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ABSTRACT
Biomedical knowledge is represented in structured databases and published in biomed-
ical literature, and different computational approaches have been developed to exploit
each type of information in predictive models. However, the information in structured
databases and literature is often complementary. We developed a machine learning
method that combines information from literature and databases to predict drug targets
and indications. To effectively utilize information in published literature, we integrate
knowledge graphs and published literature using named entity recognition and
normalization before applying a machine learning model that utilizes the combination
of graph and literature. We then use supervised machine learning to show the effects
of combining features from biomedical knowledge and published literature on the
prediction of drug targets and drug indications. We demonstrate that our approach
using datasets for drug-target interactions and drug indications is scalable to large
graphs and can be used to improve the ranking of targets and indications by exploiting
features from either structure or unstructured information alone.

Subjects Computational Biology, Computational Science, Data Mining and Machine Learning,
Data Science
Keywords Biomedical literature , Biomedical knowledge graphs, Drug-target interactions,
Drug-indications, Multi-modal learning, Bio-ontologies, Linked Data

INTRODUCTION
Over the recent years, knowledge graphs have become an effective data model to store,
retrieve, share and link domain-specific knowledge in healthcare and biomedicine (Bizer,
Heath & Berners-Lee, 2011; Berners-Lee, Hendler & Lassila, 2001). Knowledge graphs refer
to a form of knowledge representation that describes entities and the binary relations
in which they stand (Paulheim, 2017; Ehrlinger & Wöß, 2016). Biomedical data from
structured databases is often represented in the form of knowledge graphs, for example
using the Resource Description Framework (RDF) (Brickley & Guha, 2004) as a way to
link and cross-reference different databases (Jupp et al., 2014b; The UniProt Consortium,
2016). However, voluminous biological and biomedical scientific findings are recorded in
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the form of disparate unstructured knowledge available as free text in journals, papers,
book chapters, etc., with only a limited amount of curated information available in public
databases. PubMed database alone stores more than 32 million research abstracts from
biomedical and life sciences, while PubMed Central (PMC) provides free full-text access for
about 7.3 million articles. Knowledge graphs embedding methods have emerged as a novel
paradigm for analyzing and learning from knowledge graphs within and across different
subject domains (Nelson et al., 2019; Ali et al., 2018; Alshahrani, Thafar & Essack, 2021).
Several methods have been developed for information represented as graphs (Perozzi,
Al-Rfou & Skiena, 2014), knowledge graphs (Ristoski & Paulheim, 2016;Nickel et al., 2016),
or formal knowledge bases (Gutiérrez-Basulto & Schockaert, 2018). The key idea is to map
knowledge graph entities and their relations into a vector representation which preserves
some local structure of individual nodes, and possibly some global structure of the graph,
and use the resulting representations in machine learning tasks such as link prediction,
entity classification, relation extraction, and entity resolution (Nickel et al., 2016). Machine
learning models developed using these methods can perform comparatively to traditional
predictive methods that rely on manual feature engineering (Alshahrani et al., 2017).

Learning representations of entities is not restricted to entities retrieved from structured
databases; representation learning has been applied to many other types of data such
as text, images, or videos (LeCun, Bengio & Hinton, 2015). Word2Vec (Mikolov et al.,
2013) or GLOVE (Pennington, Socher & Manning, 2014) can learn representations of
words that preserve some word semantics under certain vector operations and can,
therefore, be utilized for downstream analysis. Knowledge graphs are also used in
the development of many natural language processing (NLP) systems (Xie et al., 2016;
Hoffmann et al., 2011), where they provide background knowledge for purposes such as
disambiguating word mentions (Dietz, Kotov & Meij, 2018). Computationally predicting
new drug-target interactions (DTI) and drug indications is a challenge in drug repurposing
that relies on information in several knowledge bases, such as Bio2RDF (Belleau et al.,
2008), UniProt (Jupp et al., 2014a), and others (Williams et al., 2012). It has become more
common to predict newuses for knowndrugs (i.e.,drug repurposing) using the information
in such databases combined with information derived from in silico cheminformatics and
structural bioinformatics methods (Chen et al., 2015; Pryor & Cabreiro, 2015). A recent
example of computational drug repurposing for COVID-19 used graph techniques to
identify six drugs (Gysi et al., 2021). All six drugs exhibit the ability to reduce viral infections
experimentally. Moreover, four of the drugs show very strong anti–SARS-CoV-2 response,
which suggests they can be repurposed to treat COVID-19 (Gysi et al., 2021). Overall,
the computational approaches developed to predict DTI and drug indications (Ezzat et
al., 2018; Thafar et al., 2019; Muñoz, Nováček & Vandenbussche, 2017; Mohamed, Nováček
& Nounu, 2019) differ in the algorithms they employed and the data sources utilized.
That is, the network-based approaches (i.e., graph-based methods) developed for drug
repurposing utilize different data sources, including genomic and chemical similarities and
various other drugs and target interactions profiles or descriptors (Yamanishi et al., 2008;
Wang et al., 2014a), integrate information related to drug mechanisms, and use machine
learning techniques or graph inference methods to predict novel DTIs (Seal, Ahn &Wild,
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2015; Thafar et al., 2020b; Fu et al., 2016; Chen et al., 2012; Thafar et al., 2020a; Thafar et
al., 2021).

Graph embeddings applied on the knowledge graphs improves the DTI prediction
performance through the learning of low-dimensional feature representation of drugs
or targets, used with the machine learning models. For example, the recently developed
DTINet (Luo et al., 2017) used graph embedding approaches and matrix factorization,
to predict novel DTIs from a heterogeneous graph. DTINet combines different types
of drug and target (i.e., protein) information such as drug–disease associations, drug–
side effect associations, drug–drug similarity, drug–drug interactions, protein–protein
interaction, protein–disease associations, and protein–protein similarities to construct a
full heterogeneous graph. Another recent example of a knowledge graph-based method,
TriModel (Mohamed, Nováček & Nounu, 2019), formulates DTI prediction as a link
prediction problem associated within a knowledge graph. It learns feature representations
(i.e., knowledge graph embeddings) for entities and relations from a knowledge graph
that integrated information from multiple structured databases similar to DTINet, and
then predicts novel DTIs based on their interaction scores calculated using trained tensor
factorization applied on the knowledge graph embeddings.

Some other approaches to drug repurposing rely on integrating entities text-mined
from the biomedical literature (unstructured text) into knowledge graphs to predict
novel associations between drugs and targets or drugs and diseases (Swanson, 1990;
Andronis et al., 2011; Frijters et al., 2010; Agarwal & Searls, 2008). One such example is the
biomedical knowledge graph-based method, SemaTyP (Semantic Type Path) (Sang et al.,
2018). SemaTyP predicts candidate drugs for diseases by text-mining entities in published
biomedical literature. This method first constructed a semantic biomedical knowledge
graph, SemKG, with extracted relations from PubMed abstracts, then a logistic regression
model is trained by learning the semantic types of paths of known drug therapies existing in
the biomedical knowledge graph. Finally, the learned model, SemaTyP, is applied to exploit
the semantic types of paths to discover drug therapies for new diseases. SemaTyP is the
first method focused on drug repurposing that uses entities text-mined from biomedical
literature and knowledge graph to predict candidate drugs. Another such recent method
focused on drug repurposing, GNBR (GlobalNetwork of Biomedical Relationships) (Percha
& Altman, 2018), also uses a large, heterogeneous knowledge graph to leverage integrated
biomedical information across the literature of pharmacology, genetics, and pathology. The
GNBR knowledge graph is generated based on three types of entities (drugs, diseases, and
target proteins) that are connected by semantic relationship derived from the biomedical
literature abstracts. The embedding method applied to this knowledge graph explicitly
models the uncertainty associated with literature-derived relationships. Thus, GNBR is
the first method that incorporates uncertainty (i.e., noise) into a literature-based graph
embeddingmethod, allowing for amore precise and nuanced drug repurposingmodel. The
GNBR method for drug repurposing produced treatment hypotheses with strong evidence
from published literature, evaluated using gold-standard drug indications. Furthermore,
they applied their model to generate novel drug repurposing hypotheses and assess their
scientific validity using a variety of sources.
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Despite several methods extracting biological relations from text, data integration issues
remain between knowledge graphs and biomedical literature. First, biological entities are
mentioned in knowledge graphs and biomedical literature using different vocabularies and
thesaurus, which leads to low coverage when integrating structured knowledge graphs and
unstructured biomedical literature. We address this issue by utilizing bio-ontologies for
normalizing andunifyingmentions of biological entities at the token level. Another problem
is that knowledge graph learning or text-based methods, when used alone, fail in the ‘‘zero-
shot scenario’’ when an entity is absent from either the knowledge graph or the text corpus
and therefore can not be seen during training. Also, both modes of representation lack
automatic feature generation. This work presents a method that combines knowledge
graphs with rich textual content in the scientific literature in a unified representation
learning framework. Additionally, our approach addresses the issues mentioned above of
low coverage and different mentions of biological entities by utilizing bio-ontologies for
normalization at the token level. We also tackle the ’’zero-shot scenario’’ through joint
representation learning between knowledge graphs and literature. The primary goal is to
complement the knowledge graph representation model presented previously with the
model that utilizes background knowledge of biological entities available in the biomedical
literature. We demonstrate that this multimodal view of feature representation enhances
the prediction results of biological relations such as drugs targets and indications.

MATERIALS AND METHOD
Data sources and benchmark datasets
To construct the knowledge graph we used three ontologies, Gene Ontology(GO) (Ash-
burner et al., 2000), Disease Ontology (DO) (Schriml et al., 2011), and the Human
Phenotype Ontology (HPO) (Köhler et al., 2014) (see Fig. 1). It also includes several
biological entities such as diseases, genes (we do not distinguish between genes and
proteins in the graph), and chemicals/drugs. The graph further includes relations between
entities such as the protein-protein interactions obtained from STRING (Szklarczyk et al.,
2010) (file: protein.actions.v10.txt.gz), chemical–protein interactions from STITCH
(Kuhn et al., 2012) (file: 9606.actions.v4.0.tsv), and drugs and their side-effects and
indications from SIDER (Kuhn et al., 2015) (file: meddra_all_indications.tsv). We
downloaded all the above-mentioned data on 11 March 2018 and used it to build the
knowledge graph using RDF.

For the text-derived corpus 2, we used the pre-annotated Medline corpus provided by
the PubTator project (Wei, Kao & Lu, 2013), downloaded on 18 December 2017. PubTator
is a web-based tool designed to assist manual biocuration (e.g., annotating biological
entities and their relationships) through the use of advanced text-mining techniques.
This corpus contains 27,599,238 abstracts together with annotations for chemicals,
genes/proteins, and diseases. PubTator has annotations for 17,505,118 chemicals that
represent 129,085 distinct drugs using either CHEBI or MESH identifiers. PubTator also
contains 17,260,141 gene mentions covering 137,353 distinct genes in different species, of
which 35,466 refers to human genes. We used 9,545 of the STITCH identifier (using the
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Figure 1 An illustration of the knowledge graph used to repurpose the drugs. To predict drug targets,
we removed all the has-target links in the graph before applying our random walk algorithm. Similarly, for
predicting drug indications, we removed all the has-indication links in the graph before applying our ran-
dom walk algorithm.

Full-size DOI: 10.7717/peerj.13061/fig-1

file 9606.protein.aliases.v10.txt provided by STITCH). PubTator further contains
81,655,248 diseases that represent 8,143 distinct diseases in MESH. We used DO to map
diseases to 2,581 distinct DO classes. Table 1 provides the statistics for the DTI and drug
indication data used to evaluate the models.

Additionally, we added gold standard datasets Table 2 commonly used in the literature
to evaluate DTI prediction methods, i.e., the Yamanishi (Yamanishi et al., 2008) and
DrugBank datasets (Wishart et al., 2008). The Yamanishi dataset consists of interactions
of drugs with four types of proteins, namely: Enzyme (E), Ion Channel (IC), G-protein-
coupled receptor (GPCR), and Nuclear receptor (NR). We utilized the Enzyme and Ion
Channel groups as they contain the largest number of interactions and can be found in our
graphs after mapping of drugs ID (KEGG IDs) to our graph IDs (PubChem IDs).

Knowledge graph construction
We build the RDF graph by linking biological entities with relations from each database.
For example, we link drug and protein targets from STITCH by the has target relations. The
relations between the different biological entities are shown in Fig. 1. We also added classes
from GO, HPO and DO onologies. For example, we link the disease primary pulmonary
hypertension (DOID:14557) to the phenotype arrhythmia (HP:0011675) (using a has

phenotype relation), we link the gene CAV1 to disease primary pulmonary hypertension
(DOID:14557) (using a has disease association relation), and we link the drug
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Table 1 Statistics of the datasets used in model training and evaluation.

Overlap in KG and literature Training data (80%) Testing data (%)

Dataset No. of drugs No. of targets
or (of diseases)

No. of positive
samples

No. of negative
samples

No. of positive
samples

No. of negative
samples

Drug–target interactions 820 17,380 65,379 65,379 16,345 16,345
Drug–indication associations 754 2,552 6,363 6,363 1,591 1,591

Table 2 Statistics of the datasets.

Dataset No. drugs No. of targets No. of positive assoc. No. of unknown assoc.

Enzyme (E) 445 664 2926 292,554
Ion Channel (IC) 210 204 1476 41,364
Drugbank dataset 1,482 1,408 9881 2,076,775

Tadalafil (CID00110635) to phenotype abdominal pain (HP:0002027) (using a has

side effect relation), as well as disease connective tissue disease (DOID:65) (using a
has indication relation):

@prefix doid: <http://purl.obolibrary.org/obo/DOID_> .

@prefix hp: <http://purl.obolibrary.org/obo/HP_> .

@prefix b2v: <http://bio2vec.net/relation/> .

@prefix entrez: <http://www.ncbi.nlm.nih.gov/gene/> .

@prefix stitch: <http://bio2vec.net/CID> .

doid:14557 b2v:has_disease_phenotype hp:0011675 .

entrez:857 b2v:has_disease_association doid:14557.

stitch:00110635 b2v:has_sideeffect hp:0002027 .

stitch:00110635 b2v:has_indication doid:65 .

Integrating structured biomedical knowledge and literature
We use RDF (Beckett, 2004) to express and integrate structured information considered
to be useful for predicting DTI and drug indication associations. In RDF, knowledge
is expressed in a graph-based format in which entities (i.e., nodes) are represented
by an Internationalized Resource Identifier (IRI), and the relations between entities
are represented as edges (i.e., an edge connects two entities). Specifically, to integrate
several datasets related to drug actions and diseases in a knowledge graph using RDF as
representation language, we combine information about drugs and their targets (Kuhn
et al., 2012) and indications (Kuhn et al., 2015), gene–disease associations (Piñero et al.,
2016), and disease phenotypes (Hoehndorf, Schofield & Gkoutos, 2015), as well as gene
functions and interactions between gene products (Szklarczyk et al., 2010). We further
added biological background knowledge expressed in the HPO, GO, and DO ontologies,
directly to this RDF graph so that the superclasses of phenotypes can be accessed and used
by the machine learning model.
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Wegenerate a corpus from theRDF graph by applying iterated randomwalks (Alshahrani
et al., 2017). We considered each random walk as a sequence that expresses a chain of
statements following a random path through the knowledge graph. Subsequently, we align
the entities that occur in our knowledge graph with the information contained in the
biomedical literature. For this purpose, we normalized the entities in the abstracts of the
biomedical literature to the entities in the knowledge graph using named entity recognition
and entity normalization approaches (Rebholz-Schuhmann, Oellrich & Hoehndorf, 2012).
Specifically, we normalized the drug, gene, and disease names/symbols to the knowledge
graph using the annotated literature in PubMed abstracts provided by the PubTator (Wei,
Kao & Lu, 2013) database, and the mappings provided between different vocabularies of
drugs and diseases. PubTator aggregates different entity normalization approaches such
as GNorm (Wei, Kao & Lu, 2015) or DNorm (Leaman, Islamaj Doğan & Lu, 2013), which
can also be used directly with new text. We then processed the annotated PubMed abstract
corpus by replacing each entity (i.e., gene, drug/chemical compound, or disease) with the
IRI used to represent the synonymous entities in the knowledge graph. This replacement
ensures that our literature entities and knowledge graph entities overlap on the token level.
Figure 2 provides an illustration of the normalization step between literature entities and
knowledge graph entities overlap. We then used the knowledge graph to generate corpus 1
using an edge-labeled iterated random walk of fixed length without restart (Alshahrani et
al., 2017). For each node in the graph, we generated a sequence based on a short random
walk, where each walk is a sequence of nodes and edges (refer to Table S1 for more
information). We used two hyperparameters to generate the corpus: walk-length (the size
of each walk sequence) and the number of walks (the total number of walks generated for
each node).

These processing steps led to the generation of two corpora: Corpus 1 generated from
random walks starting from nodes in our knowledge graph, and Corpus 2 generated from
annotated literature abstracts in which entities in the literature that also appear in our
graph have been replaced by the IRI of the entities in the knowledge graph. These two
corpora form the foundation of our feature learning step. Figure 3 provides an overview
of the workflow.

Generating embeddings
Word2Vec is a vector spacemodel thatmaps words to vectors based on the co-occurrence of
words within a context window across the text corpus. Thus, in our graph, these semantics
are captured by the random walks representing the co-occurrence of different entities
and relations. We used the Word2Vec skip-gram model (Mikolov et al., 2013) to generate
embeddings for the corpus generated by random walks on the knowledge graph (corpus
1) and for the Medline corpus (corpus 2). For both corpora, we used negative sampling
with 5 words drawn from the noise distribution, a window size of 10, and an embedding
dimension of 128, based on the parameter optimization results. Additionally, we generate
embeddings by using the TransE (Bordes et al., 2013) knowledge graph embeddingmethod.
TransE is an embedding model specifically designed for knowledge graphs; it leverages
the translation in the vector space. That is, given Given a triple (subject, predicate, object)
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24615250|t|Influence of SREBP-2 and SCAP gene polymorphismson

lipid-lowering response to atorvastatin in a cohort of Chilean subjects with 

Amerindian background.

24615250|a|BACKGROUND AND OBJECTIVES: This study

evaluated the influence of SREBP-2 and SCAP genes, respectively, on the 

response to atorvastatin treatment in a cohort of Chilean subjects with 

Amerindian background. METHODS: A total of 142 hypercholesterolemic 

individuals underwent atorvastatin therapy (10 mg/day/1 month).

24615250|t|Influence of <http:www.ncbi.nlm.nih.gov/gene/6721> and 
<http:www.ncbi.nlm.nih.gov/gene/22937> gene polymorphismson
lipid-lowering response to <http://bio2vec.net/chem/CID0002250> in a 
cohort of Chilean subjects with Amerindian background.
24615250|a|BACKGROUND AND OBJECTIVES: This study
evaluated the influence of <http:www.ncbi.nlm.nih.gov/gene/6721> and 
<http:www.ncbi.nlm.nih.gov/gene/22937> genes, respectively, on the 
response to <http://bio2vec.net/chem/CID0002250> treatment in a cohort of 
Chilean subjects with Amerindian background. METHODS: A total of 142 
<http://purl.obolibrary.org/obo/DOID_13810> individuals underwent 
<http://bio2vec.net/chem/CID0002250> therapy (10 mg/day/1 month).

(a) Sample of original PubMed title and abstract corpus (b) PubMed title and abstract normalized with KG

<http:www.ncbi.nlm.nih.gov/gene/6721><http://bio2vec.net/relation/has
_gene_phenotype><http://purl.obolibrary.org/obo/HP_0001114><http:/w
ww.w3.or/2000/02/rdf-schema#subClassOf><http://purl.obolibrary.org/o
bo/HP_0000991> 
……..                         ……….                            ……….
……..                         ………                              ……...
<http:www.ncbi.nlm.nih.gov/gene/6723><http://bio2vec.net/relation/has
_gene_phenotype><http://purl.obolibrary.org/obo/HP_0001114><http:/w
ww.w3.or/2000/02/rdf-schema#subClassOf><http://purl.obolibrary.org/o
bo/HP_0000991>
<http:www.ncbi.nlm.nih.gov/gene/6721><http://bio2vec.net/relation/has
_gene_interaction><http:www.ncbi.nlm.nih.gov/gene/22937> 

(c) Sample of knowledge graph corpus
24615250|t|Influence of <http:www.ncbi.nlm.nih.gov/gene/6721> and 
<http:www.ncbi.nlm.nih.gov/gene/22937> gene polymorphismson
lipid-lowering response to <http://bio2vec.net/chem/CID0002250> in a cohort of Chilean 
subjects with Amerindian background.
24615250|a|BACKGROUND AND OBJECTIVES: This study
evaluated the influence of <http:www.ncbi.nlm.nih.gov/gene/6721> and 
<http:www.ncbi.nlm.nih.gov/gene/22937> genes, respectively, on the response to 
<http://bio2vec.net/chem/CID0002250> treatment in a cohort of Chilean subjects with 
Amerindian background. METHODS: A total of 142 
<http://purl.obolibrary.org/obo/DOID_13810> individuals underwent 
<http://bio2vec.net/chem/CID0002250> therapy (10 mg/day/1 month).
<http:www.ncbi.nlm.nih.gov/gene/6721><http://bio2vec.net/relation/has_gene_phenotype><htt
p://purl.obolibrary.org/obo/HP_0001114><http:/www.w3.or/2000/02/rdf-schema#subClassOf><
http://purl.obolibrary.org/obo/HP_0000991> 
<http:www.ncbi.nlm.nih.gov/gene/6723><http://bio2vec.net/relation/has_gene_phenotype><htt
p://purl.obolibrary.org/obo/HP_0001114><http:/www.w3.or/2000/02/rdf-schema#subClassOf><
http://purl.obolibrary.org/obo/HP_0000991>

(d) Sample of  PubMed abstract concatenated  with KG corpus

Figure 2 (A) Sample of the original Pubmed title and abstract; (B) Illustration of how we normalize
literature abstracts to our knowledge graph to ensure that both overlap on the level of tokens. It shows
the use of ontologies to normalize synonymous or similar terms to their respective ontology identi-
fiers as in hypercholesterolemic. We refer to NCBI semantic web links for genes. For other entities with
no standard semantic web links, we assign them to links that start with http://bio2vec.net/. (C) Sam-
ple of the knowledge graph corpus. (D) Sample of the knowledge graph corpus concatenated with the
PubMed abstract corpus.

Full-size DOI: 10.7717/peerj.13061/fig-2
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Figure 3 High-level overview of the workflow.
Full-size DOI: 10.7717/peerj.13061/fig-3
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or simply (s,p,o), it aims to make the sum of the subject and predicate vectors as close as
possible to the object vector (i.e., Es+Ep≈ Eo) when (s,p,o) holds, and the sum is far away
otherwise. This is done based on some distance measure d(Es+Ep,Eo), which is chosen to be
L1 or L2 norms. The loss function is the pairwise ranking loss as follows:

L=
∑

(s,p,o)∈S

∑
(s′,p,o′)∈S ′

[γ +d(Es+Ep,Eo)−d(Es′+Ep, Eo′)] (1)

The TransE model deals with only one-to-one relations, but it fails to account for
other types of relations and mapping properties such as one-to-many, many-to-one, and
many-to-many which are mitigated by other knowledge graphs embeddings variants such
as TransH (Wang et al., 2014b), TransR (Lin et al., 2015) and others (Ji et al., 2021).

Training the prediction models
We evaluated the performance of each method by using the embedding vectors to predict
DTI and drug indication associations in a supervised manner. For prediction models,
we used neural networks-based models such as: Artificial neural networks (ANN) and
Siamese Networks (Bertinetto et al., 2016). The Siamese network uses a unique structure
to learn similarity between inputs even with the presence of one or training example and
able to generalize to data from complete different distributions with new classes. Although
they have been widely used for images, they could be also applied to learning similarity
between any two different entities encoded as feature vectors. Moreover, we have used
Random forests (RF), and logistic regression (LR) classifiers as basic and self-explained
machine learning models. For each model, the dataset was randomly split into 80% and
20%. proportions for the training set and testing set, respectively. The models were trained
as binary classification models to predict whether there is an interaction between drug and
target or not (based on the drug-target dataset), or if there is an association between drug
and disease or not (based on the drug indications dataset). Table 1 provides all the statistics
for the DTI and drug indication data used to evaluate the models.

For ANN model training, we implemented an architecture with a single hidden layer
that is twice the size of the input vector. We used the Rectified Linear Unit(ReLU) (Nair
& Hinton, 2010) as an activation function for the hidden layer and a sigmoid function
as the activation function for the output layer. We also used cross-entropy as the loss
function, RMSprop optimizer (Hinton, Srivastava & Swersky, 2012) to optimize the ANN
parameters, and we implemented all these steps using Keras library in Python (Gulli & Pal,
2017). We optimized the ANN architecture and the size of the embeddings using a narrow
search (see Tables S2 and S3), we have also optimized the learning rate and the number of
dense layers of the Siamese networks. To train the RF classifier, we specified the number of
trees to be 50, with the minimum number of one for the training samples in leaf nodes, and
used the Gini impurity index to measure the quality of the split. For the LR, we optimized
the LR concerning two of its most effective hyperparameters: the penalty term [L1,L2] and
the C= [100,10,1.0,0.1,0.01] (the inverse of regularization), which controls the strength of
the penalty. Small values of this hyperparameter cause stronger regularization. We found
that L2 and C = 10 are the optimal values. We trained the LR classifier using scikit-learn
(version 0.17.1) in Python (Pedregosa et al., 2011).
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RESULTS
Learning and combining features
We integrated both data sources intending to leverage the information in a single predictive
model. To achieve this goal, we obtained embeddings for all entities. We used two
embedding approaches for the knowledge graph including the Word2Vec skip-gram
model (Mikolov et al., 2013), and TransE (Bordes et al., 2013), and for biomedical literature
only the Word2Vec skip-gram model. We used two different approaches to combine the
embeddings from corpus 1 and 2. First, we generated the embeddings for each corpus,
then concatenated the embedding vectors from both corpus. Second, we concatenated
the two corpora, then generated jointly-learned embeddings from the combined corpus.
Here, it should be noted that not all entities in the knowledge graph have a representation
in literature, and not all entities (drugs, diseases, and genes) mentioned in literature are
included in the knowledge graph. Nonetheless, we obtained embeddings for all entities
in corpus 2, in particular, for the entities which we normalized to our knowledge graph.
Figure S1 shows the overlap between the two datasets. Figures 4 and 5 show a visualization
of the embeddings (from the knowledge graph, literature, and combined) using t-SNE (Van
der Maaten & Hinton, 2008). Disease embeddings are coloured based on their top-level DO
class, and drug embeddings based on their top-level class in the Anatomical Therapeutic
Chemical (ATC) Classification System. The clustering by both top-level DO classes and
the top-level ATC categories shown in both figures indicate that the embeddings cluster
into biologically meaningful groups.

Evaluating the prediction performance
We evaluated the performance of our method by predicting drug-target interactions
and drug indications. For this purpose, we used five different evaluation methods: (1)
embeddings generated from the knowledge graph via the TransE model, (2) embeddings
generated via the Word2Vec skip-gram model from the knowledge graph alone after
the corpus generation through random walks (Walking RDF/OWL), (3) embeddings
generated from the literature corpus alone via the Word2Vec skip-gram model, (4)
concatenated embeddings from (2) and (3), and (5) jointly-learned embeddings generated
from combining corpus 1 and corpus 2 on which we applied the Word2Vec skip-gram
model. We used drug-target interactions from the STITCH database and drug indications
from the SIDER database as evaluation datasets. Furthermore, to clearly distinguish and
evaluate the contributions of the different data sources (via the five evaluation methods),
we only used the entities in the evaluation dataset that have a representation in both the
knowledge graph and the literature corpus. Before training the model, we removed all
has-target edges (when predicting the drug-target interactions) or has-indication
edges (when predicting drug indications) in the graph before generating the predictions
for drug-target interactions and drug indications, respectively.

Consequently, from the drug-target interactions dataset, we obtained 81,724 positive
samples, and from the drug indications dataset, 7,954 positive samples. For the negative
samples, we randomly selected the same number of negative samples as positive samples
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Figure 4. Illustrations of the 2D t-SNE plots for diseases based on different embeddings. (a) Knowledge
graph. (b) MEDLINE abstracts. (c) Concatenated embeddings. (d) Concatenated corpora through jointly
learned embeddings from literature and knowledge graph. The diseases are colored according to their
top-level categories in the Disease Ontology.

Evaluating the prediction performance278

We evaluated the performance of our method by predicting drug-target interactions and drug indica-279

tions. For this purpose, we used five different evaluation methods: (1) embeddings generated from280

the knowledge graph via the TransE model, (2) embeddings generated via the Word2Vec skip-gram281

model from the knowledge graph alone after the corpus generation through random walks (Walking282

RDF/OWL), (3) embeddings generated from the literature corpus alone via the Word2Vec skip-gram283
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Figure 4 Illustrations of the 2D t-SNE plots for diseases based on different embeddings. (A) Knowl-
edge graph. (B) MEDLINE abstracts. (C) Concatenated embeddings. (D) Concatenated corpora through
jointly learned embeddings from literature and knowledge graph. The diseases are colored according to
their top-level categories in the Disease Ontology.

Full-size DOI: 10.7717/peerj.13061/fig-4

from a massive number of negative samples that exist in the datasets. In this manner, we
ensured a balanced dataset was used to develop the prediction models.

For predicting drug-target interaction, we used an evaluation set of 820 drugs that was
mapped to 17,380 targets. For predicting drug indications, we used 754 drugs with one or
more known indications and rank 2,552 diseases for each of the drugs to determine which
disease it may treat (see Tables S4 and S5 for details about the counts in all resources).
For each model, the input feature vector is the drug embedding concatenated with the
target embedding, for the drug-target pairs. Similarly, for drug indications the input vector
is the drug embedding concatenated with the disease embedding. The output indicates
whether the drug interacts with the targets or the drug treats the disease. We evaluated the
performance of each model, using 20% of associations left out of the training process. All
three of our classification models can provide confidence values for a prediction, and we
ranked predicted associations based on their confidence value. We then calculated the area
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Table 3 AUROC results of comparisons with other methods on Yamanishi (Enzyme and Ion Channel)
and Drugbank datasets. Bold indicates best performing model while underline indicates second best per-
forming model.

Datasets
Model Enzyme Ion channel Drugbank

Ours (KG) 0.900 0.970 0.840
Ours (PubMed abstracts) 0.950 0.970 0.880
Ours (Concatenated embeddings) 0.940 0.990 0.880
Ours (Concatenated corpus) 0.960 0.990 0.890
BioBERT embeddings 0.920 0.880 0.900
BLM-NII 0.950 0.900 0.940
DNILMF 0.950 0.930 0.940
KRONRLS-MKL 0.920 0.890 0.920
TriModel 0.990 0.990 0.990
DTiGEMS+ 0.990 0.990 0.970

under the receiver operating characteristic (ROC) curve (AUROC) (Fawcett, 2006), as well
as the recall of each drug averaged among all drugs.

Furthermore, we have compared the results of using the four variants of our models
(the knowledge graph, PubMed abstracts, Concatenated embeddings, and Concatenated
corpus) with other benchmark datasets. Tables 3 and 4 shows the results in terms of
AUROC and AUPR. We compared the results of our approach with five state-of-the-art
methods, namely: BLM-NII (Mei et al., 2013), KRONRLS-MKL (Nascimento, Prudêncio
& Costa, 2016), DNILMF (Li, Li & Bian, 2019), and the latest two methods: TriModel
(Mohamed, Nováček & Nounu, 2020) and DTiGEMS+ (Thafar et al., 2020a). We observe
that our models’ performance, which utilizes the multimodal approaches (Concatenated
embeddings and Concatenated corpus), is not as competitive as the latest methods but
shows comparable results (especially in Yamanishi datasets with the previous methods
including BLM-NII, KRONRLS-MKL, and DNILMF), coming as the best and the second
best performing models for the Ion Channel, while it comes as the second best in Enzyme
dataset in the AUROC results analysis shown in Table 3.

Additionally, we have employed BioBERT (Lee et al., 2020) embeddings, which is a
domain-specific languagemodel based on the BERTmodel (Devlin et al., 2018), pre-trained
on large-scale biomedical text (PubMed abstracts and PMC full-text articles). For each
drug and gene name, we have extracted their BioBERT embeddings. We used each pair of
interacting drug-gene BioBERT embeddings as inputs to the Siamese network. We have
followed the same approach of training and testing as described in Training the prediction
models Tables 3 and 4 show the ROCAUC and AUPR scores on the three datasets we used
for benchmarking namely (Drugbank, Yamanishi Enzyme and Yaminishi Ion channel).
Tables S7 and S8 (Supplementary) summarizes our results for the prediction of DTIs and
drug indications using different machine learning models.

While other methods may be limited to certain sizes of the graph, the main advantages
of our models canbe summarized in the following points. first, Its scalability to large
and massive knowledge graphs, our graph used in this work is ≈ 500 times larger than the
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Table 4 AUPR results of comparisons with other methods on Yamanishi (Enzyme and Ion Channel)
and Drugbank datasets. Bold indicates best performing model while underline indicates second best per-
forming model.

Datasets
Model Enzyme Ion channel Drugbank

Ours (KG) 0.690 0.920 0.280
Ours (PubMed abstracts) 0.740 0.900 0.320
Ours (Concatenated embeddings) 0.740 0.950 0.340
Ours (Concatenated corpus) 0.760 0.950 0.320
BioBERT embeddings 0.908 0.870 0.879
BLM-NII 0.830 0.800 0.110
DNILMF 0.820 0.840 0.410
KRONRLS-MKL 0.800 0.820 0.340
TriModel 0.930 0.950 0.670
DTiGEMS+ 0.960 0.960 0.610

Enzyme dataset, and≈ 148 times larger than the Drugbank dataset. Second, Ourmodels are
generic and automatically learn the features, while other methods may rely on laborious
feature extraction and manually engineered feature vectors. For example, DtiGems+
construct different types of graphs and compute many similarity scores such as drug–drug
similarity, target–target similarity as well as adapting several techniques such as graph
embeddings, graph mining as well as the use of machine learning models as downstream
classifiers. Although these approaches resulted in improved prediction accuracy due the
collective power of different types of features, they require domain-specific knowledge of
manually-engineered features, incorporate complex processes of extraction and include
many steps of data integration and graph infusions. This doesn’t fully utilize feature learning
as an optimal, efficient, and elegant way of finding the most relevant features. lastly, our
proposed models attempt to resolve the issues related to the low coverage in the knowledge
graph and the textual content by utilizing bio-ontologies for entity normalization.

We found that both ANN and RF classifiers were able to accurately predict both DTIs
and drug indications, while the LR classifier results in relatively worse performance. An
obvious explanation is that LR mainly assigns weights to individual features and cannot
compare or match elements of the two input embedding vectors, while both the ANN and
RF classifiers can provide a classification based on comparing elements of the two input
embedding vectors. Furthermore, we found that, in general, using embeddings generated
from literature results in higher predictive performance across all classifiers compared to
embeddings generated from the knowledge graph alone. Also, combining the embeddings,
or using jointly learned embeddings sometimes but not always improves or changes the
predictive performance.

Additionally, we examine the actual performance in terms of the ranking given by
each of our embeddings approaches for a sample of drug–targets and drug–indications
pairs. Table S7 (refer to Supplementary) shows the predicted rank number given for each
approach for the prediction of drug–targets, while Table S10 (refer to Supplementary) shows
the predicted rank number in drug–indications. We find that the combined approaches
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Figure 5. Illustrations of the 2D t-SNE plots for drugs based on different embeddings approaches. (a)
knowledge graph. (b) MEDLINE abstracts. (c) concatenated embeddings. (d) concatenated corpora
through jointly learned embeddings from literature and knowledge graph. The drugs are colored
according to their top-level ATC class.

model, (4) concatenated embeddings from (2) and (3), and (5) jointly-learned embeddings generated284
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Figure 5 Illustrations of the 2D t-SNE plots for drugs based on different embeddings approaches. (A)
Knowledge graph. (B) MEDLINE abstracts. (C) Concatenated embeddings. (D) Concatenated corpora
through jointly learned embeddings from literature and knowledge graph. The drugs are colored accord-
ing to their top-level ATC class.

Full-size DOI: 10.7717/peerj.13061/fig-5

(Concatenated embeddings and Concatenated corpus) improved the predicted ranks over
the performance of the knowledge graph and the PubMed abstracts alone.

While our results indicate that both literature-derived and knowledge graph embeddings
can be used to predict interactions, the main contribution of our multi-modal approach
is the increased coverage through combining database content and literature (see Fig. S1).
We used the common drug, target, and disease entities between the knowledge graph and
literature in the previous experimental setups. Here, we further quantify fairly the impact
of the information provided by each data modality on the prediction performance. We
also demonstrate the broader application of our method by extending our evaluation set to
contain all the drugs, genes, and diseases found in either our knowledge graph, literature
abstracts, or the union of the entities in the knowledge graph and literature trained on the
combined corpus. Figure 6 shows the ROC curves and the AUROC for predicting DTIs
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Figure 6. ROC curve of our neural network for predicting drug targets in the union of associations
present in the knowledge graph and PubMed abstracts (left); ROC curve of our neural network for
predicting drug indications found in the union of knowledge graph and PubMed abstracts (right).

DISCUSSION376

There are many scenarios in biological and biomedical research in which predictive models need to be377

built that can utilize information that is represented in different formats. Our key contribution is a method378

to integrate data represented in structured databases, in particular knowledge graphs represented in RDF379

and OWL, and integrate this information with information in literature. While we primarily focus on380

the prediction of DTIs and drug indications based on information in text and databases, our approach is381

generic and can serve as a paradigm for learning from multi-modal, heterogeneous data in biology and382

biomedicine.383

Our method uses feature learning to project different types of data into a vector space, and combine384

data of different modes either within a single vector space (when mapping data of different modes to the385

same space, or to vector spaces of identical dimensions) or we combine the vector spaces themselves.386

We rely on the recent success of deep learning methods (Ravı̀ et al., 2017; Angermueller et al., 2016)387

which improved our ability to learn relevant features from a data set and project them into a vector space.388

In particular, our approach relies on natural language models, in particular Word2Vec (Mikolov et al.,389

2013), and recent approaches to project information in knowledge graphs into vector spaces (Nickel et al.,390

2016a; Alshahrani et al., 2017). Furthermore, the use of supervised learning on feature vectors has been391

shown to improve classification performance over traditional techniques as they become accessible to392

build task-specific machine learning models (Smaili et al., 2018, 2019). In this work, the classifiers we393

used utilize the similarity-based embeddings to learn decision boundaries between the two classes (i.e.,394

interacting/non-interacting relations). These approaches are now increasingly applied in biological and395

biomedical research (Alshahrani and Hoehndorf, 2018) yet often restricted to single types of representation396

(such as images, genomic sequences, text, or knowledge graphs).397

Our approach naturally builds on the significant efforts that have been invested in the development398

of named entity recognition and normalization methods for many different biological entities (Rebholz-399

Schuhmann et al., 2012) as well as the effort to formally represent and integrate biological data using400

Semantic Web technologies (Jupp et al., 2014a; Callahan et al., 2013). Several biological data providers401

now provide their data natively using RDF (Jupp et al., 2012; UniProt Consortium, 2018). Furthermore,402

many methods and tools have been developed to normalize mentions of biological entities in text to403

biological databases, for example for mentions of genes and proteins, (Leaman and Gonzalez, 2008; Wei404

et al., 2015), chemicals (Leaman et al., 2015) as well as diseases (Leaman et al., 2013), and repositories405

have been developed to aggregate and integrate the annotations to literature abstracts or full-text articles406

(Wei et al., 2013; Kim and Wang, 2012). While these methods, tools, and repositories are not commonly407

designed to normalize mentions of biological entities to a knowledge graph, we demonstrate here how408

a normalization of text to a knowledge graph can be achieved, and subsequently use the combined409
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Figure 6 ROC curve of our neural network for predicting drug targets in the union of associations
present in the knowledge graph and PubMed abstracts (left); ROC curve of our neural network for pre-
dicting drug indications found in the union of knowledge graph and PubMed abstracts (right).

Full-size DOI: 10.7717/peerj.13061/fig-6

and drug indications using ANN, based on a combination of the literature corpus and the
random walk corpus.

Our knowledge graph contains a massive number of chemicals, many of which are
not drug-like, and while the performance in predicting drug targets is somewhat higher
when using the knowledge graph embeddings, the overall performance is still dominated
by the literature-derived embedding vectors. However, when predicting indications for
known drugs, both our graph and literature overlap more substantially while nevertheless
containing complementary information. We observe a significant improvement in
predicting drug indications when combining the information from literature and the
knowledge graph. All DTI predictions, as well as the predictions for drug indications, are
available at https://github.com/bio-ontology-research-group/multi-drug-embedding.

DISCUSSION
There are many scenarios in biological and biomedical research in which predictive models
need to be built that can utilize information that is represented in different formats. Our
key contribution is a method to integrate data represented in structured databases, in
particular knowledge graphs represented in RDF and OWL, and integrate this information
with information in literature. While we primarily focus on the prediction of DTIs and
drug indications based on information in text and databases, our approach is generic and
can serve as a paradigm for learning from multi-modal, heterogeneous data in biology and
biomedicine.

Our method uses feature learning to project different types of data into a vector space,
and combine data of different modes either within a single vector space (when mapping
data of different modes to the same space, or to vector spaces of identical dimensions) or
we combine the vector spaces themselves. We rely on the recent success of deep learning
methods (Raví et al., 2017; Angermueller et al., 2016) which improved our ability to learn
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relevant features from a data set and project them into a vector space. In particular, our
approach relies on natural language models, in particular Word2Vec (Mikolov et al., 2013),
and recent approaches to project information in knowledge graphs into vector spaces
(Nickel et al., 2016; Alshahrani et al., 2017). Furthermore, the use of supervised learning
on feature vectors has been shown to improve classification performance over traditional
techniques as they become accessible to build task-specificmachine learningmodels (Smaili,
Gao & Hoehndorf, 2018; Smaili, Gao & Hoehndorf, 2019). In this work, the classifiers we
used utilize the similarity-based embeddings to learn decision boundaries between the two
classes(i.e., interacting/non-interacting relations). These approaches are now increasingly
applied in biological and biomedical research (Alshahrani & Hoehndorf, 2018) yet often
restricted to single types of representation (such as images, genomic sequences, text, or
knowledge graphs).

Our approach naturally builds on the significant efforts that have been invested in the
development of named entity recognition and normalization methods for many different
biological entities (Rebholz-Schuhmann, Oellrich & Hoehndorf, 2012) as well as the effort
to formally represent and integrate biological data using Semantic Web technologies (Jupp
et al., 2014a; Callahan et al., 2013). Several biological data providers now provide their
data natively using RDF (Jupp, Stevens & Hoehndorf, 2012; UniProt Consortium, 2018).
Furthermore, many methods and tools have been developed to normalize mentions of
biological entities in text to biological databases, for example for mentions of genes and
proteins, (Leaman & Gonzalez, 2008; Wei, Kao & Lu, 2015), chemicals (Leaman, Wei &
Lu, 2015) as well as diseases (Leaman, Islamaj Doğan & Lu, 2013), and repositories have
been developed to aggregate and integrate the annotations to literature abstracts or full-
text articles (Wei, Kao & Lu, 2013; Kim &Wang, 2012). While these methods, tools, and
repositories are not commonly designed to normalize mentions of biological entities to a
knowledge graph, we demonstrate here how a normalization of text to a knowledge graph
can be achieved, and subsequently use the combined information in our multi-modal
machine learning approach. Consequently, our method has the potential to increase the
value of freely available Linked Data resources and connect them directly to the methods
and tools developed for natural language processing and text mining in biology and
biomedicine.

One potential objection to using features generated from the biomedical literature is
that the association between a drug and its target or indication may already be stated
explicitly in the literature and could therefore be extracted more easily by methods relying
on text mining and natural language processing. We tested how many drugs co-occur
with their targets or indications in our literature-derived corpus compared to the total
number of co-occurrences between mentions of drugs and proteins or diseases. Among
all of the directly co-occurring mentions of drugs and proteins and drugs and diseases in
the abstracts, 2.8% and 0.8% are positive pairs in our drug–target and drug–indication set,
respectively. However, among the positive pairs that are both found in literature and the
knowledge graph, the directly co-occurring drug–target pairs are 27.3% and drug–disease
pairs 63.4%.We experimented with removing all abstracts in which the drug and protein or
drug and disease pairs that are in our evaluation set co-occur. Table S6 shows the resulting
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performance and demonstrates that removing the directly co-occurring pairs does not
change results significantly.

CONCLUSION
We developed a generic method for combining information in knowledge graphs and
natural language texts, and jointly learns both. This method is capable of utilizing
information in a knowledge graph as background knowledge when ‘‘reading’’ text and vice
versa when learning from structured information in a knowledge graph. We demonstrate
that our method can be used to predict DTI and indications.

In the future, it would be beneficial to develop better entity normalization methods
that can directly normalize entity mentions in text to a knowledge graph. We also intend
to evaluate the success of our approach on full-text articles so that more information, in
particular regarding methods and experimental protocols, can be utilized by our approach.
Methodologically, we also intend to apply other knowledge graph embedding methods, in
particular translational embeddings (Bordes et al., 2013;Nickel, Rosasco & Poggio, 2016;Dai
& Yeung, 2006), that have previously been combined successfully with textual information
(Wang et al., 2014c), and evaluate their performance for prediction of biological relations.
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