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Abstract

Background: A-type lamins are type V intermediate filament proteins encoded by the gene LMNA. Mutations in LMNA give
rise to diverse degenerative diseases related to premature ageing. A-type lamins also influence the activity of the
Retinoblastoma protein (pRb) and oncogenes such a b-catenin. Consequently, it has been speculated that expression of A-
type lamins may also influence tumour progression.

Methodology/Principal Findings: An archive of colorectal cancer (CRC) and normal colon tissue was screened for
expression of A-type lamins. We used the Cox proportional hazard ratio (HR) method to investigate patient survival. Using
CRC cell lines we investigated the effects of lamin A expression on other genes by RT-PCR; on cell growth by FACS analysis;
and on invasiveness by cell migration assays and siRNA knockdown of targeted genes. We found that lamin A is expressed
in colonic stem cells and that patients with A-type lamin-expressing tumours have significantly worse prognosis than
patients with A-type lamin negative tumours (HR = 1.85, p = 0.005). To understand this finding, we established a model
system based upon expression of GFP-lamin A in CRC cells. We found that expression of GFP-lamin A in these cells did not
affect cell proliferation but did promote greatly increased cell motility and invasiveness. The reason for this increased
invasiveness was that expression of lamin A promoted up-regulation of the actin bundling protein T-plastin, leading to
down regulation of the cell adhesion molecule E-cadherin.

Conclusions: Expression of A-type lamins increases the risk of death from CRC because its presence gives rise to increased
invasiveness and potentially a more stem cell-like phenotype. This report directly links A-type lamin expression to tumour
progression and raises the profile of LMNA from one implicated in multiple but rare genetic conditions to a gene involved in
one of the commonest diseases in the Western World.
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Introduction

Lamins A and C are type V intermediate filament proteins that

form part of a filamentous network termed the nuclear lamina

lining the inner nuclear membrane (INM) [1]. A-type lamins are

alternatively spliced products of the LMNA gene, which has been

mapped to chromosome 1q21.3 [2]. Mutations in this gene are the

underlying cause of twelve different genetic diseases that are

collectively termed laminopathies [3]. Laminopathies are all

degenerative diseases that mainly affect tissues of mesenchymal

origin [3]. Possible mechanisms underlying laminopathies have

been intensively investigated over the past seven years and this has

led to the conclusion that A-type lamins contribute to cell survival

in two distinct ways. Firstly, A-type lamins interact with important

cytoskeletal linker proteins termed nesprins, via SUN domain

proteins, connecting the INM to the outer nuclear membrane

(ONM) via the lumen [4,5]. The nesprins in turn anchor elements

of the cytoskeleton to the ONM [6–9], thereby hardwiring the

cytoskeleton to the nuclear lamina and providing a device for

transducing mechanical stress sensing from the plasma membrane

to the nucleus [10,11]. Secondly, A-type lamins interact with a

number of binding partners within the nucleus, which in turn

interact with and influence the activity of important growth

regulators. Of the proteins that A-type lamins interact with, the

best characterised are the so-called LEM domain proteins [12],

including the integral membrane proteins emerin [13,14] and

MAN1 [15], as well as the nucleoskeleton protein LAP2a [16]. A

complex of A-type lamins and emerin has recently been reported

to regulate the nuclear accumulation of active b-catenin and loss of

emerin function leads to unregulated b-catenin signalling and

auto-stimulatory growth in fibroblasts [17]. Similarly, a complex of

MAN1 and A-type lamins has been shown to interact with the

receptor regulated SMAD (rSMAD) and to antagonise TGF-b
signalling by inhibiting rSMAD at the INM [18,19]. Finally, a

complex of LAP2a and A-type lamins binds to and tethers

unphosphorylated forms of the growth suppressor pRb in the

nucleus [20]. LAP2a and A-type lamins both participate in Rb

dependent E2F repression [21] and loss of LAP2a or A-type

lamins in fibroblasts results in accelerated S-phase entry, through

loss of pRb activity [21,22].
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Given the importance of A-type lamins and their binding

partners to the regulation of growth pathways, it has been

speculated that these lamins might be linked to tumour

progression [23]. Previous studies have reported differential

expression of A-type lamins in tumour tissues and have linked

the absence of A-type lamins to increased proliferation in the

tumour. However, they have failed to link changes in expression to

patient prognosis or directly to tumour progression [24]. We

therefore decided to investigate how expression of A-type lamins

might influence both the progression and outcomes of a common

tumour. To do this we screened a very large archive of CRC tissue

linked to an extensive patient database [25]. Unexpectedly, we

found that expression of A-type lamins within a tumour was a

highly significant risk indicator of tumour related mortality. In

downstream investigations, we found that expression of lamin A in

CRC cell lines promoted invasiveness via up-regulated expression

of the actin-bundling protein T-plastin, which in turn gives rise to

down-regulated expression of the cell adhesion molecule E-

cadherin. We conclude that expression of A-type lamins in CRC

promotes tumour invasiveness through reorganisation of the actin

cytoskeleton.

Results

Lamin A is an adult stem cell biomarker in colonic crypts
Before investigating whether A-type lamins influence tumour

progression, we assessed the distribution of A-type lamins in

normal colonic mucosa by staining tissue sections with a

monoclonal antibody specific for these proteins. As expected

[26], A-type lamins were highly expressed in the functionally

differentiated epithelial layers and were also strongly expressed in

surrounding stromal tissue and underlying muscle. Conversely, A-

type lamin expression was very weak or absent from the majority

of cells within the colonic crypts. However, A-type lamin

expression was high in approximately five to ten cells at the base

of the crypts (Figure 1A, arrows). The positively stained cells in the

crypts were very similar in number and occupied a position

corresponding to that generally understood to be the colonic

epithelial stem cell niche [27,28]. To further investigate the

identity of these A-type lamin positive cells, serial sections were

stained with antibodies against lamins A & C or the proliferation

biomarker PCNA. The cells in the crypts that stained positively for

PCNA were negative for A-type lamins, whilst the cells that were

negative for PCNA were positive for A-type lamins (Figure 1B)

implying that the small number of A-type lamin positive basal

crypt cells could indeed be postulated to be stem cells. We also

found that whilst antibodies that specifically detected lamin A did

stain the proposed stem cell niche (but not cells in the adjacent

transit amplifying zone), lamin C was not detected in either the

stem cell niche or the transit amplifying cells, but was expressed in

differentiated epithelial cells and underlying muscularis (Figure

S1). Thus expression of lamin A in the absence of lamin C appears

to define a group of cells in the basal region of the colonic crypt,

corresponding to an area postulated to be the stem cell niche.

Expression of A-type lamins is a hazard indicator in CRC
The Netherlands Cohort Study on Diet and Cancer [29] is a

prospective cohort study. Initially, tissue samples from 819 patients

were requested from 54 pathology laboratories throughout the

Netherlands. Incident cases included those patients developing

colorectal cancer between 1989 and 1993. Tumour material was

not available for 5% of cases and of the remaining 775 available

tissue samples, 737 contained sufficient tumour material for

immunohistochemical analysis. Using standard parameters to test

at the 5% significance level and with a 90% power, the minimum

population size required to confidently detect small hazard ratios

would be 516, thus it was safe to assume that the sample size was

large enough to produce statistical significance.

Immunohistochemical staining to detect expression of lamins

A/C following antigen retrieval was performed on all available

samples. In all sections the stromal tissue surrounding the cancer

was always strongly positive for lamins A/C providing an internal

positive control. Using staining of stromal tissue as a criterion for

successful antigen retrieval, 673 (91%) of the samples were

available for scoring. We found that whilst there was some

variation in the intensity of overall staining, nuclear lamin A/C

expression within the tumour could be easily classified as either

present (Figure 2E–H) or absent (Figure 2A–D) from the nucleus.

It was also noted that in a small number of cases, there was

sporadic cytoplasmic staining and these samples were scored as

negative when nuclear staining was absent. Following blind

scoring of slides, retrieval of patient and survival information

Figure 1. Lamin A/C is a biomarker of colonic stem cells. (A) Thin
sections of formalin fixed, wax embedded samples of normal colon
were stained following heat mediated antigen retrieval with a
monoclonal antibody JoL2 against lamins A/C. Sections were lightly
counterstained with Mayers Haemalum. Arrowheads indicate differen-
tiated epithelium cells while arrows indicate the anticipated location of
the stem cell niche in the base of the crypt. Scale bars = 150 mm (left-
hand panel) & 50 mm (right-hand panels). (B) Serial sections of normal
colon were stained with antibodies to either lamins A/C (JoL2) or PCNA
(PC10) and processed as described above. Arrows indicate slowly
dividing cells at the base of the crypts, which stain positively with JoL2
but negatively with PC10. Scale bars = 150 mm.
doi:10.1371/journal.pone.0002988.g001
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Figure 2. Differential expression of lamins A/C in colorectal cancer. 4 mm formalin-fixed, paraffin-embedded sections from 656 independent
human colorectal adenocarcinomas were taken from patients participating in the Netherlands Cohort Study on Diet and Cancer. Tissue sections were
subjected to immunohistochemistry using the JoL2 mouse monoclonal anti-human lamin A/C antibody before chromogen visualisation and light
counterstaining with Mayers Haemalum to differentiate nuclei. A–D show positively staining stromal (S) tissue surrounding negatively staining
tumour (T) tissue. (A) Moderately well differentiated stage I adenocarcinoma; (B) Moderately well differentiated stage II adenocarcinoma; (C)
Moderately well differentiated stage III adenocarcinoma; (D) Moderately well differentiated stage IV adenocarcinoma. E–H show positively staining
stromal (S) tissue surrounding positively staining tumour (T) tissue. (E) Moderately well differentiated stage I adenocarcinoma; (F) Moderately well
differentiated stage II adenocarcinoma; (G) Moderately well differentiated stage III adenocarcinoma; (H) Moderately well differentiated stage IV
adenocarcinoma. Scale bars = 30 mm.
doi:10.1371/journal.pone.0002988.g002
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from the database led the final number of unique cases to be

reduced to 658 due to duplication of patient administration codes,

and a further 2 cases were excluded upon being classified as signet

ring tumours.

During the follow-up period, 246 patients died, with 163 of

these patients dying as a result of CRC. Of the 656 available

specimens immunohistochemically assessed, nuclear lamin A/C

expression was found to be positive in 463 (70%) patients and

negative in 193 (30%) patients. Within the sample group of the

patients who died of CRC related causes within the study period

(ten years), 127 scored positive for lamins A/C, while 36 scored

negative. Using Cox Proportional Hazard calculations [30], we

found that patients expressing lamins A/C within the tumour were

almost twice as likely to die (Hazard ratio [HR] 1.85; 95%

confidence interval [C.I.] 1.16–2.97) of CRC related causes

compared to clinicopathogically identical patients that were

negative for lamins A/C (p = 0.005) (Figure 3). Thus expression

of lamin A/C in a tumour was strongly correlated with CRC

related death.

Expression of lamin A in CRC cell lines promotes
increased invasiveness

The finding that expression of lamin A/C in patient tumours is

closely correlated with CRC related mortality was unexpected and

to some extent counter intuitive. Therefore, to understand why

expression of lamins A/C increases the risk of death in CRC, we

obtained a number of CRC cell lines and initially assessed them

for lamin A/C status by immunoblotting. In one pre-metastatic

cell line, SW480, lamin A was almost undetectable (Figure S2A, B)

whilst levels of expression of lamins B1, B2 and C were similar to

other CRC cell lines (e.g. HT29). SW480 was therefore selected

for investigation. To determine how expression of lamin A might

affect SW480, cultures were stably transfected with either GFP or

a GFP-lamin A construct. Following stable transfection with GFP-

lamin A moderate amounts of both endogenous lamin A as well as

the fusion protein were detected, whereas in GFP transfected

cultures, lamin A remained absent (Figure S2C, D). The

morphology of cells in GFP and GFP-lamin A transfected cultures

was also different. The morphology of cells in GFP transfected

cultures (SW480/cntl) was indistinguishable from untransfected

cultures (SW480), with many cells that were highly flattened or

growing on top of each other. In contrast, in GFP-lamin A

transfected cultures (SW480/lamA), cells had a more spindle like

appearance and grew as a monolayer at low cell density

(Figure 4A).

Migratory/metastatic behaviour in cancer cells is typically

associated with phenotypic changes [31]. To investigate whether

altered cell morphology correlated with altered migratory

behaviour we performed cell motility assays on the cultures.

Following scratch wounding, wound closure was seven times faster

in cultures transfected with GFP-lamin A compared to cultures

transfected with GFP (Figure 4B & C) or untransfected cells (not

shown), showing that cells transfected with GFP-lamin A were

indeed more motile than either cells transfected with GFP or

untransfected cells. We investigated other features of their cellular

behaviour which might alter as a result of expression of lamin A,

including cell growth and division. Using flow cytometry we found

no appreciable differences in cell cycle dynamics in GFP-lamin A

versus GFP transfected cells (Figure 4D). Thus of the character-

istics we investigated only cell morphology and motility were

altered in the cells expressing lamin A.

In a recent study [32], expression of the actin-bundling protein,

L-plastin in SW480 cells led to down-regulation of E-cadherin and

increased invasiveness. Plastins are a family of actin-bundling

proteins which are involved in organising the actin cytoskeleton

and are expressed in a wide range of tissues [33,34]. Enhanced

expression of another plastin family member, T-plastin has been

associated with both drug and radiation resistant cells. Of

particular note is the significantly increased expression of T-

plastin reported in cisplatin-resistant human cancers [34]. It

follows that drug-resistant tumours are likely to be more

aggressive. Our finding that the mortality rate in patients with

lamin A/C expressing tumours is twice that of patients with lamin

A/C negative tumours suggests that lamin A/C expression is also

associated with more aggressive tumour behaviour. In addition,

lamin A/C is thought to influence actin cytoskeletal organisation

via interactions with linker proteins such as nesprins [4].

Furthermore, T-plastin activity has been reported in HT29 colon

carcinoma cells [33] which are known to be lamin A positive (this

paper). We questioned therefore whether expression of GFP-lamin

A in SW480 cells caused downstream changes in T-plastin

expression and whether T-plastin might be implicated in the

increased invasiveness observed here.

Changes in T-plastin and E-cadherin expression levels were

investigated by RT-PCR. We found that T-plastin was not

expressed in cells transfected with GFP but was present at high

levels in cells expressing GFP-lamin A. In contrast, E-cadherin was

expressed at high levels in cells expressing GFP alone but was

absent from cells expressing GFP-lamin A (Figure 5A). Thus the

increased motility of cells expressing GFP-lamin A likely arises

because these cells are less adherent as a result of loss of expression

of E-cadherin and exhibit enhanced actin dynamics. To determine

whether the lamin A dependent up-regulated expression of T-

plastin observed did indeed cause down-regulation of E-cadherin

and increased cell motility, we performed siRNA knockdown of T-

plastin in GFP-lamin A expressing SW480 cells. In cells treated

with specific siRNA, T-plastin was undetectable and E-cadherin

was up-regulated (Figure 5B). Importantly, following scratch

wounding, wound closure was also significantly slower in cultures

Figure 3. Mortality Hazard Plot for lamin A/C expression. Overall
cumulative hazard analysis for presence of lamin A/C expression and
colorectal cancer related mortality for stage I–III patients in the
Netherlands Cohort Study on Diet and Cancer. Relative hazard ratio
(HR) = 1.85 (95% C.I. = 1.16–2.97), p = 0.005 (Adjusted for gender and age
at diagnosis).
doi:10.1371/journal.pone.0002988.g003
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treated with T-plastin-specific siRNA compared to cultures treated

with scrambled siRNA (Figure 5C, D). Thus up-regulated

expression of T-plastin, arising from expression of lamin A affects

E-cadherin expression and directly results in the more invasive

properties of the lamin A transfected CRC cell line.

Discussion

In this paper we report two novel and unexpected findings.

Firstly, lamin A but not lamin C is a potential biomarker of the

stem cell niche in the colonic crypt and secondly, expression of

lamin A/C in CRC tissues is strongly correlated with CRC related

mortality and therefore lamin A/C represents a novel and

important prognostic biomarker in CRC.

The location of the stem cell niche in the colon has been

extrapolated from cell kinetic and radiolabelling studies. By

radiolabelling S-phase crypt cells with tritiated thymidine, the

average migration velocity of cells in relation to their cell position

has been measured. Using this approach, the origin of migration

and, by extrapolation, the stem cell niche has been predicted to

reside at the base of the crypt [35]. The number of stem cells

occupying this niche approximates to between five to ten cells [36].

More recently, expression of the Wnt response element Lgr5 has

been shown to define colonic stem cells and has been used to

confirm that the stem cells occupy a niche at the base of the crypts

[27]. Cells of an equivalent number and occupying precisely that

niche are readily stained with antibodies detecting lamins A/C or

lamin A but are not stained with antibodies specifically detecting

lamin C. In contrast, in cells occupying the transit amplifying

zone, expression of both lamin A and lamin C is absent. As

expected [26,37,38], both lamins are readily detected in functional

differentiated epithelium at the colonic mucosa. Consistent with

the idea that lamin A is a potential biomarker of colonic stem cells,

the cells at the base of the crypt which are positive for lamin A, are

generally negative for the DNA replication protein PCNA, as

would be expected in cells that are mostly quiescent [39]. That

lamin A is a potential biomarker of adult stem cells has important

general implications for disease. Lamins A/C are mutated in a

wide range of degenerative diseases that are linked to premature

ageing [3] and it has been suggested that one cause of

degeneration in these diseases is loss of adult stem cell function

[40]. That lamin A expression is noted in the adult stem cell niche

of the colon, lends direct support to this hypothesis. The finding

that lamin A may be a putative stem cell biomarker has further

implications for our discovery that expression of lamin A/C in

CRC is closely correlated with an increased risk of CRC-related

mortality, since it could be considered feasible that cancer cells

expressing lamin A may have a more stem cell-like phenotype and

therefore be inherently more dangerous [41].

Our finding that expression of A-type lamins in CRC tissue is

correlated with a two fold increase in CRC related mortality,

compared to absence of A-type lamins, for the first time directly

links these proteins to progression of a common disease. Previous

studies have described altered expression of A-type lamins in a

Figure 4. Expression of lamin A causes increased cell motility in SW480 colon cancer cells. (A) The morphology of untransfected SW480,
SW480/cntl and SW480/lamA was compared by phase contrast microscopy. SW480/cntl and untransfected cells displayed a flattened morphology
and multi-layered growth. By contrast, ectopic expression of GFP-lamin A (SW480/lamA) appeared to induce morphological changes, including the
appearance of a spindle-like shape and growth as a monolayer. Scale bar = 10 mm. (B) Scratch wounds were made in 100% confluent cultures of
SW480/cntl or SW480/lamA cells. Phase contrast images were taken every two hours over a 12 hour period from identical regions. Scale bar = 200 mm.
(C) The wound size relative to the starting wound size was measured after 12 hours in three independent experiments and expressed as a
percentage reduction in wound size+/2standard deviation (s.d.). Cell migration was ,seven times faster in SW480/lamA compared to SW480/cntl
cultures, p,0.005. (D) Cell cycle characteristics were investigated using flow cytometry. The proportion of cells in each phase of the cell cycle is given
as mean6s.d. of three replicates. No appreciable differences in cells cycle dynamics between the two cells lines were detected.
doi:10.1371/journal.pone.0002988.g004
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range of cancers, including cancers of the skin, lung, lymphatics

and soft tissue [24,37,42–44]. However, none of these studies was

able to link either absence or presence of A-type lamins to tumour

progression, although at least one study [24] suggested that loss of

expression of lamins A/C was correlated with enhanced

proliferation rates in tumours. The other problem with these

previous studies is that a limited number of samples were available

for analysis and consequently study sizes fell below the threshold

for reliable statistical analysis. In contrast, our current finding is

based on a sufficiently large enough cohort to offer complete

confidence in the significance levels reported.

Our finding is to some extent counter intuitive, in that expression

of A-type lamins in various cells generally slows cell proliferation

[21] while absence of A-type lamins can be correlated with a failure

to undergo growth arrest at confluence [22]. Therefore, the null

hypothesis used at the beginning of the study was that absence of A-

type lamins would be correlated with increased risk of cancer-

related death. Using model CRC cells lines we could not detect

appreciable changes in the rate of cell proliferation in cells

expressing lamin A compared to cells of an identical genetic

background that lacked expression of lamin. However, we did

detect significantly increased invasive properties when we compared

lamin A expressing cells to cells in which expression of lamin A is

absent. The invasive properties of these cells arises because the

presence of lamin A causes a downstream up-regulation of T-

plastin, which in turn leads to down-regulation of E-cadherin.

Plastins are a recently described family of actin-bundling proteins

which have been implicated in invasion/metastasis [34]. In the

same cell line as used in this study, expression of L-plastin has been

reported to lead to down-regulated expression of E-cadherin and

increased invasiveness and has been closely correlated with

metastasis [32]. Our current findings are entirely consistent with

the previous study, but suggest, firstly that lamin A controls this

pathway and secondly, that invasiveness can be induced by

expression of T-plastin through the same mechanism. Interestingly,

we also observed that endogenous lamin A was detected in SW480

cells upon stable expression of GFP-lamin A, whereas in the

presence of GFP alone lamin A remained absent. It is well known

that A-type lamins are susceptible to cleavage in the non-helical

linker 2 region [3]. Lamin A exists in cells as either parallel dimmers

or anti-parallel tetramers in which the N-terminal head domain

overlaps the linker 2 region [45]. Since the GFP moiety is located at

the N-terminus, perhaps this large protein protects linker 2 from

proteolytic degradation and therefore stabilises both GFP-lamin A

and endogenous lamin A. The corollary of this hypothesis is that

absence of lamin A in SW480 cell lines is due to post-translational

modification of the protein.

How the presence of lamin A influences the expression of an

actin-bundling protein is the subject of downstream studies.

However, two distinct mechanisms can be envisaged. It has

recently been shown that A-type lamins directly influence the

organisation of the cytoskeleton, the tensile strength of cells [46]

and their ability to respond to stress [10]. This is achieved via the

LINC complex, which mediates associations between the nuclear

lamina and the cytoskeleton via the nesprins [4]. Therefore, one

possibility is that the presence or absence of lamin A in a cancer

cell might lead directly to cytoskeletal reorganisation via a

feedback loop, which senses the tensile strength of the cell.

Figure 5. Expression of lamin A causes changes in expression of T-plastin and E-cadherin. (A) The expression of T-plastin and E-cadherin
transcripts in SW480/cntl and SW480/lamA cells was investigated using semi-quantitative RT-PCR. Equal loading of starting material was determined
by amplifying b-actin. SW480/lamA cells were found to express significantly higher levels of T-plastin mRNA compared to SW480/cntl, but
significantly lower levels of E-cadherin mRNA compared to control cells (p,0.005). (B) SW480/lamA cultures were treated with scrambled siRNA or
siRNA specific to T-plastin. 108h after treatment RNA was extracted and amplified by RT-PCR using primers specific to T-plastin and E-cadherin. One
hundred percent knockdown of T-plastin was accompanied by re-expression of E-cadherin transcripts. (C, D) Alternatively, scratch wounding was
performed on confluent cultures 108h after siRNA treatment and wound closure was measured as described in Figure 4B, C. Cell migration was .2
fold faster in cultures treated with scrambled siRNA compared to cultures treated with siT-plastin (p,0.05). Scale bar = 200 mm.
doi:10.1371/journal.pone.0002988.g005
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Alternatively, lamin A has been shown to interact directly with a

range of transcription factors [17] and its presence may directly

influence the expression of T-plastin. Either way, the phenotypic

outcome of this reorganisation is increased invasiveness and

presumably increased metastatic potential.

In conclusion, we propose that the high risk of mortality from

CRC related causes in patients who exhibit A-type lamin

expression within their tumour arises because lamin A is an up-

stream regulator of a pathway linking actin dynamics to loss of cell

adhesion, thus leading to increased cell motility and consequently

increased invasive potential of the tumour. This phenotype may in

turn be reflective of a more stem cell-like property of the cancers.

Whilst mutations in lamins A/C have been implicated in a wide

range of rare genetic diseases [3], our current findings for the first

time link expression of these proteins with progression of one of the

commonest causes of cancer-related death in the Western world.

Materials and Methods

Immunohistochemistry
Paraffin sections (4 mm) of normal colonic mucosa and

colorectal adenocarcinoma were de-paraffinised and rehydrated

in xylene and ethanol. For antigen retrieval, sections were

immersed in 3% H2O2 to quench endogenous peroxidase activity

before being incubated in 0.01 M citrate buffer (pH 6.0) for

20 min at 90uC. Sections were then blocked with 5% normal goat

serum followed by incubation with either JoL2, anti-lamin A/C

mouse mAb [47] [1:10], PC10, anti-PCNA mouse mAb [1:100],

RalC, anti-lamin C rabbit polyclonal antibody [24] [1:100] or

133A2, anti-lamin A mouse mAb [48] [1:100] overnight at 4uC.

Sections were then incubated with biotinylated goat anti-mouse

IgG diluted at 1:400 for 45 min at room temperature. The

standard ABC process was then performed according to

instructions from Dako (DakoCytomation, Glostrup, Denmark).

Diaminobenzidine was used as a chromogen followed by light

counterstaining with Mayers Haemalum.

Cell culture
The human pre-metastatic colon adenocarcinoma cell lines

HT29 and SW480 were obtained from the European Collection of

Cell Cultures, UK. HT29 were cultured in McCoy’s 5A medium

(Sigma, UK) supplemented with 10% FBS, 2 mM L-Glutamine,

100 U/ml penicillin and 100 mg/ml streptomycin and maintained

in a humidified environment at 37uC with 5% CO2. SW480 cells

and transfected derivatives were grown in Leibovitz-15 (L-15)

medium (Invitrogen, UK) supplemented with 10% FBS, 100 U/

ml penicillin and 100 mg/ml streptomycin and maintained in a

humidified environment at 37uC without CO2.

Stable transfection of GFP-reporters into SW480 colon
adenocarcinoma cells

SW480 cells were transfected with DNA constructs encoding a

fusion protein of EGFP-lamin A full-length (gift from Dr M. Izumi,

Institute of Physical and Chemical Research, Saitama, Japan) and

EGFP. Cells were grown in 6-well plates until 60% confluent and

transfected with either 3 mg EGFP-lamin A or 1 mg EGFP using

GeneJammerH transfection reagent (Stratagene, La Jolla, CA)

according to the manufacturer’s instructions. Five days post-

transfection, cells were split 1:3. GeneticinH (G-418 sulphate,

Invitrogen) selective antibiotic was added to a final concentration of

200 mg/ml 24h later. Fresh antibiotic was added every 72h when

the media was changed. The selection of transfected colonies began

when all cells from the negative control (DNA construct replaced by

1 ml ddH20 in transfection mixture) died off. Surviving transfectants

were cloned out by limited dilution in 96-well plates and scaled up

under constant antibiotic selection. Stably transfected clones were

identified by screening four weeks after antibiotic selection was

removed. All subsequent experiments were done in the absence of

selective antibiotic. Cellular characterisation was completed on a

particular EGFP-lamin A clone, known as SW480/lamA and a

particular EGFP clone, termed SW480/cntl which were selected

based on their moderate EGFP-reporter expression, ascertained by

western blot. In addition the motility of transfected cells (as

determined by scratch wound assay) was confirmed using a further

three EGFP-lamin A clones and a second EGFP clone.

Indirect immunofluorescence & confocal microscopy
HT29 & SW480 cells grown to 70% confluency on glass

coverslips pre-coated with poly-D-lysine (0.01 mg/ml) were fixed

with ice-cold methanol/acetone (1:1, v/v) for 10 min at 4uC.

Lamin A mAb, JoL4 [47] was applied undiluted for 1h. Incubation

with FITC-conjugated donkey anti-mouse IgG secondary anti-

bodies (Jackson ImmunoResearch, PA) diluted 1:50 in 1% NCS/

PBS was for 1h. Coverslips were mounted in Mowiol media

containing 2.5% 1,4-diazabicyclo[2.2.2]octane (DABCO)/1 mg/

ml DAPI. Images were captured using a Zeiss Axioskop

microscope equipped with a Plan-Neofluar 406/1.3 oil immersion

lens and fitted with a Bio-Rad Radiance 2000 confocal scanning

system, operated by LaserSharp 2000TM software (Carl Zeiss). Z-

series were collected in Sequential mode using Kalman averaging

(4 times) at a resolution of 102461024 pixels with an additional

26 digital zoom. Images were projected into z-stacks.

SW480/lamA and SW480/cntl cells were similarly grown to

70% confluency, but fixed with pre-warmed (37uC) 4% formal-

dehyde in PBS for 12 min, permeabilised with 0.5% Triton X-100

in PBS for 5 min and blocked in 1% newborn calf serum (NCS) in

PBS for 30 min. GFP-reporter expression was viewed using a Zeiss

LSM 510-META microscope equipped with a Plan-Neofluar

406/1.3 oil immersion lens. Images were collected with a Zeiss

Axiocam CCD camera directed by Zeiss Axiovision software,

version 3.0. All images were organised using AdobeH PhotoshopH
7.0 (Adobe Systems, CA).

One-dimensional SDS-PAGE and immunoblotting
Whole cell extracts were made from cultured cells harvested at

80% confluency. Cells were washed with 26 PBS and scraped

from the culture surface. Pellets were re-suspended in 500 ml Lysis

buffer per 76106 cells [10 mM Tris-HCl (pH 7.4), 10 mM KCl,

3 mM MgCl2, 0.1% Triton X-100 and 16 Protease inhibitor

cocktail (Sigma)] and then incubated with 0.1 units/ml DNase I on

ice for 10 min. Cell lysates were dissolved in 500 ml 26 Sample

buffer [125 mM Tris-HCl (pH 6.8), 2% SDS, 2 mM DTT, 20%

Glycerol, 5% b-mercaptoethanol and 0.25% Bromophenol blue

(w/v)], boiled at 95uC for 3 min and centrifuged at 14,0006g for

3 min. Proteins were resolved on 10% SDS-PAGE gels according

to Laemmli, 1970 [49] and electrophoretically transferred onto

nitrocellulose membranes (ProtranH, Schleider and Schuell, NH).

Membranes were blocked with 4% skimmed milk powder (w/v) in

blot rinse buffer for 16h at 4uC with constant agitation and

immunoblotted with anti-lamin A mAb, JoL4 [1:200]; rabbit

polyclonal antibody RaLC [1:150]; goat polyclonal anti-lamin B1

(Santa Cruz Biotechnology, CA) [1:250] and mouse monoclonal

anti-lamin B2, LN43 [50] [1:250]. b-actin mAb, clone AC-40

(Sigma) [1:1750] was used as a control for loading. Secondary

antibodies were HRP-conjugated donkey anti-mouse, donkey anti-

rabbit or donkey anti-goat IgG used at a concentration of 1:2000.

Nitrocellulose membranes were exposed to ECLTM western

blotting reagents (GE Healthcare, UK) and immunoreactivity
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was measured by recovering the signal of chemiluminescence on

HyperfilmTM ECL films (GE Healthcare) using a Compact X4

Automatic X-ray Film Processor (Xograph Imaging Systems Ltd,

UK). Differences in signal were quantified by densitometry using

Image Gauge version 4.0 (Fujifilm).

Scratch wound assay
Scratch wounds more than 5mm in length and of equal

thickness were made in 100% confluent cultures of SW480/cntl or

SW480/lamA cells with a 10 ml disposable eppendorf tip. Phase

contrast images were taken every two hours over a 12 hour period

from identical regions. The wound size after 12h relative to the

starting wound size was measured using Zeiss LSM Image Browser

software, version 3.1, in three independent experiments. This

experiment was repeated on an additional three EGFP-lamin A

transfected SW480 clonal lines and a second EGFP-transfected

SW480 clonal line (data not shown).

Flow cytometry
Cells were processed at 70% confluency using the Cycle-

TESTTM PLUS DNA Reagent kit (Becton Dickinson, NJ)

according to the manufacturer’s instructions. Cells were analysed

on a Becton Dickinson FACSCalibur instrument and data was

collected for 20,000 single cell events. The percentage of cells in

G1, S and G2/M phases of the cell cycle was determined by the

Dean/Jett/Fox model using FlowJo software (Treestar, OR).

RNA isolation and semi-quantitative RT-PCR
Total RNA was isolated from 70% confluent cultures of

SW480/lamA and SW480/cntl cells using Trizol (Invitrogen).

Additional extractions were also made from SW480/lamA cells

108h post-transfection with scrambled or T-plastin siRNAs. cDNA

was synthesized using Promega’s Reverse Transcription System

and Avian Myeblastosis Virus - Reverse Transcriptase (AMV-RT)

[Promega, UK]. In control samples AMV-RT was replaced by an

equivalent volume of nuclease-free water. The PCR amplifications

were performed in triplicate in 25 ml reactions containing 16PCR

Master Mix (Promega), 0.4 pmol/ml sense primer, 0.4 pmol/ml

antisense primer and 2 ml cDNA template. Equal loading of

starting material was verified by monitoring the transcriptional

activity of b-actin. PCR profiles for E-cadherin, T-plastin and b-

actin were carried out on an Eppendorf MastercyclerH Gradient

Thermal Cycler (Eppendorf, UK) as follows: 94uC for 2 minutes,

26 cycles at 94uC for 45 seconds, 55uC (E-cadherin) or 58uC (T-

plastin) for 40 seconds or 60uC (b-actin) for 1 minute and 72uC for

1 minute, and finally 72uC for 5 minutes. Primer sequences were:

T-plastin sense 59-GCATCTTCCCTCTCATACCC-39,

T-plastin antisense 59-GCAAACAGCTTGACAAAGCA-39,

E-cadherin sense 59-CCAAGTGCCTGCTTTTGATG-39,

E-cadherin antisense 59-CACAATTATCAGCACCCACAC-39,

b-actin sense 59-GGCACCACACCTTCTACAATGAGC-39 and

b-actin antisense 59-CGTCATACTCCTGCTTGCTGATCCAC-

39.

Each product was sequenced with the corresponding antisense

primer using an ABI PrismH 377 XL automated DNA sequencer

(Applied Biosystems, CA) and verified using the Nucleotide-

nucleotide BLAST database (BLASTN 2.2.11).

siRNA transfections
SW480/lamA cells were seeded at a density of 2.56105 cells/

flask in T-25 flasks 24h before transfection. Cells were washed and

normal culture media was replaced with 3.6 ml antibiotic-free

media 2h before transfection. Cells were treated with a

transfection mixture containing 400 ml L-15 medium, 20 ml T-

plastin siRNA (SilencerH Pre-designed siRNA ID#143988, Am-

bion) [20 mM] or scrambled siRNA (Ambion) [20 mM] and 20 ml

Oligofectamine reagent (Invitrogen). Media was changed after 24h

and replaced with normal culture medium (plus antibiotics).

Transfection efficiency was maximal after 108h, as determined by

semi-quantitative RT-PCR. The sequences of the T-plastin-

specific siRNA duplex were: sense: 59-CCACGGAUA-

GAUAUUAACAtt-39 and antisense: 59-UGUUAAUAU-

CUAUCCGUGGtt-39.

Statistical Analysis
Baseline characteristics of patients, tumours as well as tumour

biology variables were compared by Student’s t-test (continuous

variables) and Chi-squared (x2) tests (categorical variables) to the

study variable (lamin A/C expression). Hazard ratios for disease and

95% confidence intervals were calculated by conditional logistic

regression. In multivariate analyses, missing values were treated as a

separate category or excluded (categorical variables) or given the

median-value (continuous variables). All statistical tests and

corresponding p-values reported were for two-sided tests and p-

values of less than 0.05 were considered statistically significant.

SPSS version 12.0 (Chicago, IL) was used for all statistical analyses.

Consent and Approval
Specimen collection and archiving of patient data was

performed using written informed consent and approved by the

national ethical committee of The Netherlands.

Supporting Information

Figure S1 Four micron serial sections of normal colonic

epithelium were immunohistochemically stained for lamin A (A

& C) and lamin C (B & D) using the 133A2 monoclonal and the

RaLC polyclonal antibodies respectively. Arrowheads indicate

functional differentiated cells and arrows indicate cells within the

proposed stem cell niche. Scale bars = 50 mm.

Found at: doi:10.1371/journal.pone.0002988.s001 (3.10 MB

DOC)

Figure S2 Stable transfection of SW480 cells with GFP constructs.

(A) A- and B- type lamin expression was compared in two colon

adenocarcinoma cell lines - HT29 and SW480 - by either

immunoblotting using antibodies JoL4 (anti-lamin A), RaLC (anti-

lamin C), anti-lamin B1 and LN43 (anti-lamin B2) or (B)

immunofluorescence using JoL4. Lamin A expression was almost

undetectable in SW480 cells compared to HT29 cells. Consequently

SW480 cells were selected for further investigation. There were no

differences in the expression of other lamin isoforms between the two

cell lines. (C) SW480 cells were transfected with DNA constructs

encoding EGFP-lamin A full-length (SW480/lamA) or EGFP as a

control (SW480/cntl). One hundred percent stable transfection was

achieved for both constructs as a result of antibiotic selection. The

level of total lamin A in each transfected culture was determined by

immunoblotting using JoL2 (anti-lamin A/C). b-actin was a loading

control. (D) Alternatively, the distribution of the fusion protein was

investigated by fluorescence microscopy. Scale bars = 10 mm.

Found at: doi:10.1371/journal.pone.0002988.s002 (0.68 MB TIF)
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