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Background: Ischemic stroke is a leading cause of mortality and disability

worldwide. Microcirculatory dysfunction is the foremost hindrance for a

good clinical prognosis in ischemic stroke patients. Clinical researches show

that Chuanzhitongluo capsule (CZTL) has a curative effect during the recovery

period of ischemic stroke, which contributes to a good prognosis. However, it is

not known whether CZTL treats ischemic stroke by ameliorating

microcirculation dysfunction.

Objective: In this study, we investigated the influence of CZTL on

microcirculation and its underlying mechanism.

Methods: A rat model of acute microcirculatory dysfunction was established by

stimuli of adrenaline and ice water. The microcirculatory damage in model rats

and the efficacy of CZTL were assessed by detecting laser speckle contrast

imaging, coagulation function, hemorheology, vasomotor factor and

microcirculation function. The potential mechanism of CZTL action was

explored by the untargeted metabolomic analysis based on ultra-

performance liquid chromatography-quadrupole-time of flight-mass

spectrometry.

Results: Laser speckle contrast imaging showed that model rats suffered low

perfusion in ears, feet and tails, and CZTL treatment increased microcirculatory
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blood flow. Coagulation function detection results showed that CZTL

diminished the reduction of thrombin time, prothrombin time, activated

partial thromboplastin time and the elevated fibrinogen level caused by

acute microcirculatory dysfunction. Furthermore, CZTL could recover the

increased blood viscosity as well as the abnormal vasomotor and

microcirculation function in rats with acute microcirculatory dysfunction.

Metabolomics analysis indicated that CZTL might regulate sphingolipid

metabolism and arachidonic acid metabolism to exert protective effects on

microcirculation.

Conclusion: These results elucidated that CZTL was highly effective against

microcirculatory dysfunction and its potential mechanisms related with the

modulation of sphingolipid and arachidonic acid metabolic pathways. The

present study provided a new perspective on the clinical application of

CZTL, and it contribute to explore novel therapeutic drug against

microcirculatory dysfunction.

KEYWORDS

chuanzhitongluo capsule, microcirculatory dysfunction, laser speckle contrast
imaging, efficacy outcome, mechanism exploration

1 Introduction

Ischemic stroke, also called cerebral infarction or cerebral

embolism, is one of the most common cerebrovascular diseases.

According to the World Health Organization, incidences of

stroke have been increased by 70.0% in the past 30 years and

approximately 80% stroke cases are caused by ischemic strokes

(Feigin et al., 2022). Ischemic stroke is characterized by high rates

of mortality and disability and poor prognosis (Montellano et al.,

2021). The key of ischemic strokes treatment is to restore the

cerebral blood flow perfusion in the ischemic area (K. Yang et al.,

2021). However, microcirculatory dysfunction is a major cause of

poor prognosis for patients with ischemic stroke (Xu et al., 2022).

Microcirculation-targeted interventions to improve outcomes

after ischemic stroke need to be sought.

The microcirculation is the terminal vascular network of the

systemic circulation consisting of micro-vessels with diameters

less than 100 µm (den Uil et al., 2008). Microcirculation plays a

vital role in oxygen delivery and is responsible for the transport of

all blood-borne hormones and nutrients to the tissue cells

(Gutterman et al., 2016). Microcirculatory damage can be

caused by ischemia, reperfusion, inflammation, and hypoxia

(Widgerow, 2014); then the imbalance between vasodilating

and vasoconstricting substances, increased vascular

permeability, altered blood cell rheology and coagulation

defects begin to appear (Colbert and Schmidt, 2016). In turn,

microcirculatory dysfunction increases poor outcomes and

mortality in patients with stroke (Mejía-Rentería et al., 2019).

Clinicians assess the blood flow of microcirculation to guide

management of patients. Direct techniques were developed to

visualize the smallest vessels, such as micro-videoscope

techniques, video capillaroscopy, laser speckle contrast

imaging (LSCI) and side-stream darkfield imaging (Jansen

et al., 2018). Plenty of trials have shown vasodilator therapy

and antithrombotic therapy are well-established methods to

ameliorate microcirculatory dysfunction (den Uil et al., 2009;

Matskeplishvili et al., 2021). In clinical practice, the majority of

the commonly used medications has been shown to be

ineffective, and how best to treat microcirculatory dysfunction

is still unclear (Krishnan et al., 2021).

Traditional Chinese medicine is increasingly used to relieve

the symptom of stroke, because of its low-toxicity, few-side

effects and low-cost (Hao et al., 2017). Chuanzhitongluo

capsule (CZTL) is comprised of four blood-activating and

stasis-removing drugs: Whitmania pigra Whitman (shuizhi),

Ligusticum chuanxiong Hort. (chuanxiong), Salvia miltiorrhiza

bunge (danshen), and Astragalus membranaceus (huangqi). It

has the function of activating blood circulation to dissipate blood

stasis, and reinforcingQi to dredge collaterals. Clinically, CZTL is

accessible for using in restorative treatments of ischemic stroke

and is conducive to a good prognosis (Jingwen, 2020; Jiankang

and Jing, 2021). Microcirculatory dysfunction is the primary

obstacles to achieving a good prognosis in ischemic stroke

patients (Xu et al., 2022). Thus, we infer that the significant

clinical efficacy of CZTL may dependent on its effect on

microcirculatory dysfunction. CZTL is previously reported to

reduce the platelet maximum aggregation rate, fibrinogen and

D-dimer content in ischemic stroke patients (Jingwen, 2020;

Shijun et al., 2021). It has been shown that mechanisms of action

of CZTL include resistance to neuroinflammation and oxidative

stress and inhibition cell apoptosis (Haiyan et al., 2021; Yanfang

et al., 2021; Yaping et al., 2021). However, efficacy and

mechanism of CZTL on microcirculatory dysfunction remain

elusive.
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In the present study, we established an acute

microcirculatory dysfunction (AMD) rat model using an ice

bath and epinephrine hydrochloride. The effects of CZTL on

microcirculatory dysfunction were evaluated by measuring blood

flow, hemodynamic and coagulation function, vasomotor factor

and microcirculation function. Untargeted metabolomic

techniques revealed the molecular mechanism of CZTL

against microcirculatory dysfunction. This study provided a

foundation for further exploration and application of CZTL,

and suggested a unique therapeutic strategy for microcirculatory

dysfunction.

2 Materials and methods

2.1 Chemicals and reagents

Acetylsalicylic acid (ASA) (Dalian MeilunBio Co., Ltd.) was

prepared into 0.01 g/ml suspension with water. Chuanzhitongluo

capsule (Lunan Hope Pharmaceutical Co., Ltd., Linyi City,

Shandong Province, China; the batch number: 16200051) was

prepared into 1 g/ml suspension with water. Epinephrine

hydrochloride injection (EHI) (Grandpharma China Co., Ltd.,

Wuhan City, Hubei Province, China) was provided by

Department of pharmacy, Guangdong Provincial Hospital of

Chinese Medicine. Urethane were purchased from Aladdin.

Activated partial thromboplastin time (APTT) reagent, CaCl2
solution, prothrombin time (PT) reagent, thrombin time (TT)

reagent, fibrinogen (FIB) reagent and buffer solution were

purchased from Chengdu Aikesilun Medical Technology Co.,

Ltd. (Chengdu, China). Chromatography-grade formic acid and

methanol were obtained from Thermo Fisher Scientific,

United States.

2.2 Animals and treatments

All animal protocols were approved by the Ethical

Committee of Guangdong Provincial Hospital of Chinese

Medicine (approval number: 2021011). Male SD rats aged

8–10 weeks (220 ± 20 g) were obtained from Guangdong

Medical Laboratory Animal Center (license key:

44007200101062), and they were bred and maintained at

the Guangdong Provincial Hospital of Chinese Medicine

(license key: 00298102). The room temperature was

maintained at 25°C with a 12 h: 12 h light-dark cycle. The

mice were randomly divided into six groups (12 mice/group):

control group (CON), model group (MOD), positive control

group (POS), CZTL low-dose administration group (CZTL-

L), CZTL medium-dose administration group (CZTL-M) and

CZTL high-dose administration group (CZTL-H). During

7 days before AMD modeling, the POS group was

administered ASA (0.1 g/kg) by gavage; CZTL

administration groups were administered CZTL (a low dose

of 0.16 g/kg, a medium dose of 0.32 g/kg and a high dose of

0.64 g/kg) by gavage; and the other groups were administered

water (1 ml/100 g). ASA and CZTL was dissolved in water,

and dosages were calculated based on the DuBois formula

(Nair et al., 2018).

2.3 Rats model of acute microcirculation
dysfunction

The rats from MOD, POS and CZTL groups received

subcutaneous injection administration of 0.8 mg/kg EHI. After

2 h, the rats were soaked in ice-cold water for 4 min, and then re-

injected with EHI after a further 2 h. Control rats received a

similar volume of physiological saline at the same time points.

The rats were fasted overnight and sacrificed after 12 h.

2.4 Sample collection

After 12 h of modeling, all rats were anaesthetized with

urethane (1.5 g/kg, intraperitoneal). Rats blood was collected

from abdominal aorta. 2 ml blood was collected into vacuum

tubes with sodium citrate (1:9) for coagulation function

detection, 4 ml blood was collected in vacuum tubes with

heparin sodium for hemorheology detection and the

remaining blood was collected in vacuum tubes for serum

metabolomics analysis. Blood was centrifuged at 3500 rpm at

4°C for 10 min after collection. The separated serum samples

were put into −80°C before further use.

2.5 Efficacy evaluations

2.5.1 Laser speckle contrast imaging
Laser speckle contrast imaging (LSCI) was performed

using PeriCam PSI System (version: PeriCam PSI NR). A

785 nm laser was used for blood perfusion measurements, and

the speckle pattern in the illuminated area was monitored

using a 2448 × 2048 pixel CCD camera that took images at a

speed of up to 120 frames per second. To facilitate the

positioning of the imager relative to the subject, a visible

red laser (650 nm) was used to indicate the maximum

measurement area at a certain measurement distance. Rats

were placed on a flat table to keep them in the correct position

and to ensure that the working distance between the laser head

and the surface of foot (or ear or tail) was 100 mm. A separate

color camera was used for documentation, and the image

frame was chosen to be 40 mm (width) × 30 mm (height). A

sampling frequency of 16 Hz was chosen, and the average was

calculated from five images which left an effective frame rate

of one image/s. Pseudo-color images with perfusion scaled
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from blue (low perfusion) to red (high perfusion) were

obtained. On the basis of the real-time graphs provided by

the PimSoft version 1.5 software (Perimed AB, Stockholm,

Swedish), ROIs (regions of interest) were measured in feet,

ears and tails of rats. The semiquantitative perfusion unit as

well as the area were averaged over the sampling period. The

average perfusion was calculated by PimSoft version

1.5 software.

2.5.2 Coagulation function detection
The blood in sodium citrate vacuum tube was centrifuged at

3500 rpm for 10 min, and tubes were set into sample rack of

EC6800 automatic coagulation analyzer (Chengdu Aikesilun

Medical Technology Co., Ltd., Chengdu, China). The

automatic coagulation analyzer automatically absorbed plasma

50 μl into the sample cup and kept it warm at 37°C for 1 min, and

APTT reagent 50 μl was added and mixed. The mixture was kept

warm for 1 min and 0.025 mol/L CaCl2 solution 50 μl was added.

Then the coagulation time was recorded. Another 50 μl plasma

was absorbed into the sample cup, kept at 37°C for 3 min, and

mixed with 100 μL PT reagent, and the coagulation time was

recorded. 100 μl plasma was collected, preheated at 37°C and

mixed with 100 μL TT reagent, and the coagulation time was

recorded. At last, 200 μl of plasma was diluted with buffer

solution (1:10) and kept it warm at 37°C for 3 min, and 100 μl

of thrombin reagent was added to the tube to measure the

content of FIB.

2.5.3 Hemorheology detection
The heparin sodium anticoagulant tubes were put into

sample tray of MEN-C100A blood rheometer (Jinan Meiyilin

Electronic Instrument Co., Ltd., Jinan, China), and high, medium

and low shear values of blood viscosity were detected. Then the

heparin sodium anticoagulant tubes were centrifuged at

3500 rpm for 10 min, and the plasma viscosity was measured

by MEN-C100A blood rheometer.

2.5.4 ELISA assays
ELISA kits of NOS (ml059067-2), vWF (ml003160-2), VE-

cadherin (ml782930-2) and IL-6 (ml102828-2) were obtained

from Shanghai Enzyme-linked Biotechnology Co., Ltd.

(Shanghai, China). The detection was approached according

to the instructions of kits on rat plasma.

2.6 Untargeted metabolomics analysis

2.6.1 Sample preparation
Frozen serum samples were thawed and dissolved at 4°C. The

serum (200 μl) was transferred to clean Eppendorf tubes.

Threefold volume of methanol was added to each tube. The

mixture was then vortexed for 1 min and kept undisturbed at 4°C

for 30 min, followed by centrifugation at 14000 rpm for 10 min.

The supernatant was transferred to a clean Eppendorf tube,

filtered for metabolomics analysis. Quality control (QC)

samples were prepared by mixing the same amount of serum

from each sample and using the same procedure as test samples

to extract metabolites. Methanol solvent was used as the blank

sample.

2.6.2 Serum metabolomics analysis
Metabolite separation was performed using a Waters acquity

ultra high performance liquid chromatography (UPLC) system

(Waters Corp., Milford, Massachusetts, United States) coupled

with a quadrupole time-of-flight mass spectrometer (TripleTOF®

5600 + System; AB SCIEX, Framingham, Massachusetts,

United States). Liquid-chromatographic separation for

processed serum samples was achieved on an Acquity UPLC

BEH C18 column (2.1 mm × 100 mm, 1.7 μm) maintained at

35°C. The mobile phase consisted of water with 0.1% formic acid

(mobile phase A) and methanol (mobile phase B). The gradient

program began with 2% B at 0–2 min, 2%–20% B at 2–3, 20%–

40% B at 3–9, 40% B at 9–18, 40%–72% B at 18–20, 72%–75% B

at 20–25, 75%–77% B at 25–26, 77%–85% B at 26–36, 85%–94%

B at 36–38, 94%–95% B at 38–50, 95%–98% B at 50–52, and 98%

B at 52–56 and then returned to the initial conditions with 8 min

for equilibration. The flow rate was 0.3 ml/min. The sample

injection volumes were 2 μl.

Mass spectrometry was performed with an electrospray

ionization ion source in the positive (ESI+) and negative

(ESI−) ion modes. The flow rate of ion source gas 1, ion

source gas two and the curtain gas were set as 50 psi, 50 psi,

and 35 psi respectively. The capillary voltage was set to 5500 V/-

4500 V at ion source temperature of 500°C. The declustering

potential voltage was 80V/-100 V. TOF-MS survey scan

(100–2000 Da) followed by 6 MS/MS scans (50–1500 Da) with

accumulation time of 0.25 and 0.1 s respectively. The collision

energy was set to −10 V and set to −40 V with a spread of ± 20 V

for MS/MS. For product ion, the ion release delay was 67 and the

ion cluster width was 25. Both the negative and positive ion

modes were applied with dynamic background subtraction.

2.7 Method validation

The precision, repeatability and stability of the analytical

procedure were validated using QC sample. Calibration

solution and blank samples analyzed at every five injection

intervals, and QC samples were inserted into every ten samples

regularly.

2.8 Data processing

LC-MS raw data were deconvolved using Progenesis QI

(Waters Corp., Milford, Massachusetts, United States). Peak
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picking, alignment, and area normalisation were carried out

using one of the QC data files as the reference. Significant

features extracted from raw data were aligned to significant

features in the reference sample, using a RT window ±

0.2 min and mass tolerance ± 5 ppm filters. Features were

annotated using accurate mass match and tandem MS data

with the human metabolome database (HMDB). Mass

tolerances of 5 and 5 ppm were applied for precursor and

fragment ions, respectively. Compounds with a fragmentation

score <20 were not annotated. Progenesis QI score,

fragmentation score, and isotope similarity were reported for

all annotations based on a combination of accurate mass and

fragmentation data, seen in Supplementary Table S1 concluding

3461 metabolite features in negative ion mode and

2426 metabolite features in positive ion mode.

2.9 Statistical analysis

The integrated data matrix was imported into the

SIMCA-P + (version 13.0) software package (Umetrics,

Umeå, Sweden), and the principal component analysis

(PCA) and orthogonal partial least-squares discriminant

analysis (OPLS-DA) were used to distinguish the overall

difference in metabolic profile among groups. The variable

important in projection (VIP) value was calculated and

obtained based on OPLS-DA. Metabolites with

VIP >1 were further subjected to univariate statistical

analysis to measure the significance of each metabolite

(seen in Supplementary Table S2).

The data was expressed as the mean ± standard deviation

(SD). The univariate statistical analysis were performed using

IBM SPSS statistics 18.0 software (SPSS Inc., Chicago, Illinois,

United States). Firstly, the Levene’s test was used for

homogeneity of variances. And then, one-way analysis of

variance (ANOVA) with Dunnett t post hoc test was used for

homogeneous variances, while ANOVA with Tamhane post hoc

test was used for non-homogeneous variances. p value less than

0.05 or 0.01 was considered statistically significant. The condition

of VIP >1 and p < 0.05 was used to screen the differential

expressed metabolites.

2.10 Pathway analysis

Pathway analysis of differential expressed metabolites was

performed using MetaboAnalyst 5.0 (https://www.

metaboanalyst.ca). Metabolites were mapped onto Homo

sapiens Kyoto Encyclopaedia of Genes and Genomes

(KEGG) metabolic network. p value of pathway were

calculated by hypergeometric test and pathway impact were

obtained from relative-betweeness centrality of topology

analysis.

3 Results

3.1 Efficacy ofChuanzhitongluo capsule in
acute microcirculatory dysfunction rats

3.1.1 Chuanzhitongluo capsule increased local
blood flow in the acute microcirculatory
dysfunction rats

To make ensure that the interval time between modeling and

blood collection was the same, some rats had no time to carry out

laser speckle contrast imaging. Finally, rats from CON group (n =

7), MOD group (n = 6), POS group (n = 5), CZTL-L group (n =

7), CZTL-M group (n = 6), and CZTL-H group (n = 8) were able

to obtain images of laser speckle contrast imaging. A region of

interest (marked with a white ellipse in Figures 1A–C) was

selected for maximizing the immutability of the analyzed area.

The speckle contrast values for each frame were averaged over

space, and the statistical processing results of microvascular

blood flow changes in ears, feet and tails of different groups

were displayed in the form of histogram.

LSCI analyses showed decreases of microvascular blood flow

in ears of AMD rats compared to healthy rats. In addition,

compared with the AMD rats, pre-administration of ASA and

CZTL significantly increased blood flow of ears. As in the case of

ears, more microvascular blood flow were observed in feet and

tails of drug administration groups.

3.1.2 Chuanzhitongluo capsule restored
coagulation function in the acute
microcirculatory dysfunction rats

The effect of CZTLon blood coagulation functionwasmeasured

by assessment of TT, PT, APTT and FIB contents in CON group

(n = 9),MOD group (n = 8), POS group (n = 8), CZTL-L group (n =

9), CZTL-M group (n = 9), and CZTL-H group (n = 7). As

illustrated in Figure 2, the TT, PT and APTT value were

significantly decreased (p < 0.01), and the FIB level (p < 0.01)

was significantly elevated inAMDrats in comparison to healthy rats.

The CZTL and ASA administration both prolonged time of TT, PT,

and APTT as well as down-regulated the FIB content, and changes

of PT and TT were statistically significant (PT: POS vs. MOD p <
0.05, CZTL-M vs. MOD p < 0.05, CZTL-H vs. MOD p < 0.05; TT:

POS vs.MOD p< 0.05, CZTL-H vs.MOD p < 0.05). Results showed

that CZTL medium-dose and high-dose administration showed

stronger effects for coagulation function than CZTL low-dose

administration.

3.1.3 Chuanzhitongluo capsule improved
hemorheology parameters in the acute
microcirculatory dysfunction rats

Rats from CON group (n = 9), MOD group (n = 8), POS

group (n = 8), CZTL-L group (n = 9), CZTL-M group (n = 9),

and CZTL-H group (n = 7) were included for the

hemorheological detection. The whole blood viscosity
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(WBV) at low shear rate, WBV at medium shear rate, WBV at

high shear rate and plasma viscosity (PV) were evaluated. The

WBV and PV significantly increased in the MOD group (p <
0.01, Figure 3), which indicated the rat model of AMD were

successfully established. In comparison to the MOD group,

the WBV at low/medium/high shear rate remarkably

decreased in POS and CZTL (CZTL-M and CZTL-H)

groups (p < 0.05). CZTL low-dose administration also

caused the decrease of WBV and PV with no statistically

significant (p > 0.05).

3.1.4 Chuanzhitongluo capsule affected
biochemical indexes in the acute
microcirculatory dysfunction rats

Rats plasma fromCON group (n = 7),MOD group (n = 6), POS

group (n = 7), CZTL-L group (n = 8), CZTL-M group (n = 8), and

CZTL-H group (n = 7) were used for ELISA assays. Nitric oxide

produced by nitric oxide synthase (NOS) was a key factor in

vasodilation. We found that NOS level was significantly increased

in ASA or CZTL groups (p < 0.05), while it was decreased in MOD

group (p < 0.01) (Figure 4A). The vascular endothelial (VE)-

cadherin regulating endothelial intercellular permeability were

decreased in AMD rats, and treatment of ASA or CZTL (low-

dose and medium-dose) could significantly increase the VE-

cadherin to normal levels (p < 0.05) (Figure 4C). In addition,

compared with the healthy rats, the AMD rats showed a decline

trend in vonWillebrand factor (vWF) content (p < 0.01), which was

crucial to repair vascular damage (Figure 4B). Administration of

ASA or CZTL (low-dose and medium-dose) counterbalanced the

decreased vWF level in AMD rats (p < 0.01). Finally, we also

examined the effects of CZTL on inflammatory responses in AMD

rats. As shown in Figure 4D, AMD rats exhibited extremely high

level of interleukin-6 (IL-6) (p < 0.01), which was reduced in ASA or

CZTL groups; CZTL administration partially reversed the

inflammatory responses in AMD rats.

3.2 Mechanism insight of
Chuanzhitongluo capsule against
microcirculatory dysfunction

3.2.1 Chuanzhitongluo capsule influenced
metabolic state in the acute microcirculatory
dysfunction rats

To explore the mechanism of CZTL against

microcirculatory dysfunction, we undertook an untargeted

FIGURE 1
The laser speckle contrast imaging image of rats ears (A), feet (B) and tails (C). CON, control group (n = 7); MOD, model of acute
microcirculation dysfunction group (n = 6); POS, positive control group (n = 5); CZTL-L, Chuanzhitongluo capsule low-dose administration group
(n = 7); CZTL-M, CZTL medium-dose administration group (n = 6); CZTL-H, CZTL high-dose administration group (n = 8). Statistical significance
indicates as asterisk (*) when comparing CON group with MOD group, and as hashtag (#) when POS, CZTL-L/M/H group with MOD group. *
presents p < 0.05, # presents p < 0.05.
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metabolomics analysis of rats serum from CON group (n = 9),

MOD group (n = 7), and CZTL-M group (n = 8). In view of

the similarity between the efficacy of medium-dose and high-

dose of CZTL and the consideration of drug safety, we

selected the CZTL-M group for the subsequent analysis.

The UPLC-Q/TOF MS was used to obtain metabolic

spectrums of serum samples (Figure 5). The regression

model of PCA was constructed to predict differences

among CON group, MOD group and CZTL-M

group. From PCA model score plots (Figures 6A,B),

positive and negative ion points had a significantly

separated trend between CON group and MOD group,

indicating metabolites in AMD rats serum were different

from that in healthy rats. Moreover, the metabolic profile

of AMD and CZTL-M showed a clear tendency for

separation. Our result showed that microcirculatory

dysfunction caused metabolic disorders and CZTL

administration also alter the metabolic status of AMD rats.

3.2.2 Chuanzhitongluo capsule changed
metabolites expression in the acute
microcirculatory dysfunction rats

In order to identify the characteristic metabolites

responsible for the separations among the CON group,

MOD group and CZTL-M group, OPLS-DA models

visualized the metabolic differences were established. VIP of

OPLS-DA model embodied the impact strength and

explanatory power of metabolite expression patterns on the

classification and discrimination of each group sample.

According to the condition of VIP > 1.0 and p < 0.05, there

were 62 differentially expressed metabolites in serum between

the CON group and MOD group, with 37 downregulated and

25 upregulated metabolites in AMD rats. Comparing with

AMD rats, CZTL administration led to 41 metabolites

upregulated and two metabolites downregulated (Figure 6C).

Taken together, 55 metabolites showed significant callback

trends in CZTL-M group (Table 1). They were

FIGURE 2
The results of coagulation function test. (A), prothrombin time (PT); (B), activated partial thromboplastin time (APTT); (C), thrombin time (TT);
(D), fibrinogen (FIB). CON, control group (n = 9); MOD, model of acute microcirculation dysfunction group (n = 8); POS, positive control group (n =
8); CZTL-L, Chuanzhitongluo capsule low-dose administration group (n = 9); CZTL-M, CZTL medium-dose administration group (n = 9); CZTL-H,
CZTL high-dose administration group (n = 7). Statistical significance indicates as asterisk (*) when comparing CON group with MOD group, and
as hashtag (#) when POS, CZTL-L/M/H group with MOD group. * presents p < 0.05, # presents p < 0.05.
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glycerophospholipids, nucleosides, eicosanoids, fatty acids,

phosphosphingolipids, porphyrins, and amino acids and

others.

3.2.3 Chuanzhitongluo capsule regulated
metabolomic pathways in the acute
microcirculatory dysfunction rats

To getmore insights into themolecularmechanism of CZTL, we

performed pathway analysis of 55 differentially expressed

metabolites. MetaboAnalyst 5.0 was used to analyze metabolites

by the MetPA (metabolomics pathway analysis) approach (Xia

and Wishart, 2010). The data of metabolites was imported into

Pathway Analysis to explore the weight of metabolic pathway, and

10 metabolic pathways were enriched. Particularly, seven metabolic

pathways were heavily highlighted with raw p < 0.05 or pathway

impact >0.05. They were sphingolipid metabolism, arachidonic acid

metabolism, glycerophospholipid metabolism, pyrimidine

metabolism, linoleic acid metabolism, porphyrin and chlorophyll

metabolism, arginine and proline metabolism (Figure 6D).

4 Discussion

Most patients with ischemic stroke had a poor prognosis

due to the microcirculatory dysfunction (Chung et al., 2019).

However, available therapeutic options (ie, thrombolysis and

surgical thrombectomy) were very limited so far (Miranda

et al., 2016). Extensive clinical evidences supported that

blood-activating and stasis-removing drugs provided

excellent efficacy in improving microvascular function and

clinical prognosis (Fang et al., 2022; Wang et al., 2021; M. X.

Zhang et al., 2022). Whitmania pigra Whitman was mostly

utilized in the localized venous congestion settings related to

flap surgical replantation and reconstructions (Shakouri and

Wollina, 2021). Ligusticum chuanxiong Hort. had satisfied

outcome in treating cerebrovascular disease by affecting

microcirculation and autophagy (Yu et al., 2020). Salvia

miltiorrhiza bunge was a famous Chinese medicine for

blood-activating and stasis-removing, and it was widely

used to treat cardiovascular diseases (L. L. Wang et al.,

FIGURE 3
The results of hemorheology parameters detection. (A), whole blood viscosity (WBV) at low shear rate; (B), WBV at medium shear; (C), WBV at
high shear; (D), plasma viscosity. CON, control group (n = 9); MOD,model of acute microcirculation dysfunction group (n = 8); POS, positive control
group (n = 8); CZTL-L, Chuanzhitongluo capsule low-dose administration group (n = 9); CZTL-M, CZTL medium-dose administration group (n = 9);
CZTL-H, CZTL high-dose administration group (n = 7). Statistical significance indicates as asterisk (*) when comparing CON group with MOD
group, and as hashtag (#) when POS, CZTL-L/M/H group with MOD group. * presents p < 0.05, # presents p < 0.05.
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FIGURE 4
The results of biochemical indexes assay. (A), nitric oxide synthase (NOS); (B), von Willebrand factor (vWF); (C), vascular endothelial (VE)-
cadherin; (D), interleukin-6 (IL-6). CON, control group (n= 7); MOD,model of acutemicrocirculation dysfunction group (n=6); POS, positive control
group (n = 7); CZTL-L, Chuanzhitongluo capsule low-dose administration group (n = 8); CZTL-M, CZTL medium-dose administration group (n = 8);
CZTL-H, CZTL high-dose administration group (n = 7). Statistical significance indicates as asterisk (*) when comparing CON group with MOD
group, and as hashtag (#) when POS, CZTL-L/M/H group with MOD group. * presents p < 0.05, # presents p < 0.05.

FIGURE 5
The base peak chromatogram of quality control samples in positive ion mode (A) and in negative ion mode (B).
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2017). CZTL was a mixed preparation, composed of

Whitmania pigra Whitman (shuizhi), Ligusticum

chuanxiong Hort. (chuanxiong), Salvia miltiorrhiza bunge

(danshen), and Astragalus membranaceus (huangqi). Serval

studies reported that CZTL improved neurological function

and reduced inflammatory reaction in patients with acute

cerebral infarction while reducing the incidence of adverse

reactions (Jingwen, 2020; Wang et al., 2021; Min et al., 2022).

However, whether the clinical efficacy of CZTL was connected

to its influence on microcirculation remained unclear. The

present study showed that administration of CZTL preserved

microcirculation in AMD rats induced by EHI and ice water.

Our findings were consistent with these clinical observations

and provided the mechanistic explanation for it.

The microvascular network of patients with ischemic stroke

was poorly perfused even if large-vessel occlusion was

diminished (Pedersen et al., 2012). It would result in adverse

clinical outcomes, thus methods for dynamic in vivo monitoring

of blood flow were critically required for ischemic stroke patients.

Laser speckle contrast imaging was a simple, fast and low-cost

imaging method for real-time visualization of blood flow

(Senarathna et al., 2013). In the past decades, LSCI was

readily accessible for many applications ranging from basic

physiology to clinical settings. LSCI was applied to image

FIGURE 6
The results of metabolomics analysis. (A), the score plot of principal component analysis in positive ion mode; (B), the score plot of principal
component analysis in positive ion mode in negative ion mode; (C), the results of pathway analysis. a represents sphingolipid metabolism, b
represents arachidonic acid metabolism, c represents glycerophospholipid metabolism, d represents pyrimidine metabolism, e represents linoleic
acid metabolism, f represents porphyrin and chlorophyll metabolism, g represents arginine and proline metabolism; (D), the heat map of
55 differentially expressed metabolites. CON, control group (n = 9); MOD, model of acute microcirculation dysfunction group (n = 7); CZTL-M,
Chuanzhitongluo capsule medium-dose administration group (n = 8).
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TABLE 1 Detailed information of 55 differentially expressed metabolites.

No. Adduct
Type

m/z RT
(min)

Compound ID Description Class Intensity
in MOD
(n =
7)

Intensity
in CON
(n =
9)

Intensity
in CZTL-M
(n =
8)

1 [M + H]+ 266.0738 0.86 HMDB0000162 L-Proline Amino acids, peptides, and analogues 13.2 ± 2.26 21.51 ± 6.18 18.17 ± 2.59

2 [M + H]+ 367.1208 0.86 HMDB0000089 Cytidine Pyrimidine nucleosides 7.53 ± 1.12 10.41 ± 1.48 7.98 ± 1.74

3 [M + H]+ 242.9831 1.24 HMDB0060689 Phosphoramide mustard Nitrogen mustard compounds 5.73 ± 1.24 6.67 ± 1.43 8.66 ± 1.81

4 [M + H]+ 258.1075 1.66 HMDB0000982 5-Methylcytidine Pyrimidine nucleosides 3.55 ± 0.33 4.24 ± 0.62 4.27 ± 0.63

5 [M + H]+ 384.1137 4.27 HMDB0000912 Succinyladenosine Purine nucleosides 2.91 ± 1.26 3.14 ± 0.88 4.7 ± 1.31

6 [M-H]- 565.1967 5.14 HMDB0012994 Leukotriene D5 Eicosanoids 27.39 ± 7.85 11.35 ± 2.77 25.08 ± 5.39

7 [M-H]- 119.0500 7.80 HMDB0062775 4-vinylphenol Sulfate Arylsulfates 23.03 ± 10.92 55.69 ± 19.24 26.61 ± 7.54

8 [M-H]- 858.5517 20.03 HMDB0012382 PS(18:0/20:3 (8Z,11Z,14Z)) Glycerophosphoserines 3.03 ± 0.66 4.7 ± 1.73 3.22 ± 1.22

9 [M-H]- 335.2218 21.16 HMDB0001085 Leukotriene B4 Eicosanoids 13.12 ± 2.55 10.8 ± 2.65 8.03 ± 2.4

10 [M-H]- 512.2981 27.14 HMDB0010379 LysoPC(14:0) Glycerophosphocholines 604.26 ± 156.31 915.82 ± 260.8 990.86 ± 262.06

11 [M + H]+ 518.3224 27.72 HMDB0010382 LysoPC(16:0) Glycerophosphocholines 64.07 ± v18.27 108.64 ± 26.71 89.49 ± 11.35

12 [M-H]- 562.3132 27.76 HMDB0010388 LysoPC(18:3 (9Z,12Z,15Z)) Glycerophosphocholines 333.43 ± 82.48 453.26 ± 106.15 452.51 ± 46.2

13 [M-H]- 480.1648 28.03 HMDB0000277 Sphingosine 1-phosphate Phosphosphingolipids 946.21 ± 295.82 1035.72 ± 224.94 1832.06 ± 586.36

14 [M + H]+ 494.3237 28.13 HMDB0010383 LysoPC(16:1 (9Z)) Glycerophosphocholines 525.68 ± 199.47 1251.79 ± 424.36 804.58 ± 225.34

15 [M-H]- 335.2201 28.39 HMDB0014347 Succinylcholine Quaternary ammonium salts 9.61 ± 1.83 6.11 ± 2.36 7.19 ± 2.82

16 [M-H]- 588.3296 28.86 HMDB0010404 LysoPC(22:6

(4Z,7Z,10Z,13Z,16Z,19Z))

Glycerophosphocholines 1370.07 ± 467.68 1714.79 ± 282.19 2004.9 ± 479.77

17 [M + H]+ 482.3229 29.18 HMDB0010381 LysoPC(15:0) Glycerophosphocholines 356.36 ± 96.13 657.43 ± 138.68 465.38 ± 138.02

18 [M-H]- 380.2565 29.41 HMDB0001383 Sphinganine 1-phosphate Phosphosphingolipids 180.78 ± 73.56 182.14 ± 47.81 416.84 ± 134.31

19 [M + H]+ 544.3397 29.59 HMDB0010396 LysoPC(20:4 (8Z,11Z,14Z,17Z)) Glycerophosphocholines 17355.96 ± 3141.48 27142.67 ± 3767.24 20578.88 ± 2578.97

20 [M-H]- 588.3300 29.64 HMDB0010395 LysoPC(20:4 (5Z,8Z,11Z,14Z)) Glycerophosphocholines 31859.89 ± 3568.08 43718.46 ± 3782.86 37600.31 ± 4605.97

21 [M-H]- 564.3300 29.74 HMDB0010386 LysoPC(18:2 (9Z,12Z)) Glycerophosphocholines 34455.31 ± 5984.84 35171.02 ± 5553.49 41544.27 ± 5640.4

22 [M-H]- 614.3448 30.09 HMDB0010402 LysoPC(22:5 (4Z,7Z,10Z,13Z,16Z)) Glycerophosphocholines 283.23 ± 121.98 438.81 ± 138.94 389.85 ± 120.57

23 [M + H]+ 580.2903 30.42 HMDB0000241 Protoporphyrin IX Porphyrins 52.8 ± 13.36 83.29 ± 27.23 83.6 ± 17.09

24 [M-H]- 590.3452 31.40 HMDB0010393 LysoPC(20:3 (5Z,8Z,11Z)) Glycerophosphocholines 538.68 ± 102.74 1147.8 ± 540.88 641.76 ± 172.82

25 [M-H]- 301.2173 31.91 HMDB0001999 Eicosapentaenoic acid Fatty acids and conjugates 544.35 ± 184.57 792.12 ± 227.74 701.48 ± 160.08

26 [M + H]+ 506.3587 31.92 HMDB0010408 LysoPC(P-18:1 (9Z)) Glycerophosphocholines 10.66 ± 5.12 14.28 ± 3.41 17.06 ± 4.18

27 [M-H]- 566.3460 32.51 HMDB0002815 LysoPC(18:1 (9Z)) Glycerophosphocholines 20142.28 ± 5278.28 28719.16 ± 6359.02 26362.47 ± 3699.74

28 [M-H]- 702.2743 32.77 HMDB0011511 LysoPE (20:0/0:0) Glycerophosphoethanolamines 715.71 ± 179.91 1104.04 ± 289.42 943.96 ± 103.94

29 [M-H]- 616.3615 33.25 HMDB0010401 LysoPC(22:4 (7Z,10Z,13Z,16Z)) Glycerophosphocholines 463.34 ± 150.55 679.36 ± 167.44 633.33 ± 172.24

30 [M + H]+ 480.3432 33.42 HMDB0010407 LysoPC(P-16:0) Glycerophosphocholines 44.18 ± 14.19 71.23 ± 16.33 56.33 ± 14.55

31 [M + H]+ 510.3551 33.75 HMDB0012108 LysoPC(17:0) Glycerophosphocholines 905.64 ± 287.31 1438.01 ± 289.73 1213.1 ± 210.13

32 [M + H]+ 548.3697 33.93 HMDB0010392 LysoPC(20:2 (11Z,14Z)) Glycerophosphocholines 175.58 ± 63.41 404.71 ± 182.36 261.16 ± 60.24

33 [M + H]+ 623.4288 34.50 HMDB0013325 2-trans,4-cis-Decadienoylcarnitine Fatty acid esters 15.91 ± 5.11 22.2 ± 6.22 24.84 ± 6.89

34 [M-H]- 291.1998 34.86 HMDB0013623 12 (13)Ep-9-KODE Fatty acids and conjugates 46.88 ± 13.26 32.99 ± 5.23 34.02 ± 10.02

35 [M-H]- 552.3663 34.91 HMDB0013122 LysoPC(P-18:0) Glycerophosphocholines 537.51 ± 161.74 793.06 ± 116.94 782.69 ± 193.48

36 [M + H]+ 524.3710 36.01 HMDB0010384 LysoPC(18:0) Glycerophosphocholines 35522.28 ± 7854.5 50546.35 ± 7915.08 49617.61 ± 8866.77

37 [M-H]- 594.3800 36.84 HMDB0010391 LysoPC(20:1 (11Z)) Glycerophosphocholines 1212.67 ± 400.38 2005.37 ± 481.15 1455.45 ± 236.22

38 [M-H]- 411.2056 37.55 HMDB0006059 20-Carboxy-leukotriene B4 Eicosanoids 147.57 ± 15.22 174.06 ± 15.07 171.12 ± 17.39

39 [M-H]- 620.3923 37.93 HMDB0010400 LysoPC(22:2 (13Z,16Z)) Glycerophosphocholines 23.42 ± 8.52 37.89 ± 12.13 32.74 ± 6.31

40 [M-H]- 596.3930 38.87 HMDB0010390 LysoPC(20:0) Glycerophosphocholines 312.08 ± 114.88 614.38 ± 181.87 399.11 ± 72.8

41 [M-H]- 622.4081 39.06 HMDB0010399 LysoPC(22:1 (13Z)) Glycerophosphocholines 86.99 ± 40.07 155.56 ± 50.65 113.56±23.11

42 [M-H]- 507.2245 39.38 HMDB0010337 6-Dehydrotestosterone glucuronide Pyrimidines and pyrimidine derivatives 5.55 ± 1.64 5.57 ± 1.95 9.57 ± 1.94

43 [M + H]+ 780.5528 43.51 HMDB0008016 PC(16:1 (9Z)/20:4 (8Z,11Z,14Z,17Z)) Glycerophosphocholines 2853.88 ± 1148.07 6414 ± 3018.85 5044.88 ± 1647.11

44 [M-H]- 599.3194 45.15 HMDB0061704 2-Stearoylglycerophosphoinositol Glycerophosphoinositols 1923.25 ± 485.94 3061.53 ± 666.53 2457 ± 809.7

45 [M + H]+ 806.5699 45.25 HMDB0007991 PC(16:0/22:6

(4Z,7Z,10Z,13Z,16Z,19Z))

Glycerophosphocholines 29599.38 ± 9681.78 32714.71 ± 7074.23 44993.5 ± 9870.31

46 [M-H]- 790.5386 45.34 HMDB0007958 PC(15:0/22:6

(4Z,7Z,10Z,13Z,16Z,19Z))

Glycerophosphocholines 198.71 ± 39.23 243.58 ± 42.64 264.43 ± 44.38

47 [M + H]+ 782.5705 45.71 HMDB0008042 PC(18:0/18:4 (6Z,9Z,12Z,15Z)) Glycerophosphocholines 70381.38 ±

13514.35

80288.23 ±

15965.04

100437.55 ±

20132.52

48 [M + H]+ 786.5270 46.09 HMDB0012411 PS(18:3 (9Z,12Z,15Z)/18:0) Glycerophosphoserines 410.04 ± 51.82 278.76 ± 81.33 406.66 ± 68.74

49 [ M + H]+ 808.5844 46.26 HMDB0008115 PC(18:1 (9Z)/20:4 (8Z,11Z,14Z,17Z)) Glycerophosphocholines 6052.53 ± 1304.19 11054.46 ± 4142.85 8255.37 ± 1481.76

50 [M + H]+ 830.5659 46.28 HMDB0008050 PC(18:0/20:5 (5Z,8Z,11Z,14Z,17Z)) Glycerophosphocholines 535.18 ± 68.47 862.25 ± 141.82 542.19 ± 55.66

51 [M + H]+ 760.5866 48.49 HMDB0008067 PC(18:1 (11Z)/16:0) Glycerophosphocholines 20305.67 ± 7080.98 20275.6 ± 5434.84 29901 ± 7099.61

52 [M + H]+ 834.6017 48.55 HMDB0008057 PC(18:0/22:6

(4Z,7Z,10Z,13Z,16Z,19Z))

Glycerophosphocholines 18903.14 ± 3310.73 19529.9 ± 4173.04 25362.45 ± 5157.02

(Continued on following page)
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joints perfusion, burn scar perfusion, skin microvasculature,

choroidal circulation, cerebral blood flow, liver and intestine

perfusion (Heeman et al., 2019). In this study, the perfusion in

the ears, feet and tails of rats were in vivo monitored using the

LSCI technique, and the degree of microcirculatory damage in

rats was assessed. Results showed that the regional blood flow in

the ears, feet and tails of AMD rats were decreased compared

with healthy rats. Furthermore, CZTL reversed the poor

perfusion of ears, feet and tails in AMD rats.

Endothelial cells were identified as a key cell type in the

microcirculation (Jackson, 2022). When a vascular lesion

occurred, endothelial cells responded immediately and

expressed tissue factors, which activated coagulation and led

to the formation of thrombin (Verhamme and Hoylaerts, 2006).

It was proved that most endothelial functions exhibited the pro-

coagulant and anti-fibrinolytic properties during sepsis (Ait-

Oufella et al., 2010). It was clear from our results that AMD

rats developed exacerbation of coagulation function, which was

somewhat ameliorated by ASA and CZTL treatment.

The increased low shear viscosity of rats blood indicated the

enhanced red blood cell aggregation (Baskurt and Meiselman,

2003), which resulted in decreased endothelial nitric oxide

synthase expression and further impairing tissue perfusion

(Baskurt et al., 2004). The abnormally elevated plasma

viscosity suggested increased plasma concentrations of high-

molecular-weight proteins (mostly fibrinogen), great flow

resistance and a decrease of blood flows (Lee et al., 2008).

These decreases in regional blood flows contributed to an

ischemic/hypoxic environment, leading to endothelial cells

damage in micro-vessels (Bai et al., 2010). Abnormal blood

rheology existed in subjects with microcirculatory dysfunction

and might contribute to the pathophysiology of disease

(Lipowsky, 2005). In this study, results of hemorheology

showed that ASA and CZTL treatment partially rescued this

phenotype, with a reversal of increased blood viscosity in AMD

rats. In general, CZTL had significant efficacy in AMD rats

including increased local blood flow, reduced blood viscosity

and recovered coagulation function.

In addition to coagulation function and hemorheology,

microcirculatory function was also demonstrated by the

regulation of vascular tone, the capacity to synthesize

hemostatic factors and endothelial intercellular permeability.

Nitric oxide produced by NOS was a key factor in

vasodilation (Hong and Kim, 2017); endothelial intercellular

permeability was regulated by adherens junctions (likely VE-

cadherin) (Bazzoni and Dejana, 2004); vWF, a hemostatic

protein, played a crucial role in regulating angiogenesis and

vascular repair (Ishihara et al., 2019). Our results showed that

CZTL administration had beneficial effects on microcirculatory

function, including promoted vasodilation, enhanced the

integrity of the endothelium and increased angiogenesis factor.

In the efficacy evaluation experiment, the low-dose, medium-

dose and high-dose groups of CZTL administration were set

up. The low dose is calculated according to clinical dose of CZTL

and the conversion formula of body surface area, and the

medium and high doses are 2 times and 4 times of the low

dose respectively. From all indicators, we observed that CZTL

had the best effect at medium dose, which may be because the

bioavailability of CZTL had reached saturation at medium dose.

It will be interesting to explore the pharmacokinetics, in vivo

clearance and bioavailability of CZTL, which is also the main

content of our next work. On the other hand, Ku Yaping et al.

found that 3-days pretreatment CZTL inhibited

neuroinflammation and oxidative stress in mice with

ischemia-reperfusion (Yaping et al., 2021); another study

found that pretreatment CZTL for 5 days improved the

inflammatory reaction and inhibited apoptosis (Haiyan et al.,

2021). Considering the different sensitivity of rats and mice to

drugs and the difference of animal models, we chose to pretreat

rats with CZTL for 7 days to observe the efficacy of CZTL.

Whether prolonging the time of preventive administration or

administration after modeling will affect the efficacy of CZTL is a

subject worthy of further exploration.

To better understand the metabolic response to CZTL

intervention, we performed untargeted metabolomics analysis

based on UPLC-Q/TOF MS in rats serum samples. The first

finding was that the metabolic status was markedly altered in

AMD rats. And then, the present study highlighted a potential

that CZTL had a unique role in mediating metabolism.

Furthermore, we found that the contents of 55 differentially

regulated metabolites were altered in AMD rats and restored by

CZTL treatment. Furthermore, KEGG pathway analysis revealed

TABLE 1 (Continued) Detailed information of 55 differentially expressed metabolites.

No. Adduct
Type

m/z RT
(min)

Compound ID Description Class Intensity
in MOD
(n =
7)

Intensity
in CON
(n =
9)

Intensity
in CZTL-M
(n =
8)

53 [M + H]+ 858.5982 49.93 HMDB0008055 PC(18:0/22:5 (4Z,7Z,10Z,13Z,16Z)) Glycerophosphocholines 309.83 ± 51.9 435.86 ± 86.86 363.02 ± 71.74

54 [M + H]+ 812.6180 51.01 HMDB0008047 PC(18:0/20:3 (8Z,11Z,14Z)) Glycerophosphocholines 3228.22 ± 1081.24 5436.12 ± 2178.68 4828.29 ± 1022.83

55 [M-H]- 637.5871 54.29 HMDB0060059 CE (17:0) Steroid esters 15.61 ± 5.03 10.82 ± 2.99 11.77 ± 3.49

Notes: RT, retention time; CON, control group (n = 9); MOD,model of acute microcirculation dysfunction group (n = 7); CZTL-M,Chuanzhitongluo capsule medium-dose administration

group (n = 8).
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sphingolipid metabolism, arachidonic acid metabolism,

glycerophospholipid metabolism, pyrimidine metabolism,

linoleic acid metabolism, porphyrin and chlorophyll

metabolism, arginine and proline metabolism were

significantly influenced by CZTL intervention.

In the sphingolipid metabolism pathway, sphingosine-1-

phosphate (S1P) was generated intracellularly from the

phosphorylation of sphingosine by sphingosine kinases

(SphK) (Ogretmen, 2018). S1P and sphinganine 1-

phosphate both were degraded to ethanolamine phosphate

via sphinganine-1-phosphate aldolase (SGPL1)

(Karuppuchamy et al., 2020). Our results showed that

CZTL significantly increased the levels of sphingosine 1-

phosphate (p = 0.001, FC = 1.94) and sphinganine 1-

phosphate (p < 0.001, FC = 2.31) in AMD rats. These data

predicted that CZTL would increase the level of S1P through

repression of SGPL1 rather than activation of SphK. S1P was a

key signaling mediator involved in a range of cellular

processes, including embryonic development, angiogenesis,

immune response and inflammation (Tsai and Han, 2016;

Cartier and Hla, 2019). The ligation of S1P to S1P receptor-1

on endothelial cells elicited the enhancement of barrier

function by stimulation of Rho- and Rac-dependent

assembly of adherens junctions (Shepherd et al., 2017;

Abdel Rahman et al., 2021). S1P not only induced the

translocation of VE-cadherin to endothelial cell junctions,

but also activated N-cadherin to strengthen intercellular

interactions (Adamson et al., 2010). Accounting for the

increase of VE-cadherin and decreases of IL-6 in CZTL

administration rats, a potential mechanism underlying

CZTL on microcirculation emerged from coordinated

augmentation of junctional integrity and anti-inflammatory

responses through sphingolipid metabolism pathway. This

underlying mechanism was supported by previous studies:

the study by Chen et al. indicated that the anticoagulant

activity of Whitmania pigra Whitman was impacted by the

modulation of sphingolipid metabolism (Chen et al., 2021);

Astragalus polysaccharide was main active ingredient of

Astragalus membranaceus, and it significantly reversed the

disorder of sphingolipid metabolism (Y. Zhang et al., 2021).

20-Carboxy-leukotriene B4 was an omega-oxidized

metabolite of leukotriene B4 (LTB4), formed by

leukotriene-B4 20-monooxygenase (CYP4F2_3) in the

arachidonic acid metabolism pathway. Compared with

AMD rats, LTB4 was decreased (p = 0.001, FC = 0.61) and

20-carboxyleukotriene B4 was elevated (p = 0.047, FC = 1.16)

in CZTL medium-dose administration rats. As a result, we

would like to propose that CZTL altered the activity of

CYP4F2_3 to control the LTB4 content. LTB4 was termed

as a potent chemoattractant for leukocyte (Rios-Santos et al.,

2003), and it promoted innate immune responses through

stimulating the production of other inflammatory mediators

(Di Gennaro and Haeggström, 2014). A study in mice

showed that LTB4/LTB4 receptor type 1 signaling

contributed to LPS-induced hepatic microcirculatory

dysfunction by activating inflammatory response (Ito

et al., 2008). We observed the increase of proinflammatory

factor IL-6 in AMD rats, and it was restored to the normal

level with CZTL administration. As reported the literatures,

each of medicinal material in CZTL has the function of

regulating arachidonic acid metabolism. The Whitmania

pigra Whitman attenuated blood hyper-viscosity via the

metabolic reprogramming involved in arachidonic acid

metabolism (X. Wang et al., 2019). The bioactive

components of Ligusticum chuanxiong Hort reduced the

release of arachidonic acid and increases of arachidonoyl

phosphatidylcholine levels through inhibition of cytosolic

phospholipase A (2) (J. Yang et al., 2012). Several studies

demonstrated that Salvia miltiorrhiza bunge extracts

improved arachidonic acid metabolism to exert its efficacy

(Park et al., 2008; Xiang et al., 2019). The effect of Astragalus

polysaccharide on arachidonic acid metabolism was proved

in renal fibrosis rats (Ren et al., 2020). Based on our work and

literatures, we presented that CZTL might alter the

arachidonic acid metabolism and control the

LTB4 content to inhibit the excessive inflammatory

response and improve the microcirculation function

(Figure 7). However, the interaction between CZTL and

CYP4F2 or SGPL1 needs further experiments to verify.

Whether S1P inhibitor or CYP4F2 agonist can block the

efficacy of CZTL is an important issue, which is also a subject

we are exploring.

Glycerophospholipid metabolism pathway controlled lyso-

phosphatidylcholine (LPC) formation and metabolism. LPC

was reported to influence the chemotaxis of microvascular

endothelial cell and to induce superoxide overload via

regulation of extracellular signal-regulated kinase 1/2 and

nitric oxide synthase (Murugesan et al., 2003; Choi et al.,

2010). Previous studies suggested that disturbed

glycerophospholipid metabolism could be regulated by

Salvia miltiorrhiza bunge and Astragalus membranaceus (Liu

et al., 2021; M. Y. Zhang et al., 2019), and these studies

provided evidences for our results. Pyrimidine metabolism

pathway was enriched from 5-methylcytidine,which was a

marker of DNA methylation levels, and reprogramming of

DNA methylation of p66(Shc) gene rescued microvascular

dysfunction (Chouliaras et al., 2012; Streese et al., 2020).

Protoporphyrin IX was the main hub of the porphyrin and

chlorophyll metabolism pathway (Ajioka et al., 2006). Plenty of

reports indicated that zinc-/tin-/cobalt-protoporphyrin IX

inhibited heme oxygenase to regulate microvascular

function (Ishikawa et al., 2005; Van Landeghem et al., 2009;

Cao et al., 2012). However, only few animal experiments

showed that Salvia miltiorrhiza bunge and Astragalus

membranaceus regulated pyrimidine metabolism in mice

(Xiang et al., 2019; Liu et al., 2021). Our study found that
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CZTL containing Whitmania pigra Whitman, Ligusticum

chuanxiong Hort., Salvia miltiorrhiza bunge and Astragalus

membranaceus had an influence on porphyrin and chlorophyll

metabolism pathway. In the linoleic acid metabolism pathway,

12,13-epoxy-11-oxo-9-octadecenoic acid (12,13-ep-9-KODE)

was one metabolite of 9-KODE synthesized from linoleic acid

(Moran et al., 2000). In vitro experiment displayed cis-12,13-

epoxy-9-octadecenoic acid pretreatment prevented

mitochondrial dysfunction in renal proximal tubular cells

(Nowak et al., 2004). A recent study noted that Astragalus

membranaceus reduced the content of linoleic acid and

impacted the linoleic acid metabolism in preweaning dairy

calves (Ma et al., 2022). Therefore, our prediction that CZTL

regulated linoleic acid metabolism to ameliorate

microcirculatory dysfunction were credible. The specific

mechanism of arginine and proline metabolism effect on

microcirculation were unclear, but previous studies

suggested the effects of Salvia miltiorrhiza bunge and

Astragalus membranaceus were associated with regulation of

arginine and proline metabolism (Ma et al., 2022; M. Y. Zhang

et al., 2019). In this study, the proline level of AMD rats was

down-regulated and that of CZTL medium-dose

administration rats was up-regulated. Serval in vitro studies

showed that proline induced apoptotic response and mitigated

oxidative stress through proline dehydrogenase (Hu et al.,

2007; Natarajan et al., 2012). When the microcirculatory

dysfunction emerged, endothelial cells displayed increased

oxidative stress and advanced apoptosis. It would be

interesting to verify if CZTL had an interaction with proline

dehydrogenase to dissipate oxidative stress and inhibit

apoptosis.

5 Conclusion

The current study revealed that microcirculatory dysfunction

and metabolic disorder appeared in AMD rats. CZTL

significantly improved the function of microcirculation in

AMD rats including increased microcirculatory blood flow,

rescued the excessive coagulation, reduced blood viscosity and

up-regulated NOS, vWF and VE-cadherin expression. The

UPLC-Q/TOF MS based metabolomics analysis illuminated

the potential mechanism of CZTL influence on

microcirculation, involving modulation of sphingolipid and

arachidonic acid metabolic pathways to promoted anti-

inflammatory programs and junctional integrity. Our findings

suggested that CZTL might serve as a potential therapeutic

options for the treatment of microvascular disease, and it

provided novel insights into the clinical efficacy of CZTL in

patients with ischemic stroke.

FIGURE 7
The underlyingmechanism ofChuanzhitongluo capsule amelioratingmicrocirculatory dysfunction. AA, arachidonic acid; LTB4, leukotriene B4;
LTB4R1, leukotriene B4 receptor type 1; ICAM-1, intercellular cell adhesion molecule-1; IL-6, interleukin-6; SGPL1, sphinganine-1-phosphate
aldolase; S1P, sphingosine-1-phosphate; SphK, sphingosine by sphingosine kinases; S1P1, sphingosine-1-phosphate receptor type 1.
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