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Humans and some animal species are able to learn stimulus-response (S-R) associations

by observing others’ behavior. It saves energy and time and avoids the danger of trying

the wrong actions. Observational learning (OL) depends on the capability of mapping

the actions of others into our own behaviors, processing outcomes, and combining this

knowledge to serve our goals. Observational learning plays a central role in the learning

of social skills, cultural knowledge, and tool use. Thus, it is one of the fundamental

processes in which infants learn about and from adults (Byrne and Russon, 1998). In this

paper, we review current methodological approaches employed in observational learning

research. We highlight the important role of the prefrontal cortex and cognitive flexibility

to support this learning process, develop a new neural working model of observational

learning, illustrate how imitation relates to observational learning, and provide directions

for future research.

Keywords: cognitive flexibility, visuomotor learning, Imitation, vicarious learning, mirror system, observational

learning, social learning, prefrontal cortex

INTRODUCTION

Observational learning refers to learning by watching others’ actions and their associated outcomes
in certain circumstances. Unlike imitation, observational learning does not simply mean to
replicate an action that others have performed. Rather, it requires the learner to transform the
observed scenarios into actions as close as possible to that of the actor’s (Torriero et al., 2007). One
of the most illustrative examples would be how Adelie penguins observe and learn from others’
actions when congregating at the water’s edge to enter the sea and feed on krill in Antarctica.
However, the leopard seal—the main predator of the penguins—often hides beneath the waves,
making it risky to be the first penguin to jump into the water. As the waiting game continues,
one of the hungriest animals will jump into the water while others are watching. They will only
follow if no seal appears (Burke et al., 2010). This ability to follow, to interpret and to learn from
observed actions and outcomes is crucial for many species when the stakes are high. For example,
predators can avoid eating poisonous prey without trying it by watching their peers consuming it
(Burke et al., 2010). Many animal species, as well as human infants are born helpless and rely on
observational learning (Meltzoff and Marshall, 2018). Research has found that newborns as young
as 42min are able to match gestures (including tongue protrusion and mouth opening) that has
been shown to them (Meltzoff and Moore, 1997). Moreover, newborns can also map observed
behaviors to their own, which suggests shared representation for the acts of self and others (Meltzoff
and Moore, 1997; Meltzoff, 2007; Meltzoff and Marshall, 2018). Young infants can easily imitate,
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but only older infants demonstrate observational learning. In one
study, a group of 14-month-old infants saw a novel act (e.g.,
the adult actor used his head to turn on a light panel). When
encountering the same panel after a 1-week delay, 67% of infants
used their head to turn on the light panel. This is observational
learning because the infant reacts when seeing the stimulus by
retrieving what they encoded in memory; rather than simply
replicating an action (Meltzoff, 1988). Moreover, several studies
from other groups have provided converging evidence for this,
which found that infants not only copy goals and outcomes of
the demonstration, but they also imitate the model used to attain
that goal (e.g., Tennie et al., 2006; Williamson et al., 2008).

By definition, observational learning involves two main steps:
(1) Infer other’s intentions according to the observation, (2)
process others’ action outcomes (i.e., successes and errors) and
combine these sources of information to learn the stimulus-
response-outcome (S-R-O) associations that can be later used
to obtain desirable outcomes. Unlike instruction-based learning
(IBL; Hampshire et al., 2016), instruction is not required in
observational learning, which would be advantageous for species
which do not have language or aphasia patients who have
difficulties comprehending linguistic instructions. Compared to
widely investigated reinforcement learning (RL), observational
learning enables one to acquire knowledge without taking the
risks or incurring costs during discovering (Monfardini et al.,
2008). This paper is structured in five main sections. First,
we survey the current approaches in observational learning
research. Next, we discuss the neural mechanisms underlying
observational learning with a focus on the frontal-temporal
system while comparing it to other forms of learning (e.g., IBL
and RL). After that, we develop a neural working model of
observational learning. We then connect observational learning
with imitation and suggest that they should be regarded as two
distinct cognitive processes. Finally, we discuss the role of ventral
striatum in social learning and outline some possible future
research directions.

SCHEMES IN OBSERVATIONAL LEARNING
RESEARCH

There are three main kinds of task designs in current
observational learning research (Figure 1). The first one was
employed by Burke et al. (2010), who used the observational
action prediction error (defined as the difference between actual
choice and predicted choice of the other agent) and observational
outcome prediction error (defined as the difference between
the actual outcome and predicted outcome of the other agent’s
action, which were based on the widely used concept prediction
error in reinforcement learning literature). More specifically, in
a given trial of their experiment, participants had to choose
between one of the two abstract fractal stimuli to gain a
stochastic reward and to avoid stochastic punishment while being
scanned by fMRI. One stimulus consistently delivered a good
outcome (reward or absence of punishment 80% of the time)
and bad outcome (punishment or absence of reward 20% of the
time; Figure 1A). They also included a trial-and-error baseline

individual learning condition and a learning from observing
actions only condition which could be used to characterize
the observational action prediction error. The second task
design was introduced by Monfardini et al. (2008), in which
participants watch a short video demonstrating an actor making
motor responses according to the stimulus presentation with
post-response feedback (Figure 1B). Importantly, in the fMRI
scanning section, instead of participants themselves making their
response when seeing the stimuli, participants watched the actor
in the short video making a response according to the stimulus
that participants saw before the video and made a binary choice
regarding whether the actor made a correct response. This kind
of design enables the detection of brain activity when participants
retrieve rules (when novel stimuli are being displayed). However,
logically, the part where participants had to watch an actor
performing the task and make judgement about it is very unlikely
to occur in a realistic situation because we seldomly learn
from judging another, while judging others’ responses to stimuli
might involve additional cognitive processes. In a later study,
Monfardini et al. (2013) changed the aforementioned design and
introduced the learning by observation (LeO) task. In the LeO
task, participants were asked to learn S-R associations between
stimulus presented on the screen and joystick movements by
watching a video which shows an expert demonstrating the
correct visuomotor association. They were then asked to make
responses accordingly in the fMRI scanner after each stimulus
was presented (Figure 1C).

NEURAL MECHANISMS OF
OBSERVATIONAL LEARNING

Cognitive Flexibility and the Lateral
Prefrontal Cortex
In uncertain and changing environments, flexible control of
actions has evolutionary and developmental benefits as it
enables goal-directed and adaptive behavior. Flexible control
of actions require an understanding of the outcome (reward
or punishment) associated with the given action (Burke et al.,
2010), and it is well-established that cognitive flexibility plays an
important role in both reinforcement learning and instruction-
based learning. In reinforcement learning where trial-and-error
exploration is commonly used, individuals can use the outcomes
associated with previous actions to determine future actions
(Thorndike, 1970; Mackintosh, 1983; Balleine and Dickinson,
1998; Skinner, 2019). In instruction-based learning, individuals
can utilize learned rules and representations to choose the correct
actions (Cole et al., 2013a). Theoretically speaking, cognitive
flexibility is also required in observational learning as individuals
learn the associations between other agents’ actions and their
associated outcomes and use this information to choose the
correct responses rapidly.

The lateral prefrontal cortex (LPFC) is crucial when a high
demand for cognitive flexibility is required to perform the
task, e.g., during learning novel tasks (Cole et al., 2013a),
decision making (McGuire and Botvinick, 2010), and task-
switching (Braver et al., 2003; Ruge et al., 2013). Previous research
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FIGURE 1 | Experimental designs. (A) The upper panel, learning session. Participants learned the associations between abstract visual stimuli and corresponding

joystick movements. In the experiment, the stimulus presented on the screen for 1.5 s, the participants were asked to move the joystick left, right, up, or down. Once

participants made a response, a visual feedback was given to indicate if the response was correct (happy green face; example 1) or wrong (sad red face; example 2).

The participants learned one set of S-R associations by trial-and-error exploration and the other by observing experts performing the task. The lower panel, scanning

session. Trials in the three different conditions were pseudo-randomly intermixed. Across all conditions, the visual stimuli were presented for 1.5 s and followed by a

blank screen of variable durations and a short video of an actor’s hand performing a joystick movement. After the movie, participants were asked to judge whether the

actor in the video made a correct response or not by pressing a right or left mouse corresponding to “yes” or “no” shown on the left or the right side of the screen,

respectively. There was a 50% of change that the actor’s response was correct with 50% of change that the actor’s response was wrong. Adapted from Monfardini

et al. (2008) with permission. (B) Prediction error approach paradigm. After a variable ITI, participants first were asked to observe the confederate players being

presented with two abstract fractal stimuli to choose from. Then participants were presented with the same stimuli, and the trial proceeded with the same manner.

Participants were asked to make a response when the fixation cross was circled by using the index finger for left stimulus and middle finger for right stimulus on the

response pad. Adapted from Burke et al. (2010) under Creative Commons Attribution License (CC BY). (C) Each trial started with a video showing a hand on a joystick

performing one of the four possible movements in response to the presentation of a colored stimulus on the monitor screen. The total video length was 2 s and the

colored stimulus lasted 1.5 s. The outcome image was presented after a variable delay. Participants were instructed to learn the correct stimulus-response-outcome

association by looking at the video and outcomes. Adapted from Monfardini et al. (2013) under Creative Commons Attribution License (CC BY).

has confirmed the essential role of LPFC in instruction-based
learning in terms of transferring novel rules into execution
rapidly (Cole et al., 2013a, 2016; Hampshire et al., 2016), where
a high degree of cognitive flexibility was required. Studies on
observational learning have also shown the involvements of the
dorsolateral prefrontal cortex (DLPFC) and the ventrolateral
prefrontal cortex (VLPFC; Monfardini et al., 2008, 2013; Burke
et al., 2010) once the rule was learned, which is consistent
with the notion that LPFC is engaged during acquisition of
novel rules.

Note that the only difference between IBL and observational
learning is that observational learning of novel rules requires
subjects to learn by observing others’ action and/or outcomes
associated with that action whereas during IBL, subjects learn
from explicitly linguistic or symbolistic instructions. According
to previous research on IBL (Cole et al., 2013a), abstract IBL
activates anterior LPFC while concrete IBL activates middle
LPFC. In abstract IBL, participants were asked to judge if two
words have the same property. For example, the stimulus might
be “apple” and “grape,” and the participants were required to
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FIGURE 2 | Common brain regions that were more active during the

acquisition phase of both types of learning. Adopted from Monfardini et al.

(2013) under Creative Commons Attribution License (CC BY).

press down the left index finger if these two kinds of fruits
were sweet and press down the right index finger if any of
these two kinds of fruits was not sweet. In contrast, similar
to the S-R associations in observational learning research, the
concrete IBL tasks asked participants to press a button when
seeing a novel stimulus. For instance, the instruction might
ask the participants to press down the left index finger when
seeing the shape “square” and to press down the right index
finger when seeing the shape “circle.” Research has identified
that the concrete IBL tasks activated more posterior areas of the
LPFC and activation of LPFC shifted posteriorly with practice
in both abstract and concrete IBL. One interpretation is that
once the novel task becomes routine after a certain amount of
practice, the task representation also becomes more concrete.
Thus, we hypothesize that the more posterior parts of the
LPFC will be activated during observational learning because
watching someone performing the task would be more concrete
than transferring linguistic rules into programmatic execution.
Practice of novel tasks in observational learning will also lead to
an anterior-posterior shift in LPFC. However, further studies are
needed to confirm this hypothesis.

Common Networks in Acquiring Rules
Monfardini et al. (2013) found that it does not matter whether
S-R associations are learned via observation or trial-and-
error, three documented cerebral systems were involved in the
acquisition stage: the dorsal frontoparietal, the fronto-striatal,
and the cerebellar networks (Figure 2). Themost straightforward
interpretation is that during both types of learning, the brain
builds a task model linking rule and response and it does
not matter whether rules are acquired through observation
or through trial-and-error. The dorsal frontoparietal system
consists of the superior and inferior parietal lobes and
the premotor dorsal cortex, which plays a central role in
sensorimotor transformation, goal-directed attentional control
to stimulus and response, and instrumental learning. Previous
neuroimaging research has also confirmed its contribution
to trial-and-error learning (Eliassen et al., 2003; Law et al.,
2005) specifically during the processing of outcomes (Brovelli
et al., 2008). This evidence suggested that processing of

other’s success and error during observational learning might
involve the same brain systems as in individual learning,
sensorimotor transformation, and goal-directed attentional
control (Monfardini et al., 2013).

The frontostriatal networks comprise the left dorsal striatum,
the anterior ventro-lateral, dorso-lateral prefrontal cortices and
the supplementary motor area (SMA), which are considered to
be of crucial importance for goal-directed operations during
individual instrumental learning (Yin and Knowlton, 2006;
Balleine et al., 2007; Graybiel, 2008; Yin et al., 2008; Packard,
2009; White, 2009; Ashby et al., 2010; Balleine and O’doherty,
2010). Previous research has observed activities in the caudate
nucleus and the ventrolateral and dorsolateral frontal cortex
during individual learning, and also in the premotor and
supplementary motor areas (Frith and Frith, 1999, 2012; Toni
and Passingham, 1999; Toni et al., 2001; Tricomi et al., 2004;
Boettiger and D’Esposito, 2005; Delgado et al., 2005; Galvan
et al., 2005; Seger and Cincotta, 2005; Grol et al., 2006;
Haruno and Kawato, 2006; Brovelli et al., 2008). Specifically,
the anterior caudate nucleus might integrate information about
performance and cognitive control demand during individual
instrumental learning (Brovelli et al., 2011), whereas the ventral
lateral prefrontal cortex (VLPFC) is involved in the retrieval
of visuomotor associations learned either by trial-and-error or
by observation of others’ actions (Monfardini et al., 2008).
The fronto-striatal networks are also critical for adaptively
implementing a wide variety of tasks where a high level of
cognitive flexibility is required and these networks’ ability to
adapt to various contexts is made possible by the “flexible hubs,”
which include neural systems that rapidly update their patterns
of global functional connectivity depending on the task demands
(Cole et al., 2013b).

The cerebellar network located bilaterally in the cerebellum
was recruited in outcome processing at early stages of learning.
Clinical evidence has shown that cerebellar lesions can give rise
to impairments in procedural learning and cognitive planning
(Grafman et al., 1992; Appollonio et al., 1993; Pascual-Leone
et al., 1993; Gomez-Beldarrain et al., 1998). Moreover, a
study that employed repetitive transcranial magnetic stimulation
(rTMS; Torriero et al., 2007) has demonstrated the role of
cerebellar regions in acquiring new motor patterns through
both observation and trial-and-error. Monfardini et al. (2013)
concluded that this network is involved in both observational
learning and trial-and-error learning, even if there was no need
to acquire new motor patterns.

Common Networks in Retrieval of
Associations
S-R associations can be learned through instruction, observation,
and trial-and-error, thus common networks involved in retrieval
of associations are proposed. Results from the conjunction
analysis in Monfardini et al. (2008) has demonstrated that
when newly acquired rules were being retrieved, with the brain
network consisting of the right ventrolateral and anterior frontal
cortices, pre-SMA, as well as the parietal cortex, was highly
involved (Figure 3; Bunge et al., 2003; Bunge, 2004; Donohue
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FIGURE 3 | Common brain regions that were more active while participants viewing stimuli they had recently learned by either trial-and-error exploration or

observation than control stimuli at the retrieval stage. Adopted from Monfardini et al. (2008) with permission.

et al., 2005; Crone et al., 2006). This finding was consistent
with the conclusions of Donohue et al. (2005) that assessed the
contribution of the inferior frontal junction to the retrieval of
motor responses associated with symbolic cues. It also suggested
that the posterior medial temporal gyrus plays a crucial role
in the representation of arbitrary associations (Donohue et al.,
2005). The most straightforward interpretation of these findings
is that during both observational learning and trial-and-error
learning, the brain builds a task model which links rules with
responses, thus involving brain networks that are commonly
activated during retrieval of associations.

Specific Networks for the Observational
Learning
When retrieving rules learned through observation, the
observation of abstract stimuli and their associations with
corresponding responses activated a set of brain regions
including the right pars triangularis (BA 45), the right inferior
parietal lobule, and the posterior visual areas. Monfardini et al.
(2008) compared the changes in BOLD signals in the right pars
triangularis during retrieval with that during movie watching
and identified similar patterns of activation when subjects
retrieved motor responses associated with a visual arbitrary
stimulus. This finding is consistent with the notion that the
pars triangularis is engaged in observation of actions, but not in
imitation or execution of actions (Molnar-Szakacs et al., 2005).
Monfardini et al. (2008) proposed that the right pars triangularis
should not be considered as part of the mirror system, rather, this

brain region is related to the suppression of actions execution
during both observation and motor imagery (Deiber et al.,
1998; Molnar-Szakacs et al., 2006). Regarding activations in
the posterior visual areas, Monfardini et al. (2008) suggested
that it may be a result of top-down modulations. In line with
this hypothesis, neuroimaging studies have proposed that
during the execution of a given task, a frontal-parietal network
exerts control over the activities in the visual cortex through
top-down signals that modulate activities of the visual cortex. In
Monfardini et al. (2008), attention to the hand was an instinct
characteristic of observational learning. In the meantime,
a retrieval process may reactivate the observed movements
during the learning process and the top-down modulations may
influence distinct visual areas, depending on whether the rules
were learned through observation or trial-and-error processes
(Super et al., 2001; Vidyasagar and Pigarev, 2007).

During implementation, many brain areas were significantly
more active during the presentation of incorrect outcomes in
observational compared to individual learning. In particular,
the activated clusters of bilateral brain regions include the
middle cingulate cortex (MCC), the posterior medial frontal
cortex (pMFC), the anterior insula, and the posterior superior
temporal sulcus (pSTS). Previous research has demonstrated
that the pMFC and the anterior insula are both part of the
error-monitor network (Radke et al., 2011). The pMFC is
located within the dorsal anterior cingulate cortex, which has
been found to play a central role in individual trial-and-error
learning processes (Holroyd and Coles, 2002; Mars et al., 2005).
A study by Monfardini et al. (2013) has also suggested that
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the pMFC is highly involved in both error-monitoring and
subsequent behavioral adjustments. More specifically, it has been
suggested that when adaptations are required according to the
outcomes associated with an action, the performance-monitoring
system in the pMFC implements as a signal of the need for
adjustments (Ullsperger and Von Cramon, 2003). Recent results
from electrophysiological experiments on monkeys suggested
that neurons in the dorsomedial prefrontal cortex selectively
respond to others’ incorrect actions, and their patterns of
activity are associated with the subsequent behavior adjustments
(Yoshida et al., 2012). The anterior insular cortex is involved
in both performance monitoring processes (Radke et al., 2011)
and the autonomic responses to error in non-social contexts
(Ullsperger and Von Cramon, 2003), and its level of activity
increases with error awareness (Klein et al., 2007; Ullsperger
et al., 2010). This network is also activated during error-detection
and in non-learning contexts (Ridderinkhof et al., 2004; de
Bruijn et al., 2009; Radke et al., 2011), however, there is no
evidence suggesting its activities could differentiate others’ from
individual learning. Monfardini et al. (2013) provided novel
insights into the role of the pMFC-anterior insular network in
the processing of others’ mistakes during observational learning.
To date, a number of studies has established an association
between the level of error-related activities and the subsequent
learning performances (Klein et al., 2007; Hester et al., 2008;
van der Helden et al., 2010). Monfardini et al. (2013) speculated
that the neurons in the pMFC-anterior insular network may
act as the neural correlates of a cognitive bias that have
been referred to as the predisposition of humans to process
errors of others differently from their own errors by studies in
neuroeconomics and social psychology. Specifically, the “actor-
observer” cognitive bias represents the tendency to attribute
others’ failures to their personal mistakes but one’s own failure is
attributed to the situation (Jones and Nisbett, 1987). For a deeper
understanding of the relative effectiveness of individual and
observational learning from others’ and individual errors, further
neuroimaging research is needed (Monfardini et al., 2013).

Monfardini et al. (2013) also demonstrated that the posterior
superior temporal sulcus (pSTS) is specifically correlated with
the processing of others’ errors during observational learning. As
previous studies on non-human primates showed that the STS
is anatomically well-suited to integrating information sourced
from both the ventral and dorsal visual pathways, in a number
of studies, social cues in the STS region which is sensitive to
stimuli that signal the actions of another individual were analyzed
(Pandya and Yeterian, 1985; Boussaoud et al., 1990; Baizer et al.,
1991). Particular emphasis has been given to the pSTS, which
was regarded as the substrate of goal-directed behavior (Saxe
et al., 2004) and social perception (Allison et al., 2000). Overall,
previous research supports the hypothesis that perception of
agency activates the pSTS (Tankersley et al., 2007), and the
activity in pSTS might be part of a larger network mapping of
observed actions to motor programs (Rilling et al., 2004; Keysers
and Gazzola, 2006). Moreover, the pSTS is considered to be
actively involved in the attribution of mental states to other
organisms (Frith and Frith, 1999, 2003; Saxe and Kanwisher,
2003; Samson et al., 2004) and the extraction of contextual and
intentional cues from goal-directed behavior (Toni et al., 2001).

More importantly, activities of the pSTS have been observed in
humans during imitation of actions (Iacoboni, 2005). Results
from Monfardini et al. (2013) supported the hypothesis of the
role of pSTS in the processing of social information, which is
a necessary component of the learning stage of observational
learning. Additionally, the fact that the pSTS was more activated
by the errors made by others than one’s own errors may imply
more intensive mentalizing (e.g., what does the agent think now
that they know that one certain action does not lead to positive
outcomes?) or the reactivation of the visual representations
of an observed action to decrease its association with the
corresponding stimulus (Monfardini et al., 2013).

NEURAL WORKING MODEL OF
OBSERVATIONAL LEARNING

To shed light on how observational learning works and its
neural basis, we created a neural working model of observational
learning (Figure 4). Our neural work model of observational
learning includes three phases: observation, acquisition,
response. The first phase is observation, defined as observation
of abstract stimuli and their association to specific bodily
movements, which activate a network consisting of a number of
brain regions: the dorsal premotor cortex (Cisek and Kalaska,
2004), the right pars triangularis (BA 45), the right inferior
parietal lobule, and the posterior visual areas (Monfardini et al.,
2008). The ability to observe and learn with it is a powerful
capacity of humans (Mattar and Gribble, 2005; Torriero et al.,
2007), and previous studies have shown that when a symbolic
representation of task performance is observed, neurons in the
dorsal premotor cortex (PMd) respond in a similar manner than
when the task is physically performed (Cisek and Kalaska, 2004).

The second phase is acquisition of rules, which recruits three
individual systems: the dorsal frontoparietal, the fronto-striatal,
and the cerebellar networks. The dorsal frontoparietal network
consists of the bilateral superior and inferior parietal lobes and
the premotor dorsal cortices, which are thought to involve in
sensorimotor transformation, in the regulation of goal-directed
attention to both stimulus and response, and in instrumental
learning (Monfardini et al., 2013). The fronto-striatal network
consists of the left dorsal striatum, the anterior ventro-lateral,
and dorso-lateral prefrontal cortices, ventral lateral prefrontal
cortex, and the SMA. During instrumental learning, this
network is thought to facilitate goal-directed processes (Yin and
Knowlton, 2006; Balleine et al., 2007; Graybiel, 2008; Yin et al.,
2008; Packard, 2009; White, 2009; Ashby et al., 2010; Balleine
and O’doherty, 2010). In early phases of learning, the cerebellar
network, located bilaterally in the cerebellum, is involved in
outcome processing and assessment. It is also related to cognitive
planning and procedural learning. Moreover, the cerebellar
structures play a role in the acquisition of new motor patterns
learned through observation (Grafman et al., 1992; Appollonio
et al., 1993; Pascual-Leone et al., 1993; Gomez-Beldarrain et al.,
1998).

The third phase is the response where the learner retrieves
learned S-R contingencies and makes a response when seeing the
stimulus. After making a response, if the outcome is incorrect,
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FIGURE 4 | Neural working model of observational learning. It can be divided into three phases: observation, acquisition, and response.

then it activates the error-monitoring network comprised
of the middle cingulate cortex, the posterior medial frontal
cortex (pMFC), the anterior insula, and the posterior superior
temporal sulcus (pSTS; Radke et al., 2011). Usually, action
and outcome are accompanied by a shift from feedback-based
performance to response-based performance, and action and
outcome can be learned well, both actively and by observation
(Bellebaum and Colosio, 2014).

OBSERVATIONAL LEARNING vs.
IMITATION

Previous studies on observational learning have focused on
the learning of novel motor patterns through imitation and
mirror-like mechanisms (Monfardini et al., 2013). In imitation
tasks used in these studies, participants did not need to search
for the correct response to the current stimuli from multiple
observations. Instead, they were required to imitate other people’s
actions regardless of the outcomes. Classical imitation research
has suggested that the main circuitry of imitation consists of
the superior temporal sulcus and the mirror neuron system,
which includes the posterior inferior frontal gyrus, and ventral
premotor cortex, and the rostral inferior parietal lobule [see
Iacoboni (2005) for a review]. Several studies have found
that the frontoparietal putative mirror neuron system (pMNS),
which consists of the ventral and dorsal premotor cortex,
the inferior parietal lobule and adjacent somatosensory areas,
and the middle temporal gyri, was strongly activated while
participants were observing others’ actions during the acquisition
of motor patterns (Caspers et al., 2010). Moreover, the pMNS was
also recruited when participants were watching others’ actions
without the need to imitate, or they simply executed those actions
(Monfardini et al., 2013).

However, the role of pMNS is ambiguous in observational
learning of arbitrary visuomotor associations because the

differentiation between actions that would result in positive
feedback and actions that lead to negative feedback remain

unexplored. In observational learning tasks, no novel motor
responses have to be acquired during learning stages. Instead,

new associations have to be established between the stimulus

presented, acquired motor responses, and the associated

outcomes. Monfardini et al. (2013) found that in line with
activities of the pMNS, as outlined in the literature, both

observational learning and individual trial-and-error learning

activated a brain network that was also involved in simple action
execution and observation. The increase in activations following
outcome presentation was larger in observation learning than
in trial-and-error learning in most trials. However, during the
LeO task, the BOLD signal was larger in practice than in
observation. The comparatively lower activation during the
observation stage compared to the practice stage is a common
finding in studies on pMNS and might be explained by the
fact that only ∼10% of premotor neurons respond to action
observations in primates (Gallese et al., 1996; Keysers et al.,
2003). It is therefore challenging to infer why observational
learning induces a slightly larger BOLD signal than trial-and-
error learning does in somatosensory motor regions. Researchers
hypothesized that the BOLD signal in the somatosensorimotor
regions were more activated in LeO due to the fact that unlike in
the trial-and-error learning condition, responses were not given
by the participants during the S-R acquisition stage (Monfardini
et al., 2013). Thus, participants might be strong to mentally re-
enact the observed response upon knowing whether it was to be
associated with the stimulus or not. Without overt execution, it
would be important to use additional mental re-enactments of
others’ actions to consolidate the S-R association that needs to be
established during the learning process. This notion is consistent
with proactive control in instruction-based learning, where goal-
relevant information is actively maintained in preparation for the
anticipated high control demand (Cole et al., 2018).
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VENTRAL STRIATUM AND SOCIAL
LEARNING

Burke et al. (2010) found that the ventral striatum, a brain region
that has been found to be frequently related with the processing
of prediction errors in individual instrumental learning, showed
the inverted coding patterns for observational prediction errors.
Despite the fact that Burke et al. (2010) did not present
participants with a game situation and there was no way that
the behavior of the confederate would affect the probability of
participants obtaining the reward, this inverse reward prediction
error encoding of the confederate’s behavioral outcomes was
supported by previous studies emphasizing the critical role of
the ventral striatum in competitive situations. Nevertheless, the
following explanations must be carefully assessed, given that
Burke et al. (2010) did not include non-social control trials in
their task design. For example, the ventral striatum is involved
when a competitor is punished (e.g., received less money than
oneself). This gives rise to several future research directions
including the role of the ventral striatum in learning from each
other. In the meantime, are positive reward prediction errors a
sophisticated result of viewing others’ loss during observational
learning, or it is simply rewarding to see the misfortune of
others? Recent data suggested the perceived similarity between
the personalities of the participant and the confederatemodulates
activities in the ventral striatum when observing a confederate
succeed in a non-learning task. In action-only learning scenarios,
the individual outcome prediction error signals from the ventral
striatum not only increase the selection accuracies of one’s own
outcome-oriented choices but can also refine predictions of
others’ choices based on information about their past actions
(Burke et al., 2010).

CONCLUDING REMARKS

In conclusion, observational learning is an important cognitive
process in both animals who do not have language and
humans whose infants imitate and learn from adults during
development and early learning stages. We surveyed three
kinds of methodological approaches in the investigation of
this cognitive process, with emphasis on different stages of
learning as well as on different modeling aspects. LPFC
is essential for cognitive flexibility, which is required in
observational learning where subjects have to rapidly learn
rules from observing others’ actions and outcomes associated
with these actions. Trial-and-error learning and observational
learning share some networks both during acquiring rules and
applying rules, although observational learning also involves
some additional networks. A neural working model has been
developed for observational learning consisting of three phases:
observation, acquisition, and response. This model is important
because it disentangled the sub-processes and neural systems
involved in observational learning. It provides foundations
for future cognitive neuroscience and translational clinical
research. Observational learning is different from imitation,
both conceptually (observational learning involves processing

of others’ actions and outcomes to know how to react when
encountering the same situation, whereas imitation only requires
the subject to replicate others’ actions) and neuroscientifically
(the mirror neuron system is thought to be critical in imitation
and is only partly activated in observational learning).

Future research questions include (a) how the observational
learning processes in sports could be optimized to facilitate
motor skill acquisition and improve performance, (b) how
the brain activity patterns shift with practice in observational
learning, and (c) how observational learning is employed in
human infants that have not fully developed language abilities
and how the brain supports this cognitive process. Imitation
has been studied in children with the aim to understand
its relationship with development (Sebastianutto et al., 2017).
However, relatively little attention has been paid to observational
learning from a developmental perspective. Unlike adults,
neuroimaging methods such as fMRI and transcranial magnetic
stimulation (TMS) cannot be applied to infants, making it
challenging to directly analyze brain activation patterns in
the study of observational learning. Previous works using
electroencephalogram (EEG) have elucidated the properties of
the mu rhythm in infants during imitation (e.g., Marshall and
Meltzoff, 2014), and it would be important for future studies to
investigate how observational learning relates to development in
infants and how observational learning differs from imitation in
infants using EEG.

As observational learning and imitation allow for scenario-
specific adaptive behavior, learning and task execution,
increasing interest has been shown in the application of findings
in both fields to computational modeling, artificial intelligence,
and robotics (Liu et al., 2018). More specifically, research has
demonstrated that biologically inspired learning models could
be implemented to enable robotic learning by imitation and
allow for human-robot collaboration (Chung et al., 2015).
Furthermore, modeling of imitation and observational learning
using robots facilitates testing and refinement of hypotheses in
developmental psychology and human-robot interaction. In one
previous study, developmental robots were used to model human
cognitive development and to examine how learning could be
achieved through interaction that involves mutual imitation
(Boucenna et al., 2016). Taken together, in future studies, it would
be of considerable relevance to examine how understanding of
observational learning processes and imitation could lead to
advancements in the fields of robotics and cognitive modeling.

From a clinical-translational perspective, previous research
has revealed that functional connectivity of some of the
LPFC networks are impacted in patients who suffer from
traumatic brain injuries (Hampshire et al., 2013) or patients
with neurodegenerative disorders (Grafman et al., 1992).
As an example, patients with Parkinson’s disease who had
abnormal striatum function showed slower acquisition
of contingency reversal learning paradigms (Williams-
Gray et al., 2008). Therefore, another sensible future
direction is to determine whether the connectivity effects
observed during simple observational learning can provide
clinical diagnostic markers in populations that suffer from
cognitive impairments.
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Limitations
The current review focused on neuroimaging literature
of observational learning using healthy participants.
Other methodologies (e.g., electrophysiology and lesion
studies) may further confirm the role of each brain region
in observational learning in our review. Moreover, a
review on studies from atypical participants (e.g., infants,
aging adults, people with neurological conditions) may
provide further insights on the relevance of observational
learning to other aspects (e.g., developmental theories
and rehabilitation).
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