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Abstract: Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes great economic
losses in sericulture. Many genes play a role in viral infection of silkworms, but silkworm metabolism
in response to BmNPV infection is unknown. We studied BmE cells infected with BmNPV. We
performed liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based
non-targeted metabolomics analysis of the cytosolic extract and identified 36, 76, 138, 101, 189, and
166 different molecules at 3, 6, 12, 24, 48, and 72 h post BmNPV infection (hpi) compared with
0 hpi. Compounds representing different areas of metabolism were increased in cells post BmNPV
infection. These areas included purine metabolism, aminoacyl−tRNA biosynthesis, and ABC trans-
porters. Glycerophosphocholine (GPC), 2-hydroxyadenine (2-OH-Ade), gamma-glutamylcysteine
(γ-Glu-Cys), hydroxytolbutamide, and 5-pyridoxolactone glycerophosphocholine were continuously
upregulated in BmE cells post BmNPV infection by heat map analysis. Only 5-pyridoxolactone was
found to strongly inhibit the proliferation of BmNPV when it was used to treat BmE cells. Fewer in-
fected cells were detected and the level of BmNPV DNA decreased with increasing 5-pyridoxolactone
in a dose-dependent manner. The expression of BmNPV genes ie1, helicase, GP64, and VP39 in
BmE cells treated with 5-pyridoxolactone were strongly inhibited in the BmNPV infection stage.
This suggested that 5-pyridoxolactone may suppress the entry of BmNPV. The data in this study
characterize the metabolism changes in BmNPV-infected cells. Further analysis of 5-pyridoxolactone,
which is a robust antiviral molecule, may increase our understanding of antiviral immunity.
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1. Introduction

Biochemical factors, including small molecules, can vary with development, metamor-
phosis, and immune responses in insects [1]. The silkworm, Bombyx mori L. (Lepidoptera:
Bombycidae), has been domesticated for silk production for more than 5000 years. B. mori
is important in the silk industry of China, India, and other developing countries, and is
also a useful model for genetics and immunology studies [2–5]. Bombyx mori nucleopolyhe-
drovirus (BmNPV) baculovirus is a major pathogen of the silkworm and causes serious
economic losses [6,7]. Genetics and molecular biology studies have generated antiviral
strains and revealed immunological responses [8–12]. However, the resistance mechanism
remains unclear.

Previous studies have explored the B. mori resistance mechanism using genome,
transcriptome, or proteasome analysis. Using a genome-wide microarray in midgut tissue
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of the Indian silkworm (B. mori), many differential expressed genes were characterized
in a resistant race (Sarupat) and a susceptible race [13]. Sagisaka et al. compared the
transcriptome from silkworm ovary cell lines pre and post BmNPV infection. They found
that the expression of BmEts, BmToll10-3, tetraspanin, MMPvali-ant1, and ABC transporter
was increased while the expressions of HSP20 and HSP90 were reduced by BmNPV
infection [14]. Comparison of fat body samples and midgut samples from susceptible
and resistant silkworm strains by transcriptome analysis showed that the number of
alternative splicing events in the BmNPV-susceptible silkworms was greater than that
in the BmNPV-resistant silkworms [15]. Zhou et al. compared the transcriptomes of
two silkworm lines differing in their resistance to BmNPV and identified differentially
expressed genes including amino acid transporters, serine proteases, and serpins [16].
Wang et al. conducted a transcriptome study and found that cytochrome c (cytc) had a
significant response to BmNPV infection [17]. In a comparative proteomics study, arginine
kinase [18] was involved in the antiviral process of different resistant strains of silkworm
and caspase-1 and serine protease could also be related to antiviral activities [19]. Many
studies have identified the viral infection-related host genes but the metabolic responses
during the infection of BmNPV in silkworm and small intracellular molecules from the
silkworm that may suppress the proliferation of BmNPV are unreported.

Metabolomics is a high-throughput technique that can be used to study biological
processes involving small molecules [20]. Several small intracellular molecules, such as
cyclic 3′5′-adenosine monophosphate (AMP) or cyclic guanosine monophosphate (GMP),
calcium, DAG, IP3, and reactive oxygen and nitrogen species (ROS, NOS), have been
reported as second messengers and play roles in intracellular signaling pathways [20]. We
previously characterized cGAMP from the BmE cells post BmNPV infection at different
times. Based on the calibration curves of chemically synthesized cGAMP, we found that
the concentrations of cytosolic cGAMP increased upon viral infection. This revealed the
cGAMP–BmSTING pathway of the regulation of antiviral immunity in insects [10]. To
further study intracellular small molecules involved in intracellular viral infection, the
extraction method [21] of intracellular related small molecules was used and the cell
extracts post BmNPV infection were analyzed by LC-MS/MS technology.

We used BmE cells infected with BmNPV and performed liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomics
analysis of the cytosolic extract. We identified 36, 76, 138, 101, 189, and 166 differential
metabolites at 3, 6, 12, 24, 48, and 72 h post infection (hpi) compared with 0 hpi sep-
arately. Compounds that increased in the cells post BmNPV infection included those
involved with purine metabolism, aminoacyl−tRNA biosynthesis, and ABC transporters.
Glycerophosphocholine (GPC), 2-hydroxyadenine (2-OH-Ade), gamma-glutamylcysteine
(γ-Glu-Cys), 4-hydroxytolbutamide, and 5-pyridoxolactone were continuously upregulated
in BmE cells post BmNPV infection and screened for further analysis. BmE cells were treated
with these small-molecule metabolites and BmNPV simultaneously. Only 5-pyridoxolactone
strongly inhibited the proliferation of BmNPV. The amount of BmNPV DNA decreased
significantly with increasing 5-pyridoxolactone in a dose-dependent manner.

2. Results
2.1. Metabolites in the BmE Cells Infected with BmNPV

The metabolomics of BmE cells post BmNPV infection at 0, 3, 6, 12, 24, 48, and
72 hpi were analyzed by LC-MS/MS. A total of 265 metabolites were identified. Total ion
chromatograms (TICs) of different samples are shown in Figure S1. Among the metabolites
were amino acids, fatty acids, organic acids, sugars, sterols and lipids, and alkanes, with
the remainder categorized as unclassified metabolites. OPLS-DA analysis showed a clear
separation between samples except at 3 hpi. The difference in metabolic characters then
increased and was sustained from 24 to 72 hpi (Figure 1). This result implies that the
metabolic characters between these time points are different.
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Figure 1. OPLS-DA of identified metabolites between samples (six biological replicates).

2.2. Differential Analysis of the Identified Metabolites Following BmNPV Stimulation

To highlight differences in the metabolites in BmE cells at different infection stages,
differential analysis was performed using data from 0, 3, 6, 12, 24, 48, and 72 hpi. The
256 metabolites were identified separately in 3, 6, 12, 24, 48, and 72 hpi, when compared
with 0 hpi. There were 11 upregulated and 3 downregulated metabolites at 3 hpi/0 hpi
(Figure 2A, Table S3_1), 11 upregulated and 7 downregulated metabolites at 6 hpi/0 hpi
(Figure 2B, Table S3_2), 23 upregulated and 56 downregulated metabolites at 12 hpi/0 hpi
(Figure 2C, Table S3_3), 28 upregulated and 5 downregulated metabolites at 24 hpi/0 hpi
(Figure 2D, Table S3_4), 100 upregulated and 39 downregulated metabolites at 48 hpi/0 hpi
(Figure 2E, Table S3_5), and 88 upregulated and 34 downregulated metabolites at 72 hpi/0 hpi
(Figure 2F, Table S3_6).

2.3. Pathway Analysis of the Identified Metabolites

The metabolites were located in the KEGG database and used to determine the path-
ways involved in host response to BmNPV. In total, there were 262 differential metabolites,
which participated in 33 pathways (Table S4). There were nine pathways enriched in
BmE cells infected with BmNPV at 3 hpi. ABC transporters, aminoacyl–tRNA biosynthe-
sis, beta-alanine metabolism, citrate cycle (TCA cycle), arginine and proline metabolism,
pantothenate and CoA biosynthesis, glutathione metabolism, and histidine metabolism
changed significantly. There were six pathways enriched in BmE cells infected with Bm-
NPV at 6 hpi but only purine metabolism changed significantly. There were 15 pathways
enriched in BmE cells infected with BmNPV at 12 hpi. ABC transporters, aminoacyl–tRNA
biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, starch and sucrose
metabolism, butirosin and neomycin biosynthesis, galactose metabolism, and taste trans-
duction pathways changed significantly. There were 15 pathways enriched in BmE cells
infected with BmNPV at 24 hpi. Purine metabolism, aminoacyl–tRNA biosynthesis, alanine,
aspartate and glutamate metabolism, ABC transporters, TCA cycle, glutathione metabolism,
D-glutamine and D-glutamate metabolism, histidine metabolism, and proximal tubule
bicarbonate reclamation changed significantly. There were 20 pathways enriched in BmE
cells infected with BmNPV at 48 hpi. ABC transporters, purine metabolism, metabolic path-
ways, aminoacyl–tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis,
starch and sucrose metabolism, glutathione metabolism, TCA cycle, alanine, and aspar-
tate and glutamate metabolism changed significantly. There were 16 pathways enriched
in BmE cells infected with BmNPV at 72 hpi. Purine metabolism, metabolic pathways,
ABC transporters, glutathione metabolism, alanine, aspartate and glutamate metabolism,
starch and sucrose metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and
butirosin and neomycin biosynthesis changed significantly (Figure 3).
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Figure 2. The level of metabolites in BmE cells stimulated with BmNPV for 3 h (3 hpi) compared with
control (0 hpi) (A), 6 hpi with 0 hpi (B), 12 hpi with 0 hpi (C), 24 hpi with 0 hpi (D), 48 hpi with 0 hpi
(E), and 72 hpi with 0 hpi (F). Differential metabolites were screened by fold change ≥2 and ≤0.5.
Red plots represent upregulated metabolites, blue plots represent downregulated metabolites, and
grey plots represent non-differential metabolites.

Next, we used the R package for reactome pathway analysis to identify enriched
metabolic pathways and determined that all differential metabolites at each time point
(p < 0.05) mapped known biological processes (Figure 4). We observed that purine metabolic
pathways, ammonia acyl transfer RNA signaling pathways, and ABC signaling pathways
in different times continued to be the most greatly affected. These data suggest that these
pathways are important in BmNPV infection.

2.4. Patterns of Metabolites in BmE Cells Infected with BmNPV at Different Times

To compare the metabolites that changed continuously at different times, the metabo-
lites upregulated at three or more time points were screened and used for hierarchical
cluster analysis. Heat map and abundance analysis showed the differential metabolites
could be divided into two clusters. Cluster I contained mainly metabolites that were upreg-
ulated significantly at 48 and 72 hpi; Cluster II contained metabolites that were upregulated
post infection with BmNPV at discontinuous hpi. Then, metabolites including GPC [22],
2-OH-Ade [23,24], γ-GC [25,26], 4-hydrotobutamide [27], and 5-pyridoxolactone [28] that
were upregulated at the 4 hpi time point were selected as candidate metabolites that may
be important in BmNPV infection.
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Figure 3. Pathway analysis of differential metabolites at 3, 6, 12, 24, 48, and 72 h post
BmNPV infection.

Figure 4. Hierarchical cluster analysis and the heatmap of the metabolites continuously increased at
different infection stages.

Activated choline metabolism is a hallmark of carcinogenesis and tumor progression,
such that the levels of glycerophosphocholine and phosphocholine are elevated in all types
of cancer tests. Altered glycerophosphocholine (GPC) interacts with lipid and glucose
metabolic pathways in cancer [22]. The 2-hydroxyadenine (2-OH-Ade) molecule is formed
by hydroxyl radical attack on DNA bases and shows human genotoxicity. It may be the
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source of the mutations induced by reactive oxygen species [23]. A recent study revealed
isoguanosine is not formed by oxidative stress, but rather that it could be formed by a more
specific reaction such as, e.g., a post-transcriptional modification in RNA that may possess
novel and unknown functions [24]. Gamma-glutamylcysteine (γ-GC) is an intermediate
dipeptide of the GSH synthesis pathway and has anti-inflammatory properties. It repre-
sents a relatively unexplored option for sepsis treatment [25]. Supplementation with γ-GC
lessens oxidative stress, brain inflammation, and amyloid pathology and improves spatial
memory in a murine model of AD [26]. Hydroxytolbutamide (4-hydroxy tolbutamide) is a
hydroxylation byproduct of tolbutamide. Tolbutamide stimulates the secretion of insulin
by the pancreas [27]. The molecule 5-pyridoxolactone (a-pyracin) belongs to the class
of organic compounds known as pyridinecarboxylic acids. Both 5-pyridoxolactone and
4-pyridoxolactone are formed by dehydrogenation of pyridoxal or isopyridoxal during the
bacterial degradation of vitamin B6 by Pseudomonas MA-1 and Arthrobacter Cr-7, respec-
tively. They are hydrolyzed to the corresponding acids by distinct inducible lactonases [28].
Whether these endogenous small molecules play roles in the host response to BmNPV
infection has not been reported.

2.5. 5-Pyridoxolactone Is an Important Antiviral Molecule in Host

To analyze the function of candidate metabolites screened from the heatmap, we evalu-
ated whether increases in GPC, 2-OH-Ade, γ-GC, 4-hydrotobutamide, and 5-pyridoxolactone
protected cells from viral infection. BmE cells were infected with BmNPV-GFP at a multi-
plicity of infection (MOI) of 1. Viral titer measurements showed that increasing the amounts
of GPC, 2-OH-Ade, and γ-GC did not significantly affect the replication of BmNPV in
BmE cells, while 4-hydrotobutamide inhibited the infection of BmNPV at 2.5 µM and
promoted the proliferation of BmNPV at 20 µM. The increased dose of 5-pyridoxolactone,
a vitamin B6 metabolite, decreased the viral DNA imported to the cells at 48 hpi com-
pared with the control. The level of BmNPV DNA decreased significantly, with increasing
5-pyridoxolactone in a dose-dependent manner (Figure 5A). Fluorescence microscopy also
showed that virus production decreased in 5-pyridoxolactone-treated cells (Figure 5B).

To exclude the possibility that the toxicity of 5-pyridoxolactone decreased proliferation
of BmNPV, we treated groups of BmE cells with 0, 2.5, 5, 10, and 20 µM for 48 h separately.
A CCK-8 assay of BmE cells treated with 2.5, 5, and 10 µM of 5-pyridoxolactone for 48 h
showed no increased absorbance at 450 nm compared with the control (0 µM). On the basis
of the results of the LIVE/DEAD cell dyeing assays, the rate of dead cells in BmE cells
treated with 5-pyridoxolactone at 20 µM was not significantly increased compared with
untreated cells (Figure S2B). These results suggest that 5-pyridoxolactone has an antiviral
effect in host cells.

2.6. 5-Pyridoxolactone May Suppress the Invasion of BmNPV

The BmNPV genome encodes 136 genes, including essential and non-essential genes [29].
The expression of these genes follows an ordered time-level model, including four phases:
very early (0–4 hpi), late early (5–7 hpi), late (8–18 hpi), and very late (>18 hpi) [30]. ie1 [31]
of NPV is an essential gene in the very early stage, Helicase [32] is an essential gene in the
late early stage, and GP64 [33,34] and VP39 [35] are essential genes in the late infection
stage. To further analyze the period when 5-pyridoxolactone was active in inhibition of
BmNPV infection, we collected BmE cells post BmNPV infection at 0, 3, 6, 12, 24, and
48 h and determined the gene expression of Ie1, Helicase, GP64, and VP39 (Figure 6). The
proliferation of BmNPV was significantly suppressed from 3 to 48 hpi, suggesting that
5-pyridoxolactone decreased the invasion of BmNPV.
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Figure 5. The 5-pyridoxolactone significantly inhibits the proliferation of BmNPV. (A) BmE cells were treated with 0, 2.5, 5,
10, and 20 µM GPC, 2-OH-Ade, γ-GC, 4-hydroxytobutamide, 5-pyridoxolactone, and BmNPV at MOI of 1, separately, and
total genomes were extracted and relative viral DNA level was determined by qPCR at 48 hpi. (B) Fluorescence microscopy
(GFP) of 20 µM GPC, 2-OH-Ade, γ-GC, 4-hydroxytobutamide, and 5-pyridoxolactone, separately, treated together with
BmNPV cells or only BmNPV cells (scale bar = 200 µm). The data are displayed as mean ± SD of three independent
experiments. Statistically significant differences between the mean values were determined by Student’s t-test (* p < 0.05,
** p < 0.01, ns—no significant difference).

Figure 6. The 5-pyridoxolactone significantly inhibits the expression of BmNPV genes at different
infection stages. (A–D) Expression of BmNPV ie1 (A), helicase (B), gp64 (C), and vp39 (D) in BmE
cells treated with 10 µM 5-pyridoxolactone and BmNPV, separately or together, at 48 hpi. Statistically
significant differences between the mean values were determined by Student’s t-test (* p < 0.05,
** p < 0.01, *** p < 0.001, ns—no significant difference).
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3. Discussion

Many studies have evaluated genomic, transcriptomic, and proteomic levels to study
antiviral genes [36–39], but there are few metabolomics studies that have screened for
small molecules in the host to inhibit the proliferation of BmNPV. We collected samples
from cells infected with BmNPV at different times for metabolite extraction. LC-MS/MS
analysis revealed that the number of differential metabolites in BmE cells increased with
the infection time and the number of upregulated metabolites increased significantly.
However, the downregulated metabolites showed a trend of increasing during the early
infection stage and then decreasing. The pathways enriched by the differential metabo-
lites were analyzed. ABC transporter, aminoacyl transport RNA, and purine metabolic
signaling pathways were significantly enriched. Hierarchical cluster analysis and the
heatmap of the identified metabolites from the BmNPV-infected BmE cells showed GPC,
2-OH-Ade, γ-GC, 4-hydrotobutamide, and 5-pyridoxolactone were continuously upreg-
ulated post BmNPV infection. We exposed BmE cells to BmNPV and GPC, 2-OH-Ade,
γ-GC, 4-hydrotobutamide, and 5-pyridoxolactone separately, or BmNPV only. Prolifera-
tion of BmNPV was suppressed only in 5-pyridoxolactone-treated cells and this occurred
in a dose-dependent manner. Finally, the inhibition of proliferation of BmNPV from 3 to
72 hpi suggests that 5-pyridoxolactone plays an important role in the early-infection stage
of BmNPV.

In this study, we identified the intracellular metabolites of BmE cells infected with
BmNPV at different times. Although multiple metabolic signaling pathways were en-
riched during BmNPV infection, ABC transporter, aminoacyl–transport RNA, and purine
metabolism changed significantly at almost all infection stages. Among them, the ABC
transporter pathway has been identified in multiple proteome and transcriptome stud-
ies [9,40]. In previous studies, knockout of the V-ATPase subunit gene BMgn016795A of
the ABC transporter pathway resulted in a significant decrease in proliferation of BmNPV
in BmE cells [8]. The endosomal acidification mediated by this gene may play a role in the
process of BmNPV entering cells, although the mechanism is unknown. The aminoacyl–
transporter RNA pathway was also identified, related to the antiviral mechanisms of the
silkworm in transcriptome analysis of resistant and susceptible B. mori strains following
BmNPV infection. However, the relationship between the purine metabolism and BmNPV
infection in BmE cells requires further study.

This study showed that 5-pyridoxolactone was continuously increased in BmE cells
infected with BmNPV and that this was beneficial to cells in response to BmNPV infec-
tion. The 5-pyridoxolactone is a product of the vitamin B6 degradation pathway. The
5-pyridoxolactone molecule is present in both insects and mammals, but its function is
typically unknown. The discovery of 5-pyridoxolactone provides new research targets
for the host–virus interaction. Functional analysis of this molecule may help reveal the
defense mechanism used by the host against the virus and aid in the development of
antiviral medicines.

4. Materials and Methods
4.1. Cells and BmNPV

BmE cells [41] and BmN4-SID1 cells [42] were maintained at 27 ◦C in Grace’s medium
or IPL-41 medium supplemented with 10% (v/v) fetal bovine serum, penicillin, and strep-
tomycin (Gibco, Carlsbad, CA, USA). BmNPV-GFP was used in this study. Viruses were
propagated in BmE cells as previously described [43].

4.2. Sample Collection and Metabolite Extraction

BmE cells (3× 106) infected with BmNPV at 0, 3, 6, 12, 24, 48, and 72 hpi were collected
in 100 µL of 40% (v/v) acetonitrile/40% (v/v) methanol/0.1 N formic acid methanol. This
slurry was incubated for 30 min at −20 ◦C and concentrated at 4 ◦C for 15 min [21]. The
supernatant was moved to a clean centrifuged tube, dried for 3 h in a vacuum concentrator,
and then dissolved in 100 µL water.
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4.3. LC-MS/MS Analysis

Ten microliters of each sample was injected into a Thermo Fisher Scientific Ultimate
3000 system (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an Agilent
Zorbax C18 column (3 µm, 2.1 × 150 mm, Agilent). The ionization source parameters
were set as follows: positive mode; capillary temperature, 250 ◦C; and spray voltage,
2.3 kV. The flow phases used were A: 10 mM tributylamine plus 15 mM acetic acid in
97:3 water:methanol, and B: methanol. The gradient used was 99% A:1% B for 2.5 min;
80% A:20% B for 7.0 min; 35% A:65% B for 7.5 min; 5% A:95% B, for 9.01 min; and 99%
A:1% B for 10 min. High-resolution accurate mass data were acquired in positive mode
using a Thermo Scientific Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific)
operated at a resolution of 70,000. The voltage of the electrospray source was set to 3.5 kV
in the positive mode. Full scan MS spectra were acquired in a mass range from m/z 100 to
1000. The raw data were analyzed using the Component Extraction algorithm in SIEVE
2.0 software (Thermo Fisher Scientific) to detect the metabolites. The intensity threshold
was set to 3,000,000, and three databases were chosen to identify the metabolites: Human
Metabolome Database (HMDB), Metlin Metabolite Database, and Kyoto Encyclopedia of
Genes and Genomes (KEGG). The m/z tolerance was set to 5 ppm for the database search.

4.4. Data Preprocessing and Analysis

Raw data files were converted into AIA data format and sent to MS online (https:
//xcmsonline.scripps.edu/index.php accessed on 20 June 2021) [1]. The metabolic peaks
were identified by comparing their mass spectra with both raw data files and the NIST
2011 (version 2.0, National Institute of Standards and Technology, Gaithersburg, MD, USA)
library and standard compounds. Only a relative score greater than 700 was considered to
be a good match. Orthogonal partial least squares discriminant analysis (OPLS-DA) [44]
was performed using SIMCA-P software (version 14.0) to obtain the separated trend of
sample sets. To show patterns of metabolite abundance in different samples, a heat map
was created by using MetaboAnalyst online software (http://www.metaboanalyst.ca/
faces/home.xhtml accessed on 20 June 2021) [45]. To reveal the metabolic differences of
BmE cells infected with BmNPV at 0, 3, 6, 12, 24, 48, and 72 hpi, the metabolites identified
were subjected to differential analysis. Differential metabolites were identified following a
previously described method [46], with only metabolites that changed ≥2 fold (enriched
metabolites) or ≤0.5 (decreased metabolites) in relative ratios (p-value < 0.05) considered
to be significantly altered.

4.5. Pathway Analysis

All the identified metabolites were submitted to the KEGG pathway database (http:
//www.kegg.jp/kegg/pathway.html accessed on 20 June 2021) to obtain the KEGG ID and
the pathway ID. The KEGG ID and the pathways in which the metabolites are involved
were obtained. Metabolites that were not identified in the database were not used for
further analysis. Pathway enrichment was performed using the Metabolomics Pathway
Analysis (MetPA) program as previously described [47].

4.6. Real-Time PCR

Total RNA was isolated from cells using the Total RNA Kit (Omega, Norcross, GA,
USA) and reverse transcribed by GoScript TM Reverse Transcription System (Promega,
Madison, WI, USA). Fluorescence real-time PCR analysis was performed using Ex Taq II
(Takara, Kusatsu, Japan) on a 7500 fast Real-Time PCR System (Applied Biosystems, Bed-
ford, MA, USA) with a program consisting of an initial denaturing step of 30 s at 95 ◦C and
40 amplification cycles consisting of 5 s at 95 ◦C, followed by 30 s at 60 ◦C.

4.7. Measurement of Viral DNA Load

At the indicated time points, BmNPV-infected BmE cells were harvested and sus-
pended in PBS. Total DNA from each sample was prepared with a TaKaRa MiniBEST

https://xcmsonline.scripps.edu/index.php
https://xcmsonline.scripps.edu/index.php
http://www.metaboanalyst.ca/faces/home.xhtml
http://www.metaboanalyst.ca/faces/home.xhtml
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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Universal Genomic DNA Extraction Kit (Takara, Kusatsu, Japan) according to manufac-
turer protocol. The viral DNA abundance of BmNPV was examined by the expression of
GP64 gene. The silkworm GAPDH gene (BGIBMGA003186-TA: GAPDH) was used for
normalization. Sequences of primers are listed in Table S1.

4.8. Cell Toxicity and Tests

BmE cells were treated with 0, 2.5, 5, 10, and 20 µM of 5-pyridoxolactone for 48 h.
The viability of BmE cells was examined with a LIVE/DEAD Viability/Cytotoxicity Kit
(Molecular Probes, Wokingham, UK) and a Cell Counting Kit-8 (Beyotime, Shanghai,
China) as previously described [48].

4.9. Statistics

The results are expressed as the means ± s.e.m. Statistically significant differences
between the mean values were determined by Student’s t-test (* p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001). Silkworm experiments were performed in biological triplicate
with the indicated number of silkworms per group. Cell culture experiments were collected
from three or five independent cultures for each sample.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147423/s1.
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