

www.surgicalneurologyint.com

Surgical Neurology International

Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook.

SNI: Spine

Nancy E. Epstein, MD

Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook

Case Report

Management of two patients with dropped head syndrome utilizing anterior-posterior cervical surgery

Motohiro Takayama¹, Yoshinori Maki²

Department of Neurosurgery, Otsu City Hospital, Department of Neurosurgery, Biwako Ohashi Hospital, Otsu, Shiga, Japan.

E-mail: *Motohiro Takayama - gara1016@hotmail.com; Yoshinori Maki - passatempo19840816@gmail.com

*Corresponding author: Motohiro Takayama, Department of Neurosurgery, Otsu City Hospital, Otsu, Shiga,

gara1016@hotmail.com

Received: 11 December 2021 Accepted: 25 January 2022 **Published:** 18 February 2022

DOI

10.25259/SNI_1228_2021

Quick Response Code:

ABSTRACT

Background: Two elderly patients with dropped head syndromes (DHS) were successfully treated with circumferential cervical surgery.

Case Description: The two patients, respectively, 72 and 53 years of age, both underwent two-staged surgical procedures. The first surgery included the posterior placement of bilateral pedicle screws with multilevel facetectomies, followed by multilevel anterior cervical discectomy/fusion and posterior rod fixation.

Conclusion: Circumferential decompression/fusion successfully addressed chin on chest deformity in two older

Keywords: Anterior fixation, Dropped head syndrome, Laminoplasty, Posterior fixation, Surgery

INTRODUCTION

Dropped head syndrome (DHS) is a chin-on-chest deformity attributed to a noninflammatory myopathy of the cervical paraspinal muscles resulting in weakness of the cervical extensor musculature.[3,10] Conservative nonsurgical treatment is rarely successful. Rather, most patients warrant surgical correction (i.e., circumferential 360 degree decompression/fusion).^[6,7] Here, we present two older patients with DHS who were successfully treated with circumferential cervical surgery.

CASE PRESENTATION

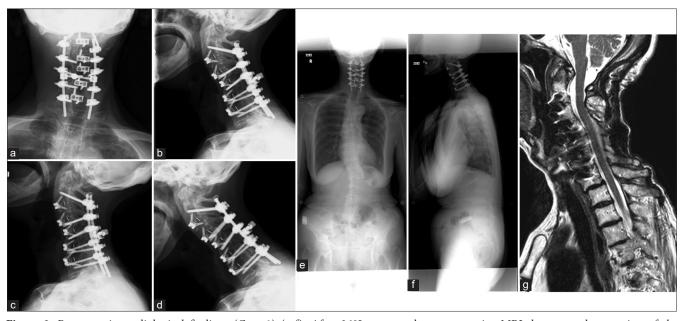
Case 1

A 72-year-old female presented with a progressive DHS syndrome and mild myelopathy (i.e., bilateral C5-C7 hyperreflexia). X-rays showed DHS, while the magnetic resonance images documented posterior compression at C-2 to C-3, and stenosis from C-5 to C-7 [Figure 1]. For progressive DHS, the patient underwent posterior placement of pedicle screws C2-C7 and C4-C5 facetectomy, followed by anterior cervical diskectomy/fusion from C2-C3 to C6-C7 and posterior C2-C7 rod/pedicle screw fusion [Table 1]. The 5-year postoperative X-rays showed resolution of the DHS and the patient remained neurologically intact [Figure 2].

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2022 Published by Scientific Scholar on behalf of Surgical Neurology International

Case 2

A 53-year-old male presented without myelopathy. Preoperative X-rays demonstrated DHS, while the MR showed C-5 to C-6 cord compression [Figure 3]. The patient underwent circumferential surgery for DHS; bilateral facetectomies C3-C7 with posterior pedicle screw placement, followed by C3-C4 to C6-C7 ACDF and posterior rod/screw placement C3-C7 and laminoplasty C3-C6 [Table 1]. Six


years postoperatively, the X-rays showed continued stability, while the patient remained clinically/neurologically intact [Figure 4].

DISCUSSION

DHS can be classified into three groups based on preoperative radiological parameters; Type 1 (SVA ≤0 mm

Figure 1: Preoperative radiological findings (Case 1) (a-f). The midline sagittal preoperative cervical MR documented a tortuous/compressed cord at the C2 to C3 level without myelomalacia and C-5 to C-7 stenosis (g).

Figure 2: Postoperative radiological findings (Case 1) (a-f). After 360° surgery, the postoperative MRI documented correction of the preoperative cervical deformity (g).



Figure 3: Preoperative radiological findings (Case 2) (a-f). The preoperative midline sagittal MR showed both anterior and posterior cord compression at the C5-C6 level (g).

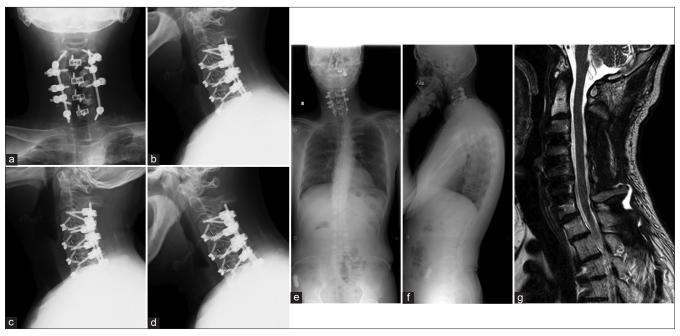


Figure 4: Postoperative radiological findings (Case 2) (a-f). Following 360-degree circumferential decompression/fusion, including a C3-C6 laminectomy, the postoperative sagittal MR documented spinal cord decompression (g).

and PI-LL \leq 10°), Type 2 (SVA > 0 mm and PI-LL \leq 10°), and Type 3 (PI-LL >10°).[5] Several surgical strategies for DHS have been reported including; posterior multiplelevel fixation or combined anterior and posterior cervical fixation [Table 2].[1,2,4,7-9] In our two cases of DHS, we chose

first to perform posterior cervical facetectomies with pedicle screw application, followed by multilevel ACDF with posterior rod/pedicle/screw fusion. The final posterior fixation was accompanied in the second case by an additional laminoplasty.

Table 1: X-ray, clinical, and surgical findings for two patients with DHS.

	Case 1 Preoperative/ Postoperative	Case 2 Preoperative/ Postoperative
C2-C7 lordosis EAM-C7 SVA T1-slope T1-slope - C2-7 lordosis mismatch PI-LL JOA score CMEQ score VAS First Surgery	-31°/7° 64.8 mm/19.8 mm 58.7 mm/51.6 mm 19°/26° 50°/19° 11°/13° 14/14.5 65/35 70/70 Bilateral facetectomy (C-4/C-5) Bilateral pedicle screws (C-2 - C-7 except	-34°/8° 73.2 mm/-42.3 mm 64.5 mm/37.4 mm 23°/20° 57°/12° -19°/-17° 15.5/17 50/100 45/50 Bilateral facetectomy (C-3 to C-7) Bilateral pedicle screws
Second Surgery	C-3) ACDF (C-2/C-3 to C-6/C-7) Anterior correction and posterior fixation with rod placement	(C-3 to C-7) ACDF (C-3/C-4 to C-6/C-7) Anterior correction and posterior fixation with rod placement LAP (C-3 to C-6)

EMA: External acoustic meatus, SVA: Sagittal vertical axis, PI: Pelvic incidence, LL: Lumbar lordosis, JOA: Japan Orthopedic Association, CMEQ: Cervical myelopathy evaluation questionnaire, VAS: Visual analog scale-pain in neck and shoulders, ACDF: Anterior cervical diskectomy/fusion, LAP: Cervical laminoplasty

Table 2: Summary of surgical strategy in the previous cases from the literature.

	Patients (age/sex)	Surgical strategy
Bronson	One	Anterior approach (first
et al. ^[1]	Patient:	operation)
	64 (years),	ACDF
	male	(C-3/C-4, C-4/C-5, C-6/C-7)
		Bilateral partial sternocleidomastoid
		release
		Posterior approach (second
		operation)
		Fixation
		(C-2 to T-10)
		Laminectomy
		(C-4 to C-5)
		Osteotomy
		(C-4 to C-5)

(Contd...)

Table 2: (Continued)			
	Patients (age/sex)	Surgical strategy	
Gerling et al. ^[2]	Eight Patients	Anterior release (C-2 to C-7) Posterior fusion (C-2 to T-3) Anterior release (C-3 to T-2) Posterior fusion (C-2 to T-5) Anterior release (C-5 to C-6) Posterior fixation (C-2 to T-3) Anterior release (C-2 to C-5) Posterior fusion (C-2 to T-3) Posterior fusion (C-2 to T-1) Posterior fusion (C-2 to T-1) Posterior fusion (C-2 to T-1) Posterior fusion (C-2 to T-3) Posterior fusion (C-2 to T-3) Posterior fusion (C-2 to T-4) Posterior fusion	
Koda et al. ^[4] Koda et al. ^[4]	One Patient: 72 (years), female One Patient: 64 (years), female	(C2-T5) Posterior fusion (C-2 to T-4) Laminectomy (C-3 to C-6) Laminectomy (C3-C6) ACDF (C-4/C-5 to C-5/C-6) Posterior fixation	
Petheram et al. ^[7]	One Patient: 79 (years),	(C-2 to T-6) Posterior fusion (C-2 to T-2)	
Rahimizadeh et al. ^[8]	female One Patient: 67 (years), male	First operation ACDF (C-3/C-4 to C-5/C-6) Laminectomy (C-3 to C-6) Posterior fixation	
Sharan et al. ^[9] y: Years, N.A.: N	Two Patients ot available, A0	(C-2 to C-7) Second operation Extended posterior fixation (C-2 to T-4) Posterior fusion (C-2 to T-2) Anterior fixation (C-4 to C-6 and T-1 to T-2) Posterior fusion (C-2 to T-2) CDF: Anterior cervical diskectomy/fusion	

CONCLUSION

Here, we corrected the DHS syndrome in two older patients utilizing a combined circumferential 360 degree decompression/fusion.

Acknowledgements

We would like to thank Dr. Ryota Ishibashi for his support of this study.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Bronson WH, Moses MJ, Protopsaltis TS. Correction of dropped head deformity through combined anterior and posterior osteotomies to restore horizontal gaze and improve sagittal alignment. Eur Spine J 2018;27:1992-9.
- Gerling MC, Bohlman HH. Dropped head deformity due to cervical myopathy: surgical treatment outcomes and

- complications spanning twenty years. Spine 2008;33:E739-45.
- Katz JS, Wolfe GI, Burns DK, Bryan WW, Fleckenstein JL, Barohn RJ. Isolated neck extensor myopathy: A common cause of dropped head syndrome. Neurology 1996;46:917-21.
- Koda M, Furuya T, Inada T, Kamiya K, Ota M, Maki S, et al. Resolution of low back symptoms after corrective surgery for dropped-head syndrome: A report of two cases. BMC Res Notes 2015;8:545.
- Kudo Y, Toyone T, Endo K, Matsuoka Y, Okano I, Ishikawa K, et al. Impact of Spinopelvic sagittal alignment on the surgical outcomes of dropped head syndrome: A multi-center study. BMC Musculoskelet Disord 2020;21:382.
- Kusakabe T, Endo K, Sawaji Y, Suzuki H, Nishimura H, Matsuoka Y, et al. Mode of onset of dropped head syndrome and efficacy of conservative treatment. J Orthop Surg 2020;28:2309499020938882.
- Petheram TG, Hourigan PG, Emran IM, Weatherley CR. Dropped head syndrome: A case series and literature review. Spine 2008;33:47-51.
- Rahimizadeh A, Soufiani HF, Rahimizadeh S. Cervical spondylotic myelopathy secondary to dropped head syndrome: Report of a case and review of the literature. Case Rep Orthop 2016;2016:5247102.
- Sharan AD, Kaye D, Malveaux WM, Riew KD. Dropped head syndrome: Etiology and management. J Am Acad Orthop Surg 2012;20:766-74.
- 10. Suarez GA, Kelly JJ Jr. The dropped head syndrome. Neurology 1992;42:1625-7.

How to cite this article: Takayama M, Maki Y. Management of two patients with dropped head syndrome utilizing anterior-posterior cervical surgery. Surg Neurol Int 2022;13:56.