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Cells are richly equipped with nuclear receptors, which act as ligand-regulated
transcription factors. Peroxisome proliferator activated receptors (PPARs), members of
the nuclear receptor family, have been extensively studied for their roles in development,
differentiation, and homeostatic processes. In the recent past, there has been substantial
interest in understanding and defining the functions of PPARs and their agonists in
regulating innate and adaptive immune responses as well as their pharmacologic potential
in combating acute and chronic inflammatory disease. In this review, we focus on
emerging evidence of the potential roles of the PPAR subtypes in macrophage biology.
We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell
function, microbial infection, and inflammatory diseases.
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INTRODUCTION

Peroxisome proliferator activated receptors (PPARs) are ligand-dependent transcription factors
that are structurally conserved members of the nuclear receptor superfamily (1). PPARs influence a
variety of cell signals including cellular differentiation and development (2–4), lipid metabolism (5),
the insulin signaling network (6), homeostasis (7) and tumorigenesis (2, 3, 8). In 1960, scientists
showed an increased number of peroxisomes in the livers of rats treated with hypolipidemic drugs.
A decade later, this increase was attributed to certain members of the nuclear receptor family. In
1990, Issemann and Green cloned these receptors for the first time and demonstrated that
hepatocarcinogens promote the proliferation of peroxisomes in rodents through these receptors,
and thus named them Peroxisome Proliferator Activated Receptors (PPARs) (9). Three PPAR
isoforms have been identified thus far: PPARa, PPARb/d and PPARg. They each have distinct
patterns of function and tissue distribution, and are expressed in various cell types including
immune cells (6, 10, 11), epithelial cells (12) and endothelial cells (13, 14). All PPARs utilize a
common domain organization (Figure 1A) with a slightly variable amino-terminal that contributes
to transcriptional activation function, and a central highly conserved DNA binding domain that
contains a zinc motif (15). A ligand-binding domain at the carboxy-terminal end confers their
ligand-binding property, regulates ligand-dependent transcriptional activation and repression
functions, and contributes to receptor homo- or heterodimerization (Figures 1B, C) (16, 17).

PPARg is the most extensively characterized and researched member of the PPAR subfamily
and consists of two isoforms, PPARg1 and PPARg2, that are expressed mainly in adipose tissue.
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They mediate adipocyte differentiation by regulating the
expression of genes that are involved in lipid metabolism and
insulin signaling (18). PPARa is the second most studied PPAR,
expressed mainly in liver and immune cells which regulate lipid
catabolism, especially during fasting conditions (19). The third is
PPARd, (aka PPARb) which is highly active in skeletal muscle
where it is also involved in regulating fatty acid catabolism
(20, 21). PPARd activation also increases insulin sensitivity,
improves lipid homeostasis, and prevents weight gain. Though
PPARs are extensively studied, their role in molecular and
cellular signaling in immune cells has limited understanding.

PPARs also regulate the functions of the innate immune
system such as macrophage function and differentiation (5, 17,
22, 23). Thus, there has been substantial interest in
understanding and defining the functions of PPARs and their
agonists in regulating gene expression in macrophage biology
and how that relates to acute and chronic inflammatory diseases
(22). Few studies attempted to discuss the role of PPARs in
macrophage function, and the discussion is generally limited to
Frontiers in Immunology | www.frontiersin.org 2
PPARg (6, 10, 22, 24). Since all three isoforms of PPARs regulate
each other’s expression through feedback loops, it is worthwhile
to understand their role together. In this review, we begin with a
brief introduction of PPAR signaling and mechanism, and then
highlight recent developments that provide insight into how
isoforms of PPAR and their agonists can regulate several steps
involved in the initiation, proliferation, and resolution of
inflammatory responses in macrophages, especially in the
context of microbial infection and inflammatory diseases.
TRANSCRIPTIONAL MECHANISM
OF PPARs

PPARs regulate several metabolic and inflammatory signaling
pathways during infection through both positive and negative
regulation of gene transcription (22, 25). The positive regulation
comes from direct binding of PPARs to peroxisome proliferator
A B

C

FIGURE 1 | PPAR isoforms and their transcriptional regulatory function. (A) A schematic of the domain architect of PPAR isoforms PPARa, PPARb/d and PPARg.
(B) Cartoon showing ligand binding site in PPARs. (C) Ligand independent and dependent transcriptional regulatory mechanism of PPARs.
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hormone response elements (PPREs) present in the vicinity of
target genes. PPARs predominantly bind as heterodimers with
retinoid X receptors (RXRs), either in presence or absence of
ligands (Figure 1C), to stimulate transcription activity (23, 25)
For example, PPARa increases expression of carnitine palmitoyl
transferase (CPT)-I, an enzyme located in the mitochondrial
outer membrane controlling fatty acid b-oxidation (23, 25),.
Additionally, PPARs negatively regulate target genes by
constitutively binding, along with nuclear co-repressors, to the
PPREs of target genes which often function as transcriptional
repressors in absence of ligands (Figure 1C). For example, NCoR
and SMRT decrease transcriptional activity of PPARg thus
preventing iNOS induction by LPS. Also, PPARs bind directly
to transcriptional factors involved in inflammation including
NF-kB and AP1, inhibiting their transcriptional activity. This
phenomenon is termed as ‘trans-repression’ (Figures 1C, 2A, B)
(23, 25).

Trans-activation is mainly regulated by recruiting co-
activators (Figure 1C), which enhance activation of PPAR-
regulated genes. For example, PPAR coactivator-1a (PGC-1a)
Frontiers in Immunology | www.frontiersin.org 3
is a co-activator of both PPARa and PPARg. Repression,
trans-repression, and trans-activation mechanisms of
transcriptional control of PPARs has been extensively studied
and reviewed elsewhere. In the following section, we discuss
recent progress in understanding how PPARs and their agonists
regulate the metabolic and inflammatory signaling of
macrophages in response to infection and inflammatory diseases.
INFLAMMATION AND INFECTION

Inflammation is a host response that targets invading infectious
agents and tissue injury through recruitment of immune cells
and repair machinery. Macrophages detect pathogen associated
molecular patterns (PAMPs) present on microbes using pattern
recognition receptors (PRR) (26–28). For example, toll-like
receptor 4 (TLR4) is a PRR that recognizes lipopolysaccharides
(LPS) present on gram-negative bacteria cell walls (28). In
addition to recognizing diverse microbial components, many
toll-like receptors also detect endogenous danger signals
A

B

FIGURE 2 | Role of PPARs in bacteria-induced inflammatory signaling. (A) Schematic illustrating LPS/bacteria induced inflammatory signal promoting transcription
factors. Whereas PPARs interacts with and modulates transcription factors involved in microbe induced inflammation. (B) Schematic depicting gene expression of
PPARs during infection. PPARA level is higher during inflammatory phase whereas PPARG is higher during resolution phase.
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associated with tissue injuries and inflammatory diseases. Upon
microbial invasion or purified ligand stimulation, TLRs promote
rapid activation of major signal dependent transcription factors:
nuclear factor-kB (NF-kB), activator protein 1 (AP1), and
interferon regulatory factors (IRFs) (10, 28) (Figure 2A). These
transcription factors work together to rapidly induce genes that
trigger the initial inflammatory response, promote antimicrobial
activity, and activate development of acquired immunity. It is
important for macrophages to sustain sufficient inflammation to
kill invading microbes. This sustained inflammation is
maintained by several cytokines upregulated during initial
stimulation which promote a forward transcriptional loop due
to the autocrine and paracrine effects of cytokines (26, 29, 30).
However, sustained inflammation can lead to collateral tissue
damage (30). Therefore, negative feedback loops are essential to
limit the extent of inflammation and promote resolution.
THE LINEAGE-DETERMINING ROLE OF
PPARs IN TISSUE-RESIDENT
MACROPHAGE POPULATIONS

Tissue-resident macrophages support embryonic development
and tissue homeostasis. During early embryonic stage pre-
macrophage are colonize entire embryo and rapidly diversify
transcription programme depending on tissue specific
transcription factor need. PPARs, most notably PPARg, play a
role in defining the lineage of tissue-resident macrophages,
whereas other PPAR isoforms contribute lesser. PPARg is
required for the transcriptional modulation in regulating
differentiation of pre-macrophages to alveolar macrophages
(31, 32), Kupffer cells (33), adipose-associated macrophages,
and intestinal macrophages (Figure 3). It has been
demonstrated that granulocyte-macrophage colony-stimulating
factor (GM-CSF) promotes the expression of PPARg, one of the
major transcription factors regulating differentiation of pre-
macrophage to alveolar macrophages (31, 32). Although,
molecular mechanism underlying role PPARs in lineage
determination of tissue macrophage deserves to be explored,
several studies, in the past have reported the role of PPARs in
macrophage polarization.
MACROPHAGE POLARIZATION
AND PPARs

Macrophages are phagocytic innate immune cells, whose functions
include scavenging microbes and apoptotic and necrotic cells, as
well as playing a role in lipid homeostasis and tissue remodeling.
Macrophages possess functional heterogeneity, in that they uptake
different functions depending on signaling factors and metabolic
changes (26–28, 30). For example, upon sensing invading pathogens
and Th-1 cytokines such as IFNg, macrophages assume immune
reactive form (pro-inflammatory/classical activation state, M1) to
phagocytose pathogens. In contrast, after encountering Th-2
Frontiers in Immunology | www.frontiersin.org 4
cytokines such as IL4 and IL13, macrophages assume immune
tolerant form (anti-inflammatory/alternative activation state, M2)
to help with tissue repair and angiogenesis in injured tissues (27, 30).
Impaired functions of both immune reactive and immune tolerant
states of macrophages could lead to host tissue damage and
development of chronic disease (10, 30, 34–36).

PPARg activation suppresses the immunoreactive state of
macrophage as reported by suppression of immune reactive
cytokine markers such as NOS2, TNFa, IL6, IL1b and MCP1
in murine macrophages (37), whereas its activation promotes
immunotolerant state markers such as CD36, IL13, Arg1, Ym1,
Fizz1, CD206, IL4, and IL10 in murine macrophages (22, 38–41).
PPARg deficient mouse macrophages also showed an increase in
Th1 cytokines such as TNF-a, IL1-b, IL-6, IL-12 and a reduction
of Th2 cytokine IL10 when induced with LPS (42). PPARg also
inhibits the expression of HIF1a, which plays key role in
inducing the immune reactive phenotype, and promotes
Arginase 1 expression, which is a hallmark marker of the
immune tolerant macrophage, in mice (43). The evidence
makes it clear that PPARg is in charge of, or at least promotes,
the immune tolerant state of macrophages. This is further
evidenced by how PPARg responds to infection in vivo.

As stated, the function of immune tolerant macrophages
includes post-infection repair, which includes the cleanup of
debris (44). PPARg agonists have been shown to increase Fcg
receptor-mediated opsonized phagocytosis in murine alveolar
macrophages (45, 46) demonstrating a possible pathway in
which PPARg controls the cleanup process. In terms of repair,
one study showed that PPARg deficient mice had an increase in
pulmonary collagen deposition following influenza infection
(47), demonstrating PPARg’s role is proper tissue repair post-
FIGURE 3 | PPARs and tissue-resident macrophage. The schematics
depicts the lineage determining role of PPARs in tissue resident macrophage,
showing PPARG but not PPARA is major transcription that contributes
towards defining the tissue-resident macrophage.
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infection. Again, PPARg shows itself to be a good promoter of
the immune tolerant macrophage phenotype.

PPARg can also affect macrophage polarization in a ligand-
independent manner through trans-activation. For example,
after alternative activation through exposure to IL4,
macrophages displayed a remodeled and more accessible
chromatin profile, an upregulation of PPARg, and no changes
in RXR levels. Upon subsequent stimulation with IL4, PPARg
bound to DNA independently of ligands through the recruitment
of P300 and RAD21, leading to further anti-inflammatory
activity (48). Additionally, PPARg transcriptional activity has
been induced in a ligand-independent manner by insulin and C-
peptide. Neither insulin nor C-peptide affected PPARg
transcription levels. Also, the addition of PPARg antagonist
GW9662 had no effect on insulin and C-peptide stimulation of
PPARg, confirming its ligand-independent activity (49).

As for PPARa, one study demonstrated that activating
human cells with PPARa agonist WY-14 643 led to an
upregulation of Th1 cytokines such as IL-1b-induced
inflammatory cytokines (50). Furthermore, extracts from
PPARa deficient mice demonstrated higher levels of IL13 and
GATA-3 (51), which is a vital transcription factor for Th2
differentiation (52). This demonstrates how PPARa promotes
the immune reactive state through inhibiting the immune
tolerant state of macrophages. However, PPARa has also been
shown to be involved in tissue repair. Activation of PPARa using
WY 14,643 led to a reduction of acute injury and vascular leakage
in perforated mouse lungs (53). Additionally, PPARa activation
contributes to rapid repair of intestinal epithelium during SIV
infection in macaque models (54). While this does seem
contradictory, there is nothing in these studies that suggest
that these repairs are related to macrophage polarization, so
the idea that PPARa promotes the immune reactive macrophage
phenotype is not ruled out.

Out of all the three members of the PPAR family, PPARd has
the least amount of research conducted on it. There is evidence
relating PPARd to the promotion of Th2 cytokines, suggesting its
essential relationship with alternative activation of macrophages,
however. IL-13 and IL-4 are examples of Th2 cytokines that
become active through STAT6 activation (55). Additionally,
adipocytes secrete Th2 cytokines involved in alternative
activation, as macrophages incubated with adipocyte
conditioned medium (CM) displayed an inhibition in pro-
inflammatory Th1 cytokines such as MCP-1 and TNFa while
displaying an upregulation of immune tolerant marker genes
such as Mgl1 and Mgl2 (56). When PPARd-deficient mice were
incubated with adipocyte CM, there was an inhibition of STAT6
activity, inhibiting alternative activation of macrophages. There
was also an inhibition of transcription of immune tolerant
markers Mgl1, Mgl2, and Mrc2 and an upregulation of Th1
cytokines such as MCP-1, TNFa, and IL-6 (57). This study
suggests that PPARd expression in macrophages is essential for
adipocyte-induced activation of immune tolerant state of
macrophages. This hypothesis is further corroborated by other
studies. GW501516, a PPARd agonist, inhibits transcription of
Th1 cytokines such as IL-6, IL1b, TNFa, and NF-kB as well as
Frontiers in Immunology | www.frontiersin.org 5
neutrophil and macrophage infiltration in mice (58). PPARd
activation has also been shown to suppress IFNg in mice (58, 59).
Another study directly demonstrated that transferring PPARd-
deficient bone marrow into wild type mice led to an inhibition of
alternative activation of macrophages (60). We conclude that
PPARd, similarly to PPARg, promotes the immune tolerant
phenotype and inhibits the immune reactive phenotype of
macrophages, while PPARa promotes the immune reactive
phenotype while inhibiting the immune tolerant phenotype.
The members of the PPAR family indirectly regulate each
other on their effects on macrophage differentiation through
competing cytokines.
MACROPHAGE FUNCTION AND PPARs

Upon infection, macrophages surge at the place of infection and
assume a pro-inflammatory, immune reactive state. Immune
reactive macrophages are programmed for phagocytosis and
killing of the invading pathogen by producing large amount of
reactive oxygen species (ROS). Since this infectious environment
is low in oxygen, immune reactive macrophages program
themselves to survive in low oxygen (hypoxic) conditions (61).
Within immune reactive macrophages, both aerobic glycolysis
and pentose phosphate pathways are induced upon activation
(Figure 4). Glycolysis promotes glucose uptake to produce
FIGURE 4 | PPARs in macrophage function and polarization. The schematics
depicts the biochemical steps involved in glycolysis and glucogenesis, and how
each pathway correlates to different immune states of macrophages. PPARA
regulates immune reactive state, glycolysis dominant state (red left side) and
PPARG regulates immune tolerant state, gluconeogenesis dominant state (blue
right side).
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pyruvate (Figure 4). However, under hypoxic conditions,
NADH cannot be oxidized to NAD+, a required electron
acceptor for the further oxidation of pyruvate. Therefore, in
hypoxic conditions, pyruvate is first reduced to lactate, accepting
electrons from NADH, and thereby regenerating the NAD+
needed for glycolysis to continue (62). In the immune reactive
macrophage’s mitochondria, the electron transport chain is
dampened, promoting production of mitochondrial reactive
oxygen species (mtROS) due to incomplete electron transfers
(Figure 4). Additionally, induction of pentose phosphate
pathways in immune reactive macrophages generates more
NADPH, which is needed for the NADPH oxidase to generate
cytosolic ROS and nitric oxide (63).

PPARs modulate both glycolysis and NADPH oxidase
induced ROS (Figure 4). PPARg diminishes glycolysis in mice
by promoting expression of 6-Phosphofructo-2-Kinase/
Fructose-2 ,6-Biphosphatase 3 (PFKFB3) , which in
gluconeogenesis pathway, converts fructose-2,6-bis phosphate
to fructose-6-phosphate and increases accumulation of fructose-
6-phosphate (Figure 4) (64). This indicates that PPARg prevents
macrophages from polarizing towards the glycolysis dependent
immune reactive state, further confirming its anti-inflammatory
effect on macrophages. Interestingly, PPARa, but not PPARg, is
essential for NADPH oxidase induced ROS generation in both
humans and mice (65). This is further evidence that PPARa
contributes to immune reactive macrophage polarization (66).

Immune tolerant macrophages, on the other hand, obtain
their energy from fatty acid oxidation and oxidative
phosphorylation for tissue repair and tissue remodeling (67).
In addition, macrophages can induce the constituent electron
transport chain, which is required for oxidative phosphorylation
and drives pyruvates into the Krebs cycle (Figure 4). Both
PPARa and PPARg promote the gene expression of several
molecules/enzymes involved in oxidation of fatty acid. For
example, PPARa and PPARg, in humans, promote expression of
mitochondrial fatty acid transporter carnitine palmitoyltransferase 2
(CPT2) and the hydroxyacyl-coenzyme A (CoA) dehydrogenase
trifunctional multienzyme complex subunit beta (HADHB) (68),
which catalyzes the final step of b-oxidation (Figure 4).

Considering PPARa promotes fatty acid oxidation, it may
seem as though PPARa is anti-inflammatory. However, the
promotion of fatty acid oxidation through PPARa also leads to
its inhibition through proinflammatory phospholipid by-
products. PPARa has been shown to promote leukotriene B4
(LTB4) synthesis through b-oxidation in rats. Interestingly,
LTB4 and other fatty acid derived molecules are ligands for
PPARa, thus this feedback loop promotes their own catabolism
and leads to resolution of inflammation (69) (Figure 4). Even
though PPARa contributes to fatty acid oxidation, it only does so
to regulate and inhibit itself to allow for less inflammation. Taken
together, it emerges again that PPARa is essential for promoting
the immune reactive state of macrophage whereas PPARg is
essential for promoting the immune tolerant macrophage.
PPARa demonstrates its ability to regulate its own pro-
inflammatory abil it ies through self-inhibition when
inflammation resolution is necessary.
Frontiers in Immunology | www.frontiersin.org 6
BACTERIA AND PPARs

When it comes to bacterial infection, PPARg activation appears
to correlate with poor outcome. PPARg activation in both
humans and mice has been shown to decrease the number of
neutrophils and macrophages as well as compromise bacterial
clearance, which could worsen complications such as influenza-
associated pneumonia (70). Several studies have shown that
known PPARg agonists contribute to caspase-associated
apoptosis of monocytes, T cells, and B cell progenitors (71–
73). PPARg has also been shown to attenuate neutrophil
migration and activation (74). This may explain how PPARg
can cause immunosuppression to the extent of increasing risk of
infection. This is further corroborated by a study that
demonstrated how PPARg knockout mice had an increased
effector response when infected with E. coli (75). This may also
explain why PPARg agonists have shown an increased risk in
cardiovascular dysfunction in humans (76), as there are many
species of bacteria that can increase risk of cardiovascular
disease. PPARg can certainly be seen as a therapeutic target for
infection and immune related diseases but should be done so
with the consideration of its indication of poor prognosis
through inhibition of bacterial clearance.

On the other hand, PPARa activation has been shown to be
protective against bacterial infections. Infection with Francisella
tularensis heavily upregulates fatty acid metabolism, which we
already know is regulated by the PPARa pathway (77). This may
be indirect evidence that infection with F. tularensis leads to
PPARa activation. PPARa activation using gemfibrozil has been
shown to decrease the bacterial load of Mycobacterium
tuberculosis infected mice while also inhibiting M. abscessus
induced hypersecretion of pro-inflammatory cytokines (78).
One more study using mice demonstrated similar results using
Pseudomonas aeruginosa (79). Another study demonstrated that
PPARa-deficient mice have a decreased survival rate during
bacterial sepsis as well as impaired liver metabolism (80). Again,
in contrast to PPARg, PPARa demonstrates a pro-inflammatory
phenotype, with it promoting cells’ abilities to kill bacteria,
especially considering we previously mentioned PPARa’s
ability to induce NADPH oxidase formation of ROS, which is
essential for bacterial clearance.

As for PPARd, there is unfortunately a lack of direct evidence
on its impact on bacterial clearance. Considering we do know its
similarities to PPARg in its promotion of immune tolerant
phenotype macrophages, we can hypothesize that its activation
also inhibits bacterial clearance. However, more studies would
need to be conducted to confirm this.
VIRUSES AND PPARs

In infection, too much inflammation can devastate the body. For
example, influenza infection can lead to a “cytokine storm”, a
hyper-induction of immune response that can lead to
complications and lung pathogenesis (81). Considering
excessive inflammation is tied to influenza related mortality,
December 2021 | Volume 12 | Article 783780
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PPARg has been considered as a therapeutic target to limit such
harmful inflammation (82). In a recent study, it was
demonstrated that in mouse alveolar macrophages, PPARg
mRNA levels were reduced after influenzaA infection and
respiratory syncytial virus infection (24). In contrast, the spike
protein of SARS-CoV-2 upregulates PPARg in macrophage-like
RAW264.7 cells (83). In another independent study, infection
with MERS-CoV upregulated PPARg in human macrophages
(84). It appears that PPARg is upregulated in certain viral
infections while downregulated in other viral infections.
Regardless, PPARg plays a significant role in the prognosis of
viral infections in general.

One study demonstrated that PPARg reduced the secretion of
influenza-induced proinflammatory cytokines TNF-a, IL-8, and
RANTES in humans (85). PPARg activation also leads to
decreased mortality in obese mice infected with influenza (86).
Furthermore, HIV infection in mice also leads to the hyper-
induction of proinflammatory genes such as TNFa, IL-1b, IFNg,
CCL2, CCL3, CXCL10, and iNOS, all of which has been shown to
be attenuated using PPARg agonists rosiglitazone and
pioglitazone (87). While PPARg activation leads to poor
prognosis in bacterial infection, it apparently leads to good
prognosis in viral infection through its inhibition of
hyperimmune response.

PPARa activation contributes to rapid repair of intestinal
epithelium during SIV infection in macaque models (54).
Interestingly, certain viral infections, such as Zika virus, have
been shown to modulate and dysregulate PPARa signaling
pathways in human cells (88). The core protein of hepatitis C
virus (HCV) was also found to inhibit PPARa expression in
humans (89). Another study confirmed that both PPARa and
PPARg are downregulated during HCV infection, and then
further downregulated during co-infection with HIV in
humans (90). Furthermore, activation of PPARa has been
shown to inhibit STING activation of type I interferons as well
as increase herpesvirus replication in infected mouse cells (91). It
appears that PPARa activation and an increase in viral load and
pathogenesis are heavily correlated, again showing an inverse
relationship between bacterial infection prognosis and viral
infection prognosis. PPAR agonists and antagonists may be
key therapeutic strategies depending on the type of infection.
PPARs AND INFLAMMATORY
BOWEL DISEASE

Inflammatory bowel diseases (IBD) including Crohn’s disease
(CD) and ulcerative colitis (UC) negatively impact the quality of
life of millions of people (92). CD consists of inflammation of the
mouth, anus, and intestines, while UC consists of inflammation
in the mucosal layer of the colon (93). Common pro-
inflammatory cytokines are associated with IBD such as TNFa,
IL-1b, IL-6, IFNg, and IL-12 (94) which are predominantly
secreted by inflammatory immune cells including neutrophils
and macrophages. Unsurprisingly, anti-inflammatory drugs are a
common treatment for IBD.
Frontiers in Immunology | www.frontiersin.org 7
Colon RNA seq data revealed the fact that both PPARa and
PPARg are down regulated during IBD disease progression (95,
96). Considering PPARg demonstrates anti-inflammatory
abilities and is highly expressed in the intestines (97), many
researchers see PPARg as a good treatment candidate target.
Rosiglitazone, pioglitazone, troglitazone and AS002, known
PPARg agonists, have demonstrated protection and recovery
from pathogenic inflammation in colitis mouse models (98, 99)
(Table 1). However, several PPARg agonists have failed in
clinical trials (Table 1).

Regarding PPARa, there is conflicting evidence on its role in
IBD. One study showed how the PPARa-UGT pathway increased
de novo bile acid synthesis, exacerbating mouse model colitis (131).
Another study used a recombinant protein (rSj16) taken from
bacteria and demonstrated its effects on inhibiting PPARa as well
as protecting against DSS-induced colitis in mice (132). When
mouse models were treated with fenofibrate, PPARa activation
increased in parallel to colonic inflammation (133). Although, it
should be noted that fenofibrates alter many different metabolic
pathways (134). One the other hand, several studies conclude the
opposite. When mice were treated with PPARa agonist Wy-14643,
there was a decrease in susceptibility to colitis (135). Additionally,
verbascoside (VB) acts as a collector of intracellular ROS, reducing
experimental colitis. PPARa-KO mice showed weaker VB-
mediated anti-inflammatory activity compared to wild type,
suggesting PPARa’s protective role against IBD (136). Also, in
PPARa-KO mice, innate immune cells decreased production of IL-
22 and antimicrobial peptides RegIIIb and RegIIIg as well as
calprotectin. This led to commensal dysbiosis as well as an
increased tolerance for gut bacteria that release proinflammatory
cytokines (137). Finally, an additional study demonstrated that
dexamethasone induced anti-inflammatory activity is weakened in
PPARa-KO mice (138).

Knowledge of PPARd and its role in IBD is severely limited.
One study showed that dual activation of PPARd and PPARg
using conjugated linoleic acid (CLA) downregulated both TNFa
and NFkb activation while upregulating TGF-b1 as well as
protecting against DSS and CD4 induced colitis in mice (139).
However, another study demonstrated that PPARd upregulates
COX-2 in mouse gut epithelial cells, leading to an increase in
macrophage-produced proinflammatory cytokines and
increased the risk of colonic inflammation (140).

In our previous study we demonstrated that activation of
PPARa or PPARg individually is not enough for protection
against Citrobacter-induced colon infection in mice. However, a
dual activation of both PPARa and PPARg using a balanced dual
agonist protected mice form Citrobacter-induced colon
infection (141).

Taking all this information, it appears that the use of anti-
inflammatory PPARg agonists prevent excessive inflammation in
colon. However, its prolonged use could lead to polarization of
gut macrophages towards an immunotolerant state which
eventually help the survival and replication of pathogenic gut
bacteria and inflate the development of IBDs. Additionally,
continuous use of PPARa agonists alone causes excessive
activation of NADPH oxidase and mitochondrial dependent
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TABLE 1 | PPAR agonists, effects, and market status.

Status Reference

rol, improves insulin Phase III clinical trials (100)

oves lipid and liver Approved in South Korea (101)

Preclinical (102)

Phase III clinical trials (103)
lesterol, and LDL FDA Approved (104)

apolipoprotein C-III FDA Approved (105)

Phase IV clinical trials (106)
FDA Approved (107)

Discontinued (108)

Discontinued (109)

t aggregation Discontinued (110)

Preclinical (98)
Phase II clinical trials (111)

Phase III clinical trials (112)
Phase II clinical trials (113)

Discontinued (114, 115)

Discontinued (115, 116)

Discontinued (117)
reases HDL Discontinued (118)

Discontinued (119)
Discontinued (120)

Discontinued (121)
Discontinued (122)

levels Discontinued (123)
Discontinued (124)
Preclinical (125)
Phase II clinical trials (126)
Phase III clinical trials (115)

(Continued)
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PPAR Agonist Indications Effect

PPARa Agonist
Elafibranor Atherogenic dyslipidemia, diabetes, obesity Increases HDL cholesterol, lowers triglycerides and LDL choleste

sensitivity
Lobeglitazone Diabetes Reduces blood sugar levels, lowers hemoglobin A1C levels, imp

profiles
WY 14,643 Lipid metabolism, adipogenesis, cell differentiation,

inflammation
–

Pemafibrate Nonalcoholic fatty liver disease, dyslipidemia Decreases lipid accumulation
Fenofibrate Primary hypercholesterolemia, mixed dyslipidemia,

hypertriglyceridemia
Increases lipolysis and HDL levels, reduces triglyceride levels, ch
levels

Gemfibrozil Hypertriglyceridemia, dyslipidemia Increases lipoprotein lipase synthesis and HDL levels, decreases
and LDL levels

Bezafibrate Hyperlipidemia Decreases LDL levels, increases HDL levels
Omega-3 Hypertriglyceridemia, myocardial infarction Decreases PGE2 levels and plasma triglyceride levels
PPARg Agonist
Rosiglitazone Diabetes Increases insulin-sensitivity, anti-inflammation and NFkb inhibition

Adverse effects: fluid retention, congestive heart disease
Pioglitazone Diabetes Increases insulin sensitivity and blood glucose uptake

Adverse effects: congestive heart failure, bladder cancer
Troglitazone Diabetes Antioxidant, vasodilator, anticonvulsant, anticoagulant, and plate

inhibitor
Adverse effects:
Liver disease

AS002 Ulcerative Colitis –

AMG-131 Diabetes Increases insulin sensitivity, decreases blood glucose levels
PPARd Agonist
Seladelpar Hyperlipidemia, primary biliary cholangitis Decreases holestatic pruritus and fatigue
GW501516 Dyslipidemia, obesity, cardiovascular diseaase Regulates fatty acid oxidation
PPARa/g Dual Agonist
Muraglitazar Diabetes Increases HDL, decreases LDL, triglycerides, and cholesterol

Adverse effects: increased risk of heart failure
Tesaglitazar Atherogenic dyslipidemia, diabetes Increase insulin sensitivity

Adverse effects: fibrosarcoma
Naveglitazar Diabetes Increases insulin sensitivity
Ragaglitazar Diabetes, dyslipidemia Decreases cholesterol, triglycerides, blood glucose, and LDL, inc
Farglitazar Hypoglycemia, hepatic fibrosis Decreases fibrosis
Imiglitazar Diabetes Decreases hypoglycemic activity

Adverse effects:
hepatotoxicity

Netoglitazone Diabetes Increases insulin sensitivity
Reglitazar Diabetes Decreases triglyceride levels, protects against neuropathy
MK0767 Dyslipidemia, diabetes Increases insulin sensitivity, decreases cholesterol and triglycerid
KRP-297 Diabetes Reduces lipid oxidation and plasma glucose
TZD18 Diabetes –

Chiglitazar Dyslipidemia, diabetes Increases insulin sensitivity
Aleglitazar Diabetes, heart disease Controls lipid and glucose level with minimal side effects
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ROS production, potentially leading to collateral host tissue
damage and inflammation. Therefore, balanced activation of
both PPARg and PPARa is the key to treat the IBD disease
and might be help prevent IBD disease progression, combining
the pro-inflammatory effects of PPARa and the anti-
inflammatory effects of PPARg.
PPAR AND ATHEROSCLEROSIS

Atherosclerosis is the leading cause of the development of
cardiovascular diseases. During hyperlipidemic conditions,
lipids sneak into the subendothelial layer of the aortic wall,
where oxidation of lipid alters it to form oxidized LDL (oxLDL).
Macrophages scavenge on oxLDL to process it. However, excess
oxLDL promotes oxLDL accumulation in macrophages, leading
to foam cell formation and atherosclerosis development.

PPARa activation was shown to promote low density lipid
(LDL) oxidation in humans and mice (65), as ROS can be
responsible for the oxidation of LDL and PPARa increases ROS
levels through NADPH oxidase. PPARa activation has also been
shown to inhibit LPS activation of iNOS (65), the inducible enzyme
that produces nitric oxide (NO). Normally, NO is responsible for
overall cardiovascular health (142), vasodilation (143), as well as
inhibition of LDL oxidation (144). However, in the presence of an
excess of superoxides, NO can react with the superoxides to create
peroxynitrite, a reactive peroxide that can lead to ROS and RNS
(reactive nitrogen species) (145). Interestingly, oxLDL has been
shown to activate PPARa (65). So far, PPARa has been described as
pro-inflammatory, yet it also appears to demonstrate self-regulatory
abilities. PPARa increases ROS/superoxide levels, as previously
stated, and uses oxLDL as a signal to know that such an increase
has taken place. In an effort to protect the cell from self-destruction
from the creation of too much ROS, PPARa disables an alternate
pathway that superoxides can interact with to create even more
potentially harmful reactive species, namely the iNOS activation
pathway (Figure 5).

Polyphenols, such as punicalagin, gallic acid, and ellagic acid,
derived from fruits such as pomegranates, have been shown to
activate PPARg activity (146). Activation of PPARg using these
polyphenols increases transcription and protein activity of
Paraoxonase 1 (PON1) in HuH7 hepatocyte cells (146). There
are also several studies that demonstrate a correlation between an
activation of PPARg, using agonists such as rosiglitazone and
several different statins, and an increase in PON1 activity (147–
151) (Table 1). Once PON1 forms, it associates with high-density
lipids (HDL) (152), where is performs several protective functions,
such as preventing lipid hydroperoxide formation on HDL as well
as protecting the activity of lecithin–cholesterol acyltransferase
(LCAT) (153), an enzyme important for HDL antioxidant
function and preventing oxidative stress (154). Furthermore,
HDL-associated PON1 has been shown to prevent oxidation of
low-density lipids (LDL) in humans (155, 156). When LDL is
oxidized (oxLDL), lipoperoxides and thiobarbituric acid reactive
substances are formed, which can cause oxidative damage. PON1
was shown to inhibit accumulation of these harmful agents inmice
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(157). By preventing the oxidation of LDL, PON1 and PPARg
demonstrate anti-atherosclerotic properties (158). Furthermore,
monocyte chemoattractant protein-1 (MCP-1), which is produced
from oxLDL, binds to oxLDL in order to attract macrophages to
uptake them. PON1 inhibits this production as seen in human
endothelial cells (158). Interestingly, oxLDL also inhibits activity
of PON1 in humans (159), possibly in an effort to
equilibrate oxidation.

Naturally derived polyphenols have also been shown to
increase transcription of paraoxonase 2 (PON2) through
activation of PPARg. This was further confirmed as known
PPARg agonist rosiglitazone was shown to stimulate PON2
expression in mouse macrophages (160). PON2 potentially
plays a protective role in the prevention of superoxide and
reactive oxygenated species (ROS). Normally within complex 3
of the electric transport chain (ETC), coenzyme Q10 (Q10)
donates an electron from QH2 to cytochrome C. Q10’s
transition phase, ubisemiquinone, is rather unstable and can
sometimes donate the electron to oxygen instead of cytochrome
C, when treated with ETC inhibitors, forming superoxides,
leading to ROS and oxidative stress (141). Interestingly, PON2
is not only localized within the inner mitochondrial membrane
where it is associated with complex 3, but it also binds with high
affinity to Q10 (161). Furthermore, PON2 deficient mice were
shown to have increased mitochondrial oxidative stress,
decreased complex 1 and 3 activities, decreased oxygen
consumption, and decreased ATP production (161),
demonstrating that lacking PON2 interrupts the ETC. All this
information suggests that PON2 associates with Q10, protecting
it from destabilization and preventing it from donating electrons
to oxygen to form superoxides and ROS. This would mean
PON2, and therefore PPARg, plays an antioxidant role in
preventing oxidative stress through the Q cycle pathway.

PPARg can also inhibit the production of ROS and oxidative
stress in other, more direct ways as well. Whenmouse macrophages
Frontiers in Immunology | www.frontiersin.org 10
were incubated with PPARg agonist prostaglandin D2 metabolite
15-deoxy-D12,14prostaglandin J2 (15d-PGJ2), the activities of pro-
inflammation transcription factors transcription factors AP-1,
STAT and NF-kB were antagonized (162). These three proteins
act as transcription factors for nitric oxide synthase (iNOS),
therefore PPARg inhibits the transcription of iNOS and the
accumulation of nitric oxide (163). Induction of iNOS has been
shown to increase ROS levels in mouse RAW264. 7 macrophages as
well (164). PPARg again demonstrates a suppressive role against
oxidative stress and ROS (Figure 6), which is why it has been such a
common target for anti-atherosclerotic therapy. However,
considering the previously stated increase in risk of infection, a
dual PPARa/g agonist would be a safer approach, especially
considering both PPARg and PPARa inhibit iNOS related
ROS production.
PPAR ANTAGONISTS AND THEIR
THERAPEUTIC POTENTIAL

PPARg antagonists such as GW9662 and T0070907 have been
shown to inhibition the uptake of apoptotic cells (165). As stated
before, immune-suppressive macrophage function includes post-
infection repair and cleanup and debris (44). This is further
evidence that PPARg promotes the immune-suppressive
phenotype of macrophages. PPARg antagonist use have also
been a strategy for therapy, although less common agonist
usage. For example, PPARg antagonists have shown an ability
to increase insulin-sensitivity and as well as inhibit adipocyte
differentiation, lipid metabolism, and lipid accumulation in
mouse models (166–169). PPARg antagonist Gleevec has also
been shown to increase the browning of white adipose tissue in
both humans and mice (170). Because of this, PPARg antagonists
have been seen as a potential therapy for type 2 diabetes and
obesity. PPARg antagonists have also been seen as a potential
FIGURE 5 | PPARa Inflammatory Pathways. This schematic visualizes how PPARa directly and indirectly influences inflammatory pathways using color coded lines
and arrows labeled in the box in the bottom left.
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therapy for cancer, as they have demonstrated antiproliferative
effects on cancer cells (171). This is also because fatty acid
metabolism is associated with tumorigenesis (172). They have
especially been seen as therapy for cancers in areas with high
amounts of adipose tissue such as breast cancer (173, 174).

As for PPARa antagonists, there is less research on their
therapeutic potential. They have mostly been seen has a potential
therapy for different types of cancer. One study demonstrated
that PPARa antagonist NXT629 induces apoptosis in chronic
lymphocytic leukemia cells using mouse models (175). Another
study using mouse models demonstrated that PPARa antagonist
GW6471 attenuates tumor growth in renal cell carcinoma (176).

PPARd antagonists have even less research backing them, but
they are generally seen the same way as PPARa antagonists in
their use in cancer therapy (177). One study even demonstrates
anti-psoriasis therapy in mice (178). Overall, PPAR antagonists
Frontiers in Immunology | www.frontiersin.org 11
are an interesting strategy for therapy, however, there does not
seem to be significant clinical research on them (Table 2). While
there is evidence of their therapeutic benefits, single PPAR
antagonists pose the same potential risks of single PPAR
agonists. Activating or inhibiting only one member of the
PPAR subfamily creates the risk of an overactive or
underactive immunity. There is not much research on dual or
pan PPAR antagonists, but the use of single PPAR antagonists
should be done with these potential risks in mind.
THE FUTURE OF PPAR IN THERAPEUTICS

In terms of clinical study and treatment, more are leaning
towards dual and pan agonists for the PPAR family. While
several have been discontinued, several new agonists are in
FIGURE 6 | PPARg Inflammatory Pathways. This schematic visualizes how PPARg directly and indirectly influences inflammatory pathways using color coded lines
and arrows labeled in the box in the bottom left.
TABLE 2 | PPAR antagonists, effects, and market status.

PPAR Antagonist Indications Effect Status Reference

PPARa Antagonist
TPST-1120 Cancer Inhibits fatty acid metabolism Phase I clinical trials (179)
GW6471 Renal cell carcinoma Inhibits fatty acid metabolism and glycolysis Preclinical (176)
NXT629 Chronic lymphocytic leukemia – Preclinical (175)
MK886 Lung adenocarcinoma – Preclinical (180)
PPARg Antagonist
GW9662 Cancer, obesity,

diabetes
– Preclinical (173)

T0070907 Cervical cancer – Preclinical (181)
SR-202 Obesity, diabetes – Preclinical (167)
Betulinic acid HIV, inflammation, malaria dysplastic

nevus syndrome, melanoma
Induces apoptosis, increases ROS and
caspase activation

Phase I clinical trials (182)

Gleevec Leukemia Inhibits tyrosine kinase Approved (183)
PPARd Antagonist
GSK-3787 Psoriasis – Preclinical (178)
SR13904 Cancer – Preclinical (177)
GSK0660 Psoriasis – Preclinical (178)
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preclinical and clinical trials (Table 1). We have demonstrated
the dueling relationship between PPARg and PPARa in terms of
macrophage differentiation, bacterial and viral clearance, IBD,
and atherosclerosis. A PPARg/a dual agonist seems to be more
promising in terms of therapeutics and activation of both
receptors would counter the each other’s side effects while still
providing better pharmacological effects (184). Another notable
example is how PPARg agonists have been used as a therapeutic
drug for increasing insulin resistance in diabetic patients as well
as lipid metabolism in patients with atherosclerosis. However,
clinical trials were halted when patients developed increased
risks for congenital heart disease (76). While studies of PPARg/a
agonists in relation to diabetes have been done before (185),
there has been a greater focus in more recent years on how these
dual agonists can treat diabetes with greater efficacy while also
limiting the risk of heart failure (76), utilizing both pro and anti-
inflammatory effects to our advantage. Another approach for the
same problem is using PPARa/d dual agonists, such as GFT505,
which have been shown to treat type 2 diabetes while altogether
avoiding the cardiovascular risk of PPARg agonists (186). The
same PPARa/d dual agonist has also been shown to demonstrate
hepatoprotective properties (187). Pan PPAR agonists are being
studied for many different conditions such suppressing
inflammation and increasing lipid oxidation (188), protecting
against metabolic disorders and fibrosis (189), and even
angiogenesis in ischemic mice (190).

Regarding direct crosstalk between PPARs, there is
unfortunately little evidence. Only one study provided evidence
Frontiers in Immunology | www.frontiersin.org 12
for direct crosstalk, demonstrating that PPARg inhibits PPARd
while PPARa inhibits PPARd as PPARd activates PPARa (191).
There is more evidence regarding indirect crosstalk, such as how
all three PPARs inhibit NF-kB signaling and function as
previously mentioned. There is also how PPARd increases
COX-2 transcription while both PPARg and PPARa inhibit it.
However, looking at indirect relationships gives little insight into
direct crosstalk, as there are many interfering pathways. More
studies must be done on how specific PPAR activation/inhibition
affects other PPAR transcription and activity in order to gain
greater insight on the outcomes of PPAR agonists as well as dual
and pan agonists.
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