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ABSTRACT 

Most oncology trials define superiority of an experimental therapy compared to a control 

therapy according to frequentist significance thresholds, which are widely 

misinterpreted. Posterior probability distributions computed by Bayesian inference may 

be more intuitive measures of uncertainty, particularly for measures of clinical benefit 

such as the minimum clinically important difference (MCID). Here, we manually 

reconstructed 194,129 individual patient-level outcomes across 230 phase III, 

superiority-design, oncology trials. Posteriors were calculated by Markov Chain Monte 

Carlo sampling using standard priors. All trials interpreted as positive had probabilities > 

90% for marginal benefits (HR < 1). However, 38% of positive trials had ≤ 90% 

probabilities of achieving the MCID (HR < 0.8), even under an enthusiastic prior. A 

subgroup analysis of 82 trials that led to regulatory approval showed 30% had ≤ 90% 

probability for meeting the MCID under an enthusiastic prior. Conversely, 24% of 

negative trials had > 90% probability of achieving marginal benefits, even under a 

skeptical prior, including 12 trials with a primary endpoint of overall survival. Lastly, a 

phase III oncology-specific prior from a previous work, which uses published summary 

statistics rather than reconstructed data to compute posteriors, validated the individual 

patient-level data findings. Taken together, these results suggest that Bayesian models 

add considerable unique interpretative value to phase III oncology trials and provide a 

robust solution for overcoming the discrepancies between refuting the null hypothesis 

and obtaining a MCID.  
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SIGNIFICANCE STATEMENT 

The statistical analyses of oncology trials are usually performed by calculating P values, 

although these are poorly understood. Using P value cutoffs, such as P < 0.05, may 

lead to some treatments being accepted which have little benefit, and other therapies 

being rejected which have considerable benefit. A more intuitive and direct probability—

that an experimental treatment is better than a standard treatment—can be calculated 

by Bayesian statistics. Here we used software to obtain the outcomes of 194,129 

patients enrolled across 230 trials and then calculated probabilities of benefit. 

Interpretations based on P values disagreed with the probabilities of benefit in one-third 

of trials. This study suggests that probabilities of benefit would considerably enhance 

the interpretation of oncology trials. 
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INTRODUCTION 

The primary endpoints of phase III oncology randomized controlled trials (RCTs) are 

usually evaluated by frequentist inference.(1) Simplistically, RCTs usually declare 

superiority of the experimental therapy when P is less than the significance threshold for 

the primary survival endpoint and when directionality is supported by effect estimates, 

such as the hazard ratio (HR). 

 

Although the published literature is largely based on the frequentist tradition, the use of 

dichotomized significance thresholds for rule-based decision-making may oversimplify 

the differences between binary decisions and inferences based on quantitative 

continuous estimates.(2, 3) In addition to the problems with binary significance 

thresholds, P is frequently misinterpreted by physicians and scientists as the probability 

that the null hypothesis is true, or alternatively, that 1 – P is the probability of superiority 

for the experimental arm.(4-6) Arguably, this widespread misinterpretation of P (and by 

extension, 95% CI) occurs because physicians and scientists are actually interested in 

knowing the probability of these hypotheses. Such probabilities quantifying uncertainty 

are practically more useful to physicians and patients than P-values, which represent 

long-range probabilities of observing more extreme results if the null hypothesis and all 

auxiliary assumptions were true.(7) Although standard frequentist inference does not 

provide the probability of hypotheses being true, Bayesian inference can compute these 

probabilities. Further, within the Bayesian framework, the probabilities for a range of 

various effect sizes and priors can be determined, allowing important hypotheses 
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beyond the null to be readily examined, such as the probability of clinically meaningful 

effects.(6)  

 

Thus, we sought to comprehensively re-analyze the primary endpoints of published 

phase III RCTs in oncology. We reconstructed individual patient-level data from 

published phase III trials and determined the prevalence of treatment effect 

misinterpretation by comparing trial interpretation and posterior probabilities (Fig. S1). 

We computed posteriors at various effect sizes, including a minimum clinically important 

difference (MCID) defined at HR < 0.8. Because current trials are interpreted with 

respect to HR = 1, we also defined “at least marginal benefit” at HR < 1. To illustrate the 

potential interpretative value added by Bayesian inference, we compared interpretations 

of trials based on P values versus posterior probabilities. We lastly compared the 

posteriors of individual patient-level models with those computed by a phase III, 

oncology-specific prior operative on published summary statistics.(8) 

 

RESULTS 

Trials and published outcomes 

After excluding 24 RCTs that did not meet reconstruction quality criteria and 67 RCTs 

with proportional hazards violations, 230 two-arm, superiority-design, time-to-event 

phase III RCTs enrolling 194,129 patients were eligible for analysis (Fig. S2). 

Publication dates ranged from 2005 through 2020. Most RCTs (61%) studied metastatic 

solid tumors with surrogate primary endpoints (61%) (Table S1).  
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Summary estimates of the survival function by using Bayesian inference 

Bayesian cox regressions were performed on the reconstructed individual patient-level 

data. The following priors defined on the symmetric scale ln(HR) by the normal 

distribution N (mean, standard deviation) were used: a neutral prior N (0, 106), a 

moderately skeptical prior N (0, 0.355), and a moderately enthusiastic prior N (–0.44, 

0.40) based on published guidelines.(9) As anticipated, the likelihood HRs most strongly 

favoring the experimental arm seemed to be closer to the null under the skeptical prior 

compared with the enthusiastic prior (Fig. S3). The slope (m) of the ordinary least-

squares regression for the mean HR was 0.86 (95% CI, 0.84 to 0.88), which is a 

quantitative measure of expected shrinkage effects of the skeptical prior. Under the 

neutral prior, posterior summary estimates were similar to the frequentist results (Fig. 

S3). For example, the median absolute difference between the frequentist HR and 

posterior mean HR under the neutral prior was 0.001 (max, 0.25).  
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Posterior probabilities and trial interpretation 

Posterior probabilities under each prior were generally correlated with the published trial 

interpretation across different hypotheses (Table S2).(10) For example, the association 

between posterior probability of strong clinical benefit under the skeptical prior and trial 

interpretation of a positive trial was quantified by an aOR of 2.25 (95% CrI, 1.23 to 

4.06). The posterior distributions for positive trials were largely identifiable and distinct 

from the posterior distributions of negative trials (Fig. 1).  

 

Posterior probabilities for trials interpreted as positive 

All RCTs interpreted as positive had probabilities of achieving at least a marginal benefit 

exceeding 90% under any prior (Table 1). For example, the median posterior probability 

was 1.00 (IQR, 0.99 to 1.00) under the skeptical prior for HR < 1 (Table S3). This 

finding suggests that posterior probabilities under moderate-strength priors for HR < 1 

or HR > 1 replicate the information provided by traditional significance criteria for phase 

III trials, consistent with the assertions that phase III trials already convey much 

information in the likelihood distribution and that small values of P provide increasingly 

greater bits of refutational information (increasing S values) and confidence in rejecting 

the null hypothesis (Fig. 2A and Fig. 2B).(11)  

 

However, the posterior probabilities of achieving the MCID had considerably more 

overlap between trials interpreted as positive and trials interpreted as indeterminate 

(Fig. 2C). Even under the enthusiastic prior, only 62% of positive RCTs (74 of 120) 
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demonstrated a posterior probability > 90% for achieving the MCID, and 55% of positive 

RCTs (66 of 120) demonstrated a > 90% posterior probability of meeting the MCID 

under the skeptical prior (Table 1). Thus, even though the experimental arms of RCTs 

interpreted as positive were likely to have at least marginal benefits compared with the 

control arm, the probability of a clinically meaningful difference between arms was lower 

for many RCTs. In turn, because P is not a measure of effect size, traditional trial 

interpretation relying on dichotomized P thresholds is at risk of overestimating beneficial 

treatment effects, as traditional analysis lacks the ability to directly compute the 

probability of clinically meaningful benefits. The median probabilities of strong clinical 

benefits, defined as HR < 0.5, were even lower, even under the enthusiastic prior 

(median, 0.02; IQR, 0 to 0.35) (Table S3). Only rare RCTs (11%, 13 of 120) achieved > 

90% probability of a strong clinical benefit, even under the enthusiastic prior (Fig. 2D). 

Notably, the primary endpoints of all 13 RCTs with > 90% probability of a strong clinical 

benefit used surrogate primary endpoints, predominantly progression-free survival (12 

of 13, 92%) or time to progression (1 of 13, 8%). Surrogate endpoints may be less 

clinically relevant than endpoints such as overall survival or quality of life, as has been 

extensively discussed in the literature.(12-14) No trials demonstrated > 90% probability 

of a strong clinical benefit for overall survival. Thus, the positive overall survival 

treatments effects observed in contemporary oncology phase III RCTs over the past two 

decades have a modest effect size, which, while not surprising, should be interpreted in 

this light and with respect to their relative toxicity and cost.(3, 15)  
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We sought to evaluate the incidence of discordance between posterior probabilities 

computed for the MCID and trial interpretation under the enthusiastic prior. We used the 

enthusiastic prior for this definition of discordance to minimize the probability of 

discrepancy with trials, given the meta-analytical nature of our study, and to be as 

consistent as feasible with the trials’ current interpretation. We defined discordance as a 

probability ≤ 90% for meeting the MCID under the enthusiastic prior with a positive trial 

interpretation. With this definition, 46 RCTs (38%) interpreted as positive did not meet 

the MCID criterion under the enthusiastic prior. The posterior distributions for discordant 

RCTs are shown in Fig. S4A labeled according to the MCID probability. Adjusted logistic 

regressions using the confounders shown in Table S4 identified from the directed 

acyclic graph shown in Fig. S5 suggested that the only trial-level factor correlated with 

discordance between posterior probability and trial interpretation was the use of an 

overall survival primary endpoint (versus surrogate endpoint, aOR, 2.05; 95% CrI, 1.21 

to 3.49) (Table S5). Of the 46 discordant RCTs, the primary endpoint was overall 

survival for 21 RCTs (46%) and surrogate endpoints for 25 RCTs (54%). Because of 

several differences between surrogate and overall survival endpoints, such as the 

likelihood of a positive finding, clinical and regulatory interpretation, and time to 

publication, we performed a subgroup analysis for RCTs with a primary endpoint of 

overall survival.(16-19) The posterior distributions for RCTs with overall survival as the 

primary endpoint are shown in Fig. S4B. The percentage of RCTs interpreted as 

positive for overall survival with a posterior probability for the MCID > 90%, > 75%, and 

> 50% under the enthusiastic prior was 30% (9 of 30), 47% (14 of 30), and 77% (23 of 

30), respectively (Table S6). The median posterior probability of meeting the MCID for 
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overall survival among RCTs interpreted as positive under the enthusiastic prior was 

0.73 (IQR, 0.58 to 0.96) (Table S7).  

 

Lastly, we repeated the analysis in the subset of positive trials which led to Federal Drug 

Administration regulatory approval.(16) Of 120 positive trials overall, the data from 82 

trials led to regulatory approval. The median posterior probability of meeting the MCID 

under the enthusiastic prior was 0.99 (IQR, 0.84 to 1.00).  Among these trials, 30% (25 

of 82) had ≤ 90% probability for meeting the MCID criterion under the enthusiastic prior, 

suggesting potential discordance with the trial and regulatory interpretation. 

 

Posterior probabilities for trials interpreted as negative 

The posterior probabilities of at least marginal benefit and harm for RCTs interpreted as 

negative varied widely under each prior (Fig. 2A-B). The median probability of marginal 

benefit was 0.67 (IQR, 0.32 to 0.89) under the skeptical prior and 0.77 (IQR, 0.49 to 

0.94) under the enthusiastic prior (Table S3). For these RCTs interpreted as having no 

advantage with the experimental arm, Bayesian models under each prior, contrary to 

trial interpretation, suggested that the primary outcome for the experimental arm was 

more likely superior to the control arm than not (i.e., > 50% posterior probability) in at 

least 63% of negative RCTs, and up to 75% of negative RCTs based on the prior (Table 

1).  

 

We defined discordance between RCTs interpreted as negative and posterior probability 

as posterior probability > 90% for at least a marginal benefit under the skeptical prior. 
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We used the skeptical prior for this definition of discordance to be as consistent as 

feasible with the trials’ current interpretation, and we used the hypothesis HR < 1.0 

because frequentist interpretations of no difference are specifically regarding the null 

hypothesis of HR = 1.0. The posterior probability of at least marginal benefit exceeded 

90% in 24% of RCTs interpreted as negative (26 of 110) (Fig. S6A). More recently 

published RCTs seemed less likely to have underestimation of treatment effects (aOR, 

0.83; 95% CrI, 0.69 to 0.98) (Table S8). Of these 26 discordant RCTs, 12 RCTs had a 

primary endpoint of overall survival (Fig. S6B). On February 12, 2024, we queried the 

National Comprehensive Cancer Network guidelines to evaluate whether the 

experimental arms of the 12 discordant RCTs, interpreted as negative but with > 90% 

probability of at least a marginal overall survival benefit (HR < 1), were listed as 

potentially useful regimens in the clinical setting in which they were tested. Of the 12 

trials, 1 regimen was the preferred strategy; 3 regimens were considered options or 

useful in certain circumstances, and the remaining 8 regimens were not listed in the 

guidelines (67%). 

 

Consistent with the notion that large values of P (i.e., P > 0.05) provide a low degree of 

refutational evidence, the median S for discordant RCTs was 3 (IQR, 2 to 4), a result as 

surprising as a coin toss achieving tails on three consecutive tosses (Fig. S7). As a 

reference, the median S for positive RCTs was 12 (IQR, 7 to 21), and the median S for 

positive RCTs without discordance was 19 (IQR, 12 to 28). In total, these findings 

suggest that frequentist analyses, when used in isolation, often result in underestimation 

of treatment effects and potential rejection of superior therapeutic strategies.  
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Comparison of posterior probabilities to a phase III, oncology-specific prior 

Because of the limitations of reconstructed data, we sought to validate these findings by 

also computing posteriors based on the summary statistics for each primary endpoint, 

using a phase III, oncology-specific prior leveraging an exchangeable conjugate 

approach.(8) This phase III, oncology-specific prior was derived based on the treatment 

effect distribution of 415 phase III trials, inclusive of the 230 trials analyzed in the 

present study, as previously reported.(8)  

 

Posterior estimates, derived from summary statistics using the phase III, oncology-

specific prior, were concordant with posterior estimates computed by the conventional 

priors using the reconstructed individual patient-level data (Fig. 3). For example, the 

concordance coefficient between the posterior probability of the MCID under the 

skeptical prior versus the phase III, oncology-specific prior was 0.98 (95% CI, 0.98 to 

0.99) (Table S9). This finding provides additional validation for posteriors computed by 

the phase III, oncology-specific prior. 
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DISCUSSION 

In this large-scale analysis of 230 trials, Bayesian inference added unique, 

complementary, and intuitive interpretative value towards understanding the primary 

results of phase III oncology RCTs. Trials interpreted as positive had low probabilities of 

MCID in 38% of cases, and trials interpreted as negative had high probabilities of at 

least marginal differences in 24% of cases. The refutational support was low for RCTs 

interpreted as negative but associated with high probabilities of benefit. Taken together, 

these findings suggest that current approaches and overreliance on binary P thresholds 

for significance may result in overestimation and underestimation of relevant treatment 

effects. Posterior probabilities should be included in the analyses of future phase III 

oncology RCTs to facilitate more intuitive, clinically meaningful, and robust trial 

interpretations. 

 

This study provided an empirical assessment of the extent to which the information loss 

induced by dichotomization into binary significance thresholds may lead to the under- or 

over-estimation of effects in phase III oncology RCTs. Overestimation of benefit was 

demonstrated in a substantial proportion of trials, even with an enthusiastic prior. 

Changing the focus of trial interpretation from information against the null hypothesis 

(the typical use of P) towards the probability of achieving a clinically meaningful effect 

size may better harmonize the gap between clinical trial results and real-world efficacy, 

spare patients costly and toxic therapies associated with only marginal benefits, and 

guide interpretation of results to the broader community including patients, regulatory 

agencies, lay press, and more.(6, 15, 16, 20, 21) We also observed underestimation of 
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benefit, even with use of a skeptical prior.(22) This limitation of frequentist inference was 

exemplified by the discordance for trials interpreted as negative, all of which had low 

refutational information (lower S values / larger P values). Finally, although re-analyses 

of several select RCTs have illustrated the interpretative value added by Bayesian 

inference, none are of the scope and scale of the present study.(23-25) Collectively, this 

study provides strong and pragmatic findings of the potential consequences of 

misinterpreting P-values greater than 0.05 as evidence of no difference and small P-

values as evidence of clinically meaningful difference.(26-28) 

 

A barrier to the uptake of Bayesian inference in oncology has been the requirement to 

specify the prior probability of the hypothesis.(29, 30) While some have argued that the 

main disadvantage of Bayesian inference is potential bias of the posterior from prior 

selection, incorporation of prior probability is one of the chief advantages of Bayesian 

inference. Pre-specification of the prior makes explicit the research assumptions and 

knowledge preceding the study, and allows formal evaluation of differences in 

opinion.(31) For phase III trials, as our data show, moderate-strength priors also largely 

preserved the likelihood distribution in the posterior. This feature may be particularly 

appealing in settings in which there is concern for subjectivity in the choice of the prior 

or in which there is concern that the prior may devalue interpretation of the posterior by 

producing starkly different results from frequentist inference. Furthermore, numerous 

subjective decisions are also made in frequentist RCTs regarding experimental design, 

power estimation and pre-specification of expected treatment effect size, α thresholds, 

and stopping rules.(32, 33) These decisions can heavily influence results, and should 
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not be regarded as different in kind from specifying a prior. Ideally, prior(s) are 

developed by content-matter experts in conjunction with statisticians familiar with 

Bayesian methods at the time of trial design. By leveraging prior information, RCTs with 

sequential Bayesian designs may be more efficient and require fewer patients for 

testing the same hypotheses as frequentist RCTs.(34, 35) The phase III, oncology-

specific prior may be suitable for physicians or others who are interested in estimates of 

specific published trials, and they can be computed by using a simple online calculator 

provided by our previous study without the need for reconstruction or using software 

code.(8) In the absence of strong domain-specific prior knowledge, based on the 

validation provided by the present study, the phase III, oncology-specific prior is a 

reasonable default informative prior for phase III oncology trials.  

 

This study had several key limitations. First, potential discordance was defined by 

discrepancies between the frequentist interpretation and the Bayesian conclusion at 

various thresholds of posterior probability. Although a landmark Bayesian re-analysis of 

critical care RCTs used posterior probability thresholds of 50% to define potential 

benefit, a more conservative threshold was selected here based on intrinsic differences 

between the fields of critical care and oncology and the greater heterogeneity in primary 

endpoints in oncology compared with critical care.(24) However, the full posterior 

probability distribution would be more informative to communicate in an individual trial 

than dichotomized probability thresholds. The approach used here should not imply that 

thresholds exist for translating Bayesian inference into making clinical decisions, which 

rely on numerous factors specific to the clinical scenario.(3, 15) The re-analysis findings 
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of potential efficacy in negative RCTs should not be taken as suggestions to alter 

current clinical decision-making, especially in the absence of individual patient-level 

data for each study, explicit conditioning on prognostic variables in the regression 

models, and assessment of other modeling assumptions. Second, the MCID was set 

uniformly for all studies encompassing several different disease settings, which may be 

an oversimplification. The MCID may depend on the specific disease setting and 

prognosis, and definitions for the MCID often include both absolute and relative 

differences in outcomes.(20) Third, this study focused on the primary endpoint, not 

taking into account other relevant secondary endpoints, such as patient-reported 

outcomes, toxicity, or secondary efficacy analyses, that may affect application of trial 

results to clinical practice. Ideally, efficacy and safety would be evaluated 

simultaneously, at the individual patient level, by defining a primary composite endpoint 

that takes both into account.(36) Primary endpoints differed between trials (overall 

survival vs surrogate survival) which may have further affected the findings, and likely 

the effect of surrogate survival endpoints are larger than overall survival effects. Trial 

setting, including whether the control arm was placebo vs an active comparator, may 

have further influenced the data. Fourth, use of reconstructed data, which served as the 

basis for the Markov Chain Monte Carlo models, has several inherent limitations.(37) In 

addition, the reconstructed data were univariable and unadjusted in nature, as they 

were derived from Kaplan-Meier curves. A lack of adjustment for prognostic covariates 

may have limited the efficiency and increased the uncertainty of the Bayesian models 

compared with the Cox regressions computed by the trials, although the phase III, 

oncology-specific conjugate prior was not subject to the reconstruction limitation and not 
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necessarily subject to the univariable limitation, as it was instead based directly on the 

underlying trial regression model. Proportional hazards violations in the reconstructed 

data were observed in a fair number of trials; because this may have influenced 

estimates for all models, these trials were excluded from further analysis, although this 

may have affected overall findings. 

 

In summary, the present empirical Bayesian assessment of the primary endpoints of 

published phase III oncology RCTs suggests that treatment effects are often either 

underestimated or overestimated with traditional analyses. Computing Bayesian 

posterior probabilities, either using individual patient-level data or the summary 

statistics, is an appealing strategy to mitigate the misinterpretation of trial results based 

on P values and to provide more intuitive and robust evaluations the chances that a 

treatment is clinically meaningful.  
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Figure 1. Posterior distributions for all trials plotted in descending order of posterior 
probability of HR <1 and labeled according to trialist interpretation. Posteriors for the 
enthusiastic prior are shown in panel A and for the skeptical prior in panel B. 
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Figure 2. Posterior probabilities under each prior grouped according to trial 
interpretation. (A) At least marginal clinical benefit hypothesis. (B) Harm hypothesis. (C) 
MCID hypothesis. (D) Strong clinical benefit hypothesis.  Abbreviations: HR, hazard 
ratio; MCID, minimum clinically important difference. 
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Figure 3. Comparison of posterior outputs from individual patient-level data using 
conventional priors versus summary statistics using a phase III, oncology-specific prior. 
A line of identity has been added. (A) Posterior probability of at least marginal benefit 
(HR < 1). (B) Posterior probability of achieving the MCID (HR < 0.8). (C) Posterior 
probability of strong clinical benefit (HR < 0.5). (D) Posterior mean estimate of HR. 
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Table 1. Trials with posterior probabilities above 50%, 75%, and 90% are tabulated 
according to each hypothesis and prior, and grouped by the frequentist interpretation of 
either positive or indeterminate/negative. Four hypotheses were evaluated: the 
probability of achieving the minimum clinically important difference (MCID) with the 
experimental arm, defined as hazard ratio (HR) <0.8; the probability of achieving any 
benefit with the experimental arm, defined as HR <1; the probability of achieving strong 
clinical benefit with the experimental arm, defined as HR <0.5; and the probability of 
harm, HR >1. 
 

Hypothesis by prior Posterior 
probability  According to trial interpretation, n (%) 

  
Positive (n=120) Negative (n=110) 

MCID    
Skeptical >90% 66 (55%) 0 (0%) 
Skeptical >75% 79 (66%) 0 (0%) 
Skeptical >50% 106 (88%) 1 (1%) 
Neutral >90% 73 (61%) 0 (0%) 
Neutral >75% 86 (72%) 0 (0%) 
Neutral >50% 109 (91%) 6 (5%) 
Enthusiastic >90% 74 (62%) 0 (0%) 
Enthusiastic >75% 92 (77%) 1 (1%) 
Enthusiastic >50% 110 (92%) 10 (9%) 

Strong benefit    
Skeptical >90% 12 (10%) 0 (0%) 
Skeptical >75% 14 (12%) 0 (0%) 
Skeptical >50% 20 (17%) 0 (0%) 
Neutral >90% 16 (13%) 0 (0%) 
Neutral >75% 22 (18%) 0 (0%) 
Neutral >50% 27 (23%) 0 (0%) 
Enthusiastic >90% 13 (11%) 0 (0%) 
Enthusiastic >75% 20 (17%) 0 (0%) 
Enthusiastic >50% 27 (23%) 0 (0%) 

At least marginal benefit   
Skeptical >90% 120 (100%) 26 (24%) 
Skeptical >75% 120 (100%) 48 (44%) 
Skeptical >50% 120 (100%) 75 (68%) 
Neutral >90% 120 (100%) 27 (25%) 
Neutral >75% 120 (100%) 48 (44%) 
Neutral >50% 120 (100%) 74 (67%) 
Enthusiastic >90% 120 (100%) 37 (34%) 
Enthusiastic >75% 120 (100%) 60 (55%) 
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Enthusiastic >50% 120 (100%) 82 (75%) 
Harm    

Skeptical >90% 0 (0%) 10 (9%) 
Skeptical >75% 0 (0%) 20 (18%) 
Skeptical >50% 0 (0%) 35 (32%) 
Neutral >90% 0 (0%) 11 (10%) 
Neutral >75% 0 (0%) 22 (20%) 
Neutral >50% 0 (0%) 36 (33%) 
Enthusiastic >90% 0 (0%) 9 (8%) 
Enthusiastic >75% 0 (0%) 19 (17%) 
Enthusiastic >50% 0 (0%) 28 (25%) 

 

Abbreviations: MCID, minimum clinically important difference. 
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ONLINE METHODS 

Design and Inclusion 

Institutional review board approval for this cross-sectional study was not needed 

because of the public availability of trial data. Trials were identified from 

ClinicalTrials.gov based upon previously defined search criteria.(38) Phase III, two-arm, 

superiority-design, oncology trials testing therapeutic anti-cancer strategies with a time-

to-event primary endpoint were included. Ongoing trials were excluded if the final 

analysis of the primary endpoint analysis had not yet been published. If 95% CI was 

used for all time-to-event co-primary endpoints, overall survival was evaluated based on 

its interpretability and potential advantages compared with surrogate endpoints.(1, 2) 

This study conforms with the recommendations of the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guidelines and the reporting of Bayes 

used in clinical studies (ROBUST) guidelines for Bayesian analysis.(39, 40) 

 

For each trial, the results for the primary endpoint for were recorded, including the 

published interpretation of the trial primary endpoint (i.e., significantly better with the 

experimental therapy or not according to the trial’s pre-specified criteria), the HR, the 

95% CI, and the P-value. To facilitate analysis, in trials where the experimental arm was 

taken as the reference group, reciprocals of the HR and 95% CI were taken to recast 

the control arm as the reference group. All survival time units were harmonized to 

months.  
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Reconstruction of individual patient-level data 

After trials were screened from ClinicalTrials.gov, individual patient-level data were 

reconstructed from the Kaplan-Meier curves of the primary endpoint for each trial by 

using WebPlotDigitizer and established reconstruction methods.(37) The quality of the 

reconstruction was determined by performing a Cox regression on the reconstructed 

data and then calculating the absolute value of the natural logarithm of the ratio for the 

HR of the reconstructed data and the HR reported in the manuscript. High-quality 

reconstructions were defined by values ≤ 0.1, and reconstructions meeting this metric 

were eligible for further analysis. Proportional hazards were assessed in each high-

quality reconstruction by using previously described methods.(41) 

 

S computation when P was not provided 

The information against the null hypothesis based on frequentist inference was defined 

as the surprisal (S) value. Calculated as –log2(P), S encodes the number of bits of 

refutational information, and may be more intuitive than P values.(2, 11) S can be 

conceptualized as how surprising the observed data would be if the null hypothesis 

were true. Rounded to the nearest integer, S represents the number of consecutive coin 

flips of a fair coin toss that would need to land on the same side to confer an equivalent 

level of surprise. For example, S = 5 indicates that, under the null hypothesis, the 

probability of observing a result as or more extreme is as surprising as always 

observing tails in 5 consecutive tosses of a fair coin. We computed S values for each 

trial from reported P values by using the calculator provided by Msaouel and 

colleagues.(2) For RCTs where a range of P-values was provided in lieu of a specific P 
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(e.g., P < 0.001), P values were back-computed by established approaches from Altman 

and Bland by using the calculator provided by Msaouel and colleagues.(2, 42) One-

sided P values were converted to two-sided P values based on the direction of effect 

observed by either multiplying the reported P by two if benefit was observed (HR < 1) or 

subtracting the P from 1 and then multiplying by two, because all RCTs hypothesized 

superiority of the experimental arm versus the control arm. 

 

Bayesian survival analysis 

Bayesian cox regressions were performed on the reconstructed individual patient-level 

data. The following priors defined on the symmetric scale ln(HR) by the normal 

distribution N (mean, standard deviation) were used: a neutral prior N (0, 106), a 

moderately skeptical prior N (0, 0.355), and a moderately enthusiastic prior N (–0.44, 

0.40) based on published guidelines.(9) Moderate-strength priors were chosen based 

on the assumption that a reasonable body of evidence existed in support of the 

experimental therapy before the initiation of most phase III RCTs. Markov chain Monte 

Carlo sampling was used with 4 chains, 2000 burn-in steps, and 8000 total iterations by 

using R v4.3.2 with the package brms.(43, 44) Convergence was assessed by 

calculating effective sample size and R-hat, with convergence defined by an effective 

sample size ≥1000 and R-hat <1.05.(44) All Bayesian models included in this study met 

convergence criteria.  

 

Posterior probabilities were also computed based on the published Cox regression 

summary statistics for each trial (HR and 95% CI) using a phase III, oncology-specific 
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prior as described previously.(8) The treatment effect distribution was obtained based 

on previously reported methods used to derive a shrinkage estimator from RCTs in the 

Cochrane database; in brief, the z-score distribution was deconvoluted into the signal-

to-noise ratio distribution, which was then scaled by the standard error to obtain the 

treatment effect prior probability distribution.(45-49)  

 

Clinically relevant hypotheses 

Although frequentist and Bayesian inferences are complementary approaches, a 

principal advantage of Bayesian inference is the direct determination of probabilities for 

parameter values such as HRs. We computed posterior probabilities for four clinically 

relevant questions outlined here: based on criteria from the American Society of Clinical 

Oncology Cancer Research Committee and others, the minimum clinically important 

difference (MCID) was defined as 1) HR < 0.8.(3, 20, 50) Strong clinical benefit was 

defined as 2) HR < 0.5, at least marginal benefit was defined as 3) HR < 1, and harm 

was defined as 4) HR > 1.(51)  

 

Statistical analysis 

Continuous variables were summarized by using the median and IQR. Categorical 

variables were summarized by using the incidence and frequency. Correlations between 

frequentist and posterior summary estimates were assessed by Lin’s concordance 

correlation coefficient (ρc). The associations between trial-level covariates and 

discordance between trial interpretation and posterior probabilities were assessed by 

Bayesian adjusted logistic regression models, yielding aOR and 95% CrI. Confounders 
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for adjusted Bayesian regressions were identified by structural causal models depicted 

on directed acyclic graphs by using DAGitty (Fig. S5).(52) Each variable was 

sequentially rotated as the predictor of interest in the directed acyclic graph to select 

predictor-specific confounders, consistent with prior work.(38) The list of confounders for 

each predictor are shown in Table S4. Adjusted Bayesian logistic regressions were also 

used to evaluate the association of posterior probability with trial interpretation, for 

which industry sponsorship and primary endpoint type (surrogate vs overall survival) 

were selected as confounders based on the directed acyclic graph informed by prior 

studies (Fig. S8).(16, 17, 19, 53) The skeptical prior was used for the logistic models, 

and the same Markov chain Monte Carlo parameters from the Cox regressions were 

applied for the logistic regressions. Plots were made in R or Prism v10 (GraphPad, La 

Jolla, CA).   
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