

Are these general features of Λfor and Λinv, or are they special
to our potential? Since the dynamics of a2(t) correspond to hops
over the barrier, we expect that the ratio of eigenvalues λ3 to
λ2 depends on the barrier height Eb as Λfor ∼ exp[Eb/kBTb]� 1,
an intuition confirmed by a rigorous analysis in general (48, 49)
and by numerical solution of the Fokker–Planck equation for our
potential in particular (Fig. 7, red curve). However, for the high-
temperature limit, Eq. 4 shows that Λinv = 4 always (Fig. 7, blue
curve). Thus, the ratio of eigenvaluesΛ can be much higher in the
forward case than in the reverse case, and as a result, the forward
effect is generically easier to observe experimentally than the
inverse effect.

In this paper, we offer evidence for anomalous heating in a
colloidal system, complementing the more familiar scenario for
anomalous cooling. Other memory-dependent relaxation phe-
nomena (50) are worth exploring further. For example, Gal and
Raz show that an initial cooling quench followed by a heating
quench can speed up heating times exponentially, even in systems
that would not otherwise exhibit the inverse Mpemba effect
(51). In the Kovacs effect, protocols that drive the system out
of equilibrium can produce nonmonotonic relaxations that show
crossings in a quantity that monitors distance from equilibrium
(7, 52–55). It may also be interesting to apply the feedback trap
techniques used here to test experimentally the recent prediction
that warming can be generically faster than cooling, for equal pos-
itive and negative free-energy deviations from thermodynamic
equilibrium (27, 56, 57). The concepts of anomalous relaxation
that we explore here for the inverse Mpemba effect may lead to

a unified picture where all these effects can be seen as represen-
tatives of a broad class of physical phenomena.

Materials and Methods
Our optical tweezers setup is built on a vibration isolation table supporting
a home-built microscope. We trap a colloidal particle (silica bead, Ø1.5 μm,
Bangs Laboratories). A linearly polarized 532-nm laser (Nd:YAG, Coherent
Genesis MX STM-series, 1 Watt) is used for trapping and detection (Fig. 1A).
A small portion (10%) of the laser is separated from the main laser as the
detection beam before entering the acoustooptic deflectors (AODs). In our
experiment, we use AODs to steer the trap position in the trapping plane,
placed at a plane conjugate to the back focal plane of the trapping objective.
The details of the experimental setup are described in ref. 33. A feedback
scheme is used to create the virtual potentials used in the inverse Mpemba
experiments (Fig. 1B) (26, 33). In a feedback trap, one 1) observes the position
of the particle, 2) calculates the force based on its position in the user-
defined potential, and 3) applies that force in each loop at a deterministic
time step of Δt = 10 μs (58, 59).

In our experiment, the force is applied by moving the trap center relative
to the bead position. The force generated by the displacement of the trap
center is approximated as Fn = −βxn−1, where β = Δt/tr is a proportional
feedback constant where tr is the relaxation time of the underlying physical
potential, and where xn is the particle position at time tn = nΔt.

In our experiment, a freely diffusing bead is subjected to forces exerted by
an external, one-dimensional double-well potential, created by a feedback
trap based on optical tweezers (33). We place the potential asymmetrically
in the domain [xmin, xmax] as

U(x) ≡

⎧⎪⎪⎨
⎪⎪⎩
−Fmaxx x < xmin

U0(x) xmin ≤ x ≤ xmax

Fmaxx x > xmax,

[8]

where U0(x) is given by

U0(x) = Eb

(
(1 − x2

)
2 −

1

2
x
)

, [9]

with a very low barrier Eb = 0.0002 kBTb, with kB the Boltzmann constant
and Tb the bath temperature (Fig. 2). The position x is measured in units
of xm = 40 nm. The geometric asymmetry in the potential is defined by the
parameter α = |xmax/xmin|.

Compared to our previous results based on the newly developed feedback
traps (33, 60), we have improved the mechanical stability of the setup by in-
stalling the trapping and detection objectives within a cage system (Fig. 1A).
Thus, mechanical drifts due to temperature changes of the surroundings
have reduced effects on the particle position. Nonetheless, we observe drifts
in the particle position at rates that are on the order of 1 nm s−1. We thus
limit the heating cycle to 0.1 s and correct for the small drift before the next
cycle.

Data Availability. The datasets used and analyzed in this study have been
deposited in Figshare (https://doi.org/10.6084/m9.figshare.18189716.v1)
(61).
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