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Abstract: Deep learning (DL) image quality improvement has been studied for application to 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). It is
unclear, however, whether DL can increase the quality of images obtained with semiconductor-based
PET/CT scanners. This study aimed to compare the quality of semiconductor-based PET/CT scanner
images obtained by DL-based technology and conventional OSEM image with Gaussian postfilter.
For DL-based data processing implementation, we used Advanced Intelligent Clear-IQ Engine (AiCE,
Canon Medical Systems, Tochigi, Japan) and for OSEM images, Gaussian postfilter of 3 mm FWHM
is used. Thirty patients who underwent semiconductor-based PET/CT scanner imaging between
May 6, 2021, and May 19, 2021, were enrolled. We compared AiCE images and OSEM images and
scored them for delineation, image noise, and overall image quality. We also measured standardized
uptake values (SUVs) in tumors and healthy tissues and compared them between AiCE and OSEM.
AiCE images scored significantly higher than OSEM images for delineation, image noise, and overall
image quality. The Fleiss kappa value for the interobserver agreement was 0.57. Among the 21 SUV
measurements in healthy organs, 11 (52.4%) measurements were significantly different between AiCE
and OSEM images. More pathological lesions were detected in AiCE images as compared with OSEM
images, with AiCE images showing higher SUVs for pathological lesions than OSEM images. AiCE
can improve the quality of images acquired with semiconductor-based PET/CT scanners, including
the noise level, contrast, and tumor detection capability.

Keywords: image quality; deep learning reconstruction; semiconductor-based PET/CT; 18F-
fluorodeoxyglucose positron emission tomography

1. Introduction
18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-

FDG PET/CT) is widely used for the diagnosis of neoplastic diseases. It helps differentiate
between benign and malignant lesions, determine the stage of cancers, and plan treat-
ment methods [1–6]. It is used to diagnose ischemic, inflammatory, and degenerative
diseases [7–12]. However, one of the main disadvantages of 18F-FDG PET/CT is its low
resolution. Some methods proposed to obtain high-resolution PET images include increas-
ing the acquisition time, using a time-of-flight technique, new reconstruction methods,
and semiconductor-based PET/CT scanners [13–15]. In addition, silicon photomultiplier
(SiPM)-based detectors (in semiconductor-based PET/CT scanners) have several advan-
tages compared with photomultiplier tubes, such as a smaller size, higher intrinsic time
resolution, and higher photon detection efficiency [15–18]. Van Sluis et al. reported that
on semiconductor PET/CT images, the lesion demarcation was sharper, the overall image
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quality was higher, and the visually assessed signal-to-noise ratio was higher than on
conventional PET/CT images [19].

In recent years, convolutional neural networks have been applied to different medical
imaging technologies, including CT, magnetic resonance imaging, and PET/CT [20–24].
Advanced Intelligent Clear-IQ Engine (AiCE, Canon Medical Systems, Tochigi, Japan) is a
commercialized deep-learning-based reconstruction (DLR) tool for PET/CT imaging. In
our previous study, we found that the DLR method improves image quality compared with
conventional imaging using Gaussian filters, by providing a clearer definition of tumor
lesions, higher overall image quality, and higher visually assessed signal-to-noise ratio.
Regarding semi-quantitative image quality, we found that the standardized uptake value
(SUV) on images using the DLR method was higher in tumors and healthy tissues in small
organs [25].

To the best of our knowledge, no previous study has evaluated differences in image
quality between standard semiconductor PET/CT imaging and the corresponding images
obtained with application of the DLR method. The main purpose of this study was to
compare both visually and semi-quantitatively the clinical images obtained using the DLR
method and the standard semiconductor PET/CT images.

2. Materials and Methods
2.1. Patients

The study population consisted of all patients who underwent 18F-FDG PET/CT
between 6 May 2021 and 19 May 2021 at the Department of Nuclear Medicine and Molecular
Imaging at Tokyo Medical and Dental University. Patients were excluded if they had a
glucose level greater than 200 mg/dL or could not lie still during the scan. The Institutional
Review Board of Tokyo Medical and Dental University approved this study, and written
informed consent was obtained from each patient.

2.2. PET/CT Imaging

All patients fasted for at least 6 h before intravenous administration of 18F-FDG,
and glucose levels were evaluated. The maximum blood glucose level observed was
165 mg/dL. The image acquisition was performed approximately 60 min after the injection
of 3.7 MBq/kg 18F-FDG. A PET/CT scanner (Cartesion Prime, Canon Medical Systems,
Tochigi, Japan) was used to scan the patients from the crown of the head to the mid-thigh.
The CT parameters used for attenuation correction were as follows: tube voltage, 120 kV;
field of view, 700 mm; pitch factor, 0.813; helical pitch, 65; and slice thickness, 2 mm.
Following CT image acquisition, PET images were acquired in 90 s per bed, and the matrix
size was 336 × 336. The DLR images were reconstructed using AiCE (Canon Medical
Systems). AiCE network consists of an 8-layer deep convolutional neural network as
shown in Figure 1, and it is designed to yield a high-quality image such as very long scan
duration images when regular scan duration data are input. To train the network, the
listmode data of long duration were scanned. Then, the images reconstructed full duration
of listmode data are used as training targets and images obtained by reconstructing time-
split listmode are used as training input. The OSEM PET images with 3 mm Gaussian
filters were reconstructed using two iterations and 12 subsets with a point-spread function.
These protocols were the same as those used in clinical practice and were determined based
on a phantom test in accordance with FDG-PET/CT procedure guidelines in Japan [26].

2.3. Qualitative Analysis

The acquired images were independently reviewed and analyzed using Vox-base
SP1000 workstation (J-MAC Systems, Sapporo, Japan). Two experienced nuclear medicine
physicians (with 16 and 9 years of experience interpreting PET scans, respectively) blindly
evaluated all PET images for qualitative analysis.



Diagnostics 2022, 12, 2500 3 of 9Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. The structure of the deep convolutional network. 

2.3. Qualitative Analysis 
The acquired images were independently reviewed and analyzed using Vox-base 

SP1000 workstation (J-MAC Systems, Sapporo, Japan). Two experienced nuclear medicine 
physicians (with 16 and 9 years of experience interpreting PET scans, respectively) blindly 
evaluated all PET images for qualitative analysis. 

The image quality rating was based on 5-point scales using the following quality cri-
teria: tumor delineation, ranging from 1 (pathological lesion cannot be confirmed) to 5 
(excellent lesion margin delineation); overall image quality, ranging from 1 (poor overall 
image quality) to 5 (excellent overall image quality); and image noise, ranging from 1 
(largely interfering noise) to 5 (no relevant noise perceivable). In cases of large rating dif-
ferences between readers, consensus was obtained through meetings. 

2.4. Quantitative Analysis 
For the semi-quantitative analyses, 0.5-mL spherical volumes of interest (VOIs) were 

placed in healthy organs, including the parotid glands, lungs, aortic arch, left ventricle, 
liver, spleen, and quadriceps muscles. Standardized uptake value (SUV) is the ratio of 
radioactivity in a VOI to injected dose per patient’s body weight. It is calculated as: 𝑆𝑈𝑉 ൌ 𝑃𝐸𝑇 𝑐𝑜𝑢𝑛𝑡ሺ𝑐𝑝𝑠ሻ  ൈ  𝐶𝑟𝑜𝑠𝑠 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟ሺ𝐵𝑞/𝑐𝑝𝑠/𝑚𝑙ሻ𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑠𝑒ሺ𝐵𝑞ሻ𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡ሺ𝑔ሻ  

Three SUV parameters (SUVmax, SUVmean, and SUVpeak) were obtained from 
these VOIs. SUVmean is the average SUV and SUVmax is pixel with largest SUV SUVpeak 
is calculated by defining a 1 cm3 spherical volume at every pixel within the selected VOI, 
measuring the average SUV in each sphere and then calculating the maximum of all the 
average SUVs across all these spheres [27]. We also placed VOIs in up to five pathological 
lesions per patient and measured the same three parameters. For calculating the noise 
level, we placed 30 mm diameter VOI at the right liver lobe and determined the liver sig-
nal-to-noise ratio (SNR) as the SUVmean divided by the standard deviation. 

In addition, we counted the number of pathological lesions with increased uptake of 
radiotracers in AiCE and OSEM images to evaluate detection capability. 

2.5. Statistical Analysis 
The scores for qualitative analysis were compared between the two reconstruction 

methods using a two-tailed paired-sample t-test. For the inter-reader agreement, we reas-
signed the original 5-point scores to 3-point scores (1 and 2 reassigned as 1, 3 as 2, and 4 
and 5 as 3). The SUV parameters for healthy organs and pathological lesions were com-
pared between the two reconstruction methods using a two-tailed paired-sample t-test. 
All statistical analyses were performed using SPSS Statistics version 24 (IBM, Armonk, 
NY, USA). Statistical significance was set at p < 0.05. 

  

Figure 1. The structure of the deep convolutional network.

The image quality rating was based on 5-point scales using the following quality
criteria: tumor delineation, ranging from 1 (pathological lesion cannot be confirmed)
to 5 (excellent lesion margin delineation); overall image quality, ranging from 1 (poor
overall image quality) to 5 (excellent overall image quality); and image noise, ranging from
1 (largely interfering noise) to 5 (no relevant noise perceivable). In cases of large rating
differences between readers, consensus was obtained through meetings.

2.4. Quantitative Analysis

For the semi-quantitative analyses, 0.5-mL spherical volumes of interest (VOIs) were
placed in healthy organs, including the parotid glands, lungs, aortic arch, left ventricle,
liver, spleen, and quadriceps muscles. Standardized uptake value (SUV) is the ratio of
radioactivity in a VOI to injected dose per patient’s body weight. It is calculated as:

SUV =
PET count(cps)× Cross calibration f actor(Bq/cps/ml)

Injected dose(Bq)
Body weight(g)

Three SUV parameters (SUVmax, SUVmean, and SUVpeak) were obtained from these
VOIs. SUVmean is the average SUV and SUVmax is pixel with largest SUV SUVpeak is
calculated by defining a 1 cm3 spherical volume at every pixel within the selected VOI,
measuring the average SUV in each sphere and then calculating the maximum of all the
average SUVs across all these spheres [27]. We also placed VOIs in up to five pathological
lesions per patient and measured the same three parameters. For calculating the noise
level, we placed 30 mm diameter VOI at the right liver lobe and determined the liver
signal-to-noise ratio (SNR) as the SUVmean divided by the standard deviation.

In addition, we counted the number of pathological lesions with increased uptake of
radiotracers in AiCE and OSEM images to evaluate detection capability.

2.5. Statistical Analysis

The scores for qualitative analysis were compared between the two reconstruction
methods using a two-tailed paired-sample t-test. For the inter-reader agreement, we
reassigned the original 5-point scores to 3-point scores (1 and 2 reassigned as 1, 3 as 2,
and 4 and 5 as 3). The SUV parameters for healthy organs and pathological lesions were
compared between the two reconstruction methods using a two-tailed paired-sample t-test.
All statistical analyses were performed using SPSS Statistics version 24 (IBM, Armonk, NY,
USA). Statistical significance was set at p < 0.05.

3. Results

The study population included 30 patients with a mean age of 65.3 years (range 25–84).
Table 1 summarizes the patient demographics and clinical data. Three patients had two
pathologies; therefore, the total number of diseases was 33.
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Table 1. Patient demographic and clinical data (n = 30).

Age (years) 65.3 ± 13.8
Sex

Male 13
Female 17

Weight (kg) 63.5 ± 16.1
Disease

Malignancy
Lung cancer 10
Breast cancer 3
Pancreatic cancer 3
Malignant lymphoma 3
Colon cancer 2
Tongue cancer 1
Pharyngeal cancer 1
Thyroid cancer 1
Liver cancer 1
Adrenal cancer 1
Renal cancer 1
Bladder cancer 1
Prostate cancer 1
Ovary cancer 1

Inflammation
Takayasu arteritis 2
Chronic active
Epstein–Barr virus
infection

1

Time delay (min) 62.2 ± 3.3
Blood sugar level (mg/dL) 119.4 ± 16.1

In the qualitative analysis, the images reconstructed using AiCE obtained significantly
higher scores than the OSEM images in terms of tumor delineation, image noise, and
overall image quality (Table 2). The overall inter-reader agreement showed a Fleiss kappa
value of 0.57.

Table 2. Qualitative image analysis.

OSEM AiCE p-Value

Delineation 3.5 ± 0.63 4.00 ± 0.26 <0.0001 *
Noise 2.77 ± 0.68 3.77 ± 0.68 <0.0001 *
Overall image quality 3.07 ± 0.58 3.83 ± 0.53 <0.0001 *

Data are shown as the mean and standard deviation. OSEM, standard semiconductor PET/CT scanner images;
AiCE, semiconductor PET/CT scanner images reconstructed with deep learning. * p < 0.05.

Table 3 shows the SUV parameters of healthy tissues. Among 21 parameters, 11 were
significantly different between AiCE and OSEM images. Of the 11 parameters, 10 were
higher for OSEM images than for AiCE images, and 1 parameter was higher for AICE
images than for OSEM images. We detected pathological lesions in the pituitary gland,
tonsils, parotid glands, lungs, breasts, thyroid gland, liver, gallbladder, pancreas, adrenal
glands, uterus, prostate, lymph nodes (cervical, mediastinal, supraclavicular, para-aortic,
mesentery, and pelvic), aorta, bones (humerus, vertebrae, ribs, ilium, sacrum), anterior
mediastinum, frontal sinuses, cervical spinal cord, dural canal, abdominal cavity, and
subcutaneous areas. All SUV parameters were higher when measured for pathological
lesions on AiCE images than when measured for them on OSEM images, and the difference
was statistically significant for SUVmax and SUVpeak (Table 4). The liver SNRs in AICE
images were significantly higher than that of OSEM images (OSEM: 10.82 ± 2.12 vs. AiCE:
15.98 ± 3.15; p < 0.05).



Diagnostics 2022, 12, 2500 5 of 9

Table 3. SUVs in healthy organ tissues.

Organs OSEM Mean ± SD AiCE Mean ± SD p-Value

Parotid gland SUVmax 1.87 ± 0.58 1.88 ± 0.62 0.281
SUVpeak 1.62 ± 0.53 1.63 ± 0.53 0.355
SUVmean 1.33 ± 0.49 1.32 ± 0.50 0.153

Lung SUVmax 0.57 ± 0.21 0.55 ± 0.21 0.001 *
SUVpeak 0.49 ± 0.20 0.48 ± 0.20 0.048 *
SUVmean 0.386 ± 0.152 0.390 ± 0.154 0.009 *

Aortic arch SUVmax 2.51 ± 0.52 2.50 ± 0.55 0.805
SUVpeak 2.22 ± 0.54 2.25 ± 0.75 0.555
SUVmean 1.89 ± 0.43 1.89 ± 0.43 0.807

Left ventricle SUVmax 3.01 ± 1.08 3.13 ± 1.33 0.159
SUVpeak 2.95 ± 1.03 3.02 ± 1.21 0.278
SUVmean 1.94 ± 0.48 1.93 ± 0.49 0.173

Liver SUVmax 3.61 ± 0.99 3.27 ± 1.03 <0.0001 *
SUVpeak 3.04 ± 0.86 2.91 ± 0.85 <0.0001 *
SUVmean 2.56 ± 0.69 2.54 ± 0.68 <0.0001 *

Spleen SUVmax 2.73 ± 0.61 2.59 ± 0.57 <0.0001 *
SUVpeak 2.36 ± 0.50 2.31 ± 0.50 <0.0001 *
SUVmean 2.14 ± 0.47 2.12 ± 0.48 0.001 *

Quadriceps muscle SUVmax 1.28 ± 0.41 1.04 ± 0.25 <0.0001 *
SUVpeak 0.93 ± 0.20 0.87 ± 0.19 <0.0001 *
SUVmean 0.72 ± 0.17 0.72 ± 0.16 0.621

Data are shown as the mean and standard deviation. Note: The current deep convolutional neural network is
trained for general whole-body studies but not for the brain. OSEM, standard semiconductor PET/CT scanner
images; AiCE, semiconductor PET/CT scanner images reconstructed with deep learning; SD, standard deviation;
SUV, standardized uptake value. * p < 0.05. SUVmax is the highest SUV, while SUVpeak is the maximum average
SUV within a 1-cm3 sphere.

Table 4. SUVs in pathological lesions (n = 80).

OSEM Mean ± SD AiCE Mean ± SD p-Value

Lesions SUV max 7.56 ± 5.45 8.99 ± 6.43 <0.0001 *
SUV peak 4.85 ± 3.04 5.05 ± 3.16 <0.0001 *
SUV mean 2.17 ± 0.86 2.20 ± 0.91 0.0514

Data are shown as the mean and standard deviation. OSEM, standard semiconductor PET/CT scanner images;
AiCE, semiconductor PET/CT scanner images reconstructed with deep learning; SD, standard deviation; SUV,
standardized uptake value. * p < 0.05. SUVmax is the highest SUV, while SUVpeak is the maximum average SUV
within a 1-cm3 sphere.

Table 5 shows the results of the comparison of detection capability. All 30 patients had
pathological lesions which were detected using AiCE images. One patient had no lesions
detected in conventional images. Among the 29 patients with lesions detected on OSEM
images, 6 had more lesions detected on AiCE images. Thus, in seven patients (23.3%), more
lesions were identified using AiCE images, with a significant difference in the number of
lesions detected by each reconstruction method (OSEM: 4.27 ± 6.42 vs. AiCE: 4.60 ± 6.68;
p = 0.03). Among these seven patients, two had bone lesions, two lymph node lesions, one
had a skin nodule, one had an adrenal nodule, and one had a lung lesion. Representative
cases are shown in Figures 2 and 3. Figure 3 shows the lesions detected on the AiCE images
and missed on the OSEM images.

Table 5. Comparison of lesion detection capability.

OSEM
No Lesion With Lesions With More Lesions than AiCE (DLR) Total

AiCE (DLR) No lesion 0 0 0 0
With lesions 1 23 0 24
With more lesions than OSEM 0 6 0 6
Total 1 29 0 30

DLR, deep learning reconstruction.
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Figure 3. Representative cases. Axial positron emission tomography images with conventional
Gaussian filtering (a,c,e,g,i,k) and those obtained with deep learning reconstruction (b,d,f,h,j,l).
These pathological lesions were missed or were considered physiological uptake by OSEM imaging
alone, but were detected on AiCE (DLR) imaging. (a,b) Forehead cutaneous nodule (arrows) in a
64-year-old woman; (c,d) Right superior pulmonary lobe (arrowheads) and superior mediastinal
lymph node (arrows) in a 58-year-old man after surgery for thyroid cancer; (e,f) Anterior mediastinal
(arrows) and right hilar (arrowheads) lymph node metastases in a 73-year-old woman with right
inferior lung cancer; (g,h) Left adrenal adenoma in an 80-year-old man; (i,j) Enlarged para-aortic
lymph node in a 41-year-old woman; k, l) Sacral metastasis (arrows) in the same patient.

4. Discussion

In this study, we investigated improvements in image quality using AiCE (DLR
method) for semiconductor FDG-PET/CT imaging.

In the qualitative assessment, the images obtained using the AiCE had a significantly
higher quality than the OSEM images. Van Sluis et al. found that semiconductor PET
images were superior to conventional PET images in terms of lesion demarcation, visually
assessed signal-to-noise ratio, and overall image quality [19]. Here, we demonstrate that
AiCE can further improve the quality of semiconductor PET images.

In healthy organs, 11 of 21 SUV parameters (52.4%) showed significant differences
between AiCE and OSEM images. These differences were mainly due to the higher SUVmax
and SUVpeak of OSEM images in larger organs, such as the liver, spleen, and quadriceps
muscles. This result is probably due to edges being denoised, as observed in our previous
study [25]. In large organs, both AiCE and OSEM methods remove the noise without
smoothing out the structure. Since AiCE can denoise slightly more than OSEM, SUVmax
and SUVpeak are smaller for AiCE while having the same SUVmean. However, in smaller
organs, the OSEM method smears out the structure of the organs. This results in a smaller
SUVmean, SUVmax, and SUVpeak for OSEM.

In pathological lesions, AiCE images showed higher SUVmax and SUVpeak values.
This result is consistent with the findings of our previous study. Some other studies
suggest that semiconductor PET reduces the partial volume effect and increases SUVmax,
especially in small lesions [28,29]. Economou et al. speculate that the higher SUVmax noted
in small lesions on SiPM-based PET/CT images is most likely due to a new reconstruction
algorithm [30]. In contrast, our semiconductor-based PET/CT scanner, Cartesion Prime,
uses a Gaussian filter rather than the new reconstruction algorithm. This method may have
blurred the distinction between two closely adjacent objects on the OSEM images. We also
demonstrated that AiCE images were denoised better than OSEM images based on their
higher liver SNR.

Among the 30 patients considered, AiCE images detected more pathological lesions
in 7 patients. These lesions were in various organs, including the liver and lungs. In one
of the seven patients, we found bone metastasis (on the sacrum) that was not detected on
OSEM images. This result may be due to the increase in the SUVmax and SUVpeak values
of the lesions on AiCE images without a significant increase in the SUV parameters of most
healthy organs.
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5. Conclusions

Our qualitative analysis showed that AiCE (DLR method) is superior to the OSEM
method in terms of lesion delineation, overall image quality, and image noise. In terms of
semiquantitative image quality, several SUV parameters in healthy organs were reduced
on AiCE images because of denoising. In contrast, the AiCE method increased the SUV
parameters in pathological lesions, whereas Gaussian filtering decreases the SUV by blur-
ring. As for lesion detection capabilities, AiCE detected more pathological lesions, and
none were detected only on OSEM images. Our results demonstrate that the AiCE (DLR
method) significantly reduces noise compared with Gaussian filtering, without losing the
quantitative information of PET images, such as SUVmax and SUVmean. Future studies
that include a more homogeneous group of patients are needed to evaluate the clinical
utility of AiCE on PET images.
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