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Abstract

Under physiologic conditions, the dentate gyrus (DG) exhibits exceptionally low levels of

activity compared to other brain regions. A sparse activation pattern is observed even when

the DG is engaged to process new information; for example, only ~1–3% of neurons in the

DG granule cell layer (GCL) are activated after placing animals in a novel, enriched environ-

ment. Moreover, such physiologic stimulation of GCL neurons recruits young granule cells

more readily than older cells. This sparse pattern of cell activation has largely been attrib-

uted to intrinsic circuit properties of the DG, such as reduced threshold for activation in

younger cells, and increased inhibition onto older cells. Given these intrinsic properties, we

asked whether such activation of young granule cells was unique to physiologic stimulation,

or could be elicited by general pharmacological activation of the hippocampus. We found

that administration of kainic acid (KA) at a low dose (5 mg/kg) to wildtype C57BL/6 mice acti-

vated a similarly sparse number of cells in the GCL as physiologic DG stimulation by expo-

sure to a novel, enriched environment. However, unlike physiologic stimulation, 5 mg/kg KA

activated primarily old granule cells as well as GABAergic interneurons. This finding indi-

cates that intrinsic circuit properties of the DG alone may not be sufficient to support the

engagement of young granule cells, and suggest that other factors such as the specificity of

the pattern of inputs, may be involved.

Introduction

The dentate gyrus (DG) of the hippocampal formation plays a vital role in transforming spatial

information into neuronal representations of memory. Consistent with its function, neuronal

activity in the DG is tightly controlled, occurring in a sparse and selective pattern after physio-

logic stimulation [1–3]. The specificity of activation is widely attributed to two unique proper-

ties of the DG neural network: 1) strong local GABAergic inhibition, and 2) adult neurogenesis
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that adds new principal neurons (i.e. granule cells) to the granule cell layer (GCL) of the DG

[4–6].

Previous studies have shown that during a critical period of granule cell maturation (6–8

weeks of age), young granule cells begin to form strong reciprocal connections with GABAer-

gic interneurons that limit their excitability beyond 8 weeks of age [7–9]. Therefore, physio-

logic stimulation of the DG more readily activates young granule cells (<8 weeks old), which

have not yet established these robust inhibitory connections [10–13]. Conversely, old granule

cells (�8 weeks old), which comprise the majority of cells in the GCL, are efficiently inhibited

by GABAergic interneurons and remain largely silent when the DG receives input. Such “old”

granule cells include granule cells that were born prenatally as well as those born postnatally

but have developed and matured for at least 8 weeks. The combination of effects from network

inhibition and the more ready engagement of young granule cells contribute to why only ~1–

3% of neurons in the GCL are activated by exposure to physiologic stimuli that trigger new

information coding and memory formation [11, 12, 14, 15]. The sparse activation of young

granule cells in the GCL under physiologic conditions is thought to contribute to pattern sepa-

ration, a DG-dependent function that allows similar but distinct memories to be distinguished

from one another [13, 16, 17].

However, whether the sparse pattern of granule cell activation that favors young granule

cells is achieved primarily by the presence of local circuit properties (e.g., time-delayed forma-

tion of inhibitory contacts onto newborn granule cells) or is influenced by other factors such

as the specificity of input to the DG, is not clear. This question is important to address since

the DG can be subject to a variety of physiologic and pharmacologic stimuli, often with down-

stream behavioral consequences [18–25].

To assess whether the etiology of DG stimulation impacts pattern of cellular activation, we

compared the activation of cells in the DG granule cell layer by two different modes of stimula-

tion. One mode was physiologic stimulation by exposure of mice to a novel, enriched environ-

ment; the other mode was pharmacological activation of the hippocampus by a low dose of

kainic acid. We found that both modes of stimulation activated a similarly sparse number of

cells in the dentate granule cell layer. However, although exploration of a novel, enriched envi-

ronment engaged both young and older granule cells as expected, low dose kainic acid engaged

only older granule cells and GABAergic interneurons. Our results are consistent with the

hypothesis that factors in addition to local circuit and network properties are necessary for the

engagement of younger dentate granule cells by physiologic stimulation.

Materials and methods

Animals

A total of 82 mice were used in this study, which consisted of male and female C57BL/6J mice

from Jackson laboratory. The average age of mice in different experiments varied between 2–6

months of age, but mice within an experiment had dates of birth that were within several

weeks of each other. Animals were housed on a 12:12 light:dark cycle. No specific methods of

randomization were used, but animals were semi-randomly assigned to experimental groups

based on birth order after balancing for age and sex. For brain harvesting, mice were anesthe-

tized with isoflurane or intraperitoneal injection of a ketamine/xylazine overdose, and then

transcardially perfused with ice-cold saline (0.9% NaCl). The brains were extracted and fixed

in 4% paraformaldehyde for 48 hours at 4˚C. All experimental procedures were approved by

the Institutional Animal Care and Use Committees at Thomas Jefferson University and Baylor

College of Medicine.
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Kainic acid (KA) seizures

Kainic acid monohydrate (Sigma-Aldrich, K0250) was dissolved in saline at a concentration of

2 mg/mL working solution and frozen in aliquots. On the days of KA administration, fresh ali-

quots were thawed at room temperature and administered via intraperitoneal injection at a

final dose of 5 mg/kg or 15 mg/kg based on animal weight. Equal volumes of saline were

administered as control. Mice injected with KA were monitored for 2 hrs after injection to

score behavior as follows: 0, normal behavior; 1, immobility; 2, generalized spasm, tremble, or

twitch; 3, tail extension; 4, forelimb clonus; 5, generalized clonic activity with loss of posture; 6,

bouncing or running seizures; 7, full tonic extension; 8, death. Mice were sacrificed either 2

hrs or 3 days after KA administration.

EEG recordings

Mice were stereotaxically implanted with a six-electrode array headcap for EEG monitoring, as

described in [26]. Briefly, teflon-coated silver wire (0.005 in diameter) attached to a 6-pin Del-

ran pedestal (Plastics One) was wrapped around screws implanted bilaterally into the subdural

space over frontal and temporal cortices (from Bregma:1.0 mm A-P, 1.5 mm M-L; -2.2 mm

A-P, 2 mm M-L) along with a hippocampal depth electrode (-2.2 mm A-P, 2 mm M-L,1.8 mm

from brain surface (DV)). Ground and reference electrodes were implanted directly behind

Lambda on either side of the midline. Mice were allowed to recover for at least 4 days before

recordings were conducted. EEG recordings were performed in the home cage of the mice for

three continuous days after injection with 5 mg/kg KA, or for one day after injection with 15

mg/kg KA, using a Stellate Harmonie acquisition system (version 7.0a, Natus Medical, Pleason-

ton, CA) with a sampling rate of 2000 Hz for data acquisition. Native Stellate and Lab Chart Pro

(AD Instruments Inc.) software were used for EEG signal processing and spike count analyses.

BrdU administration

5-Bromo-2’-deoxyuridine, BrdU (Sigma, B5002), was dissolved in saline at a concentration of

10 mg/ml and stored at 4˚C. On the days of BrdU administration, fresh aliquots were used to

inject mice. Intraperitoneal injections of 100 mg/kg of BrdU were performed twelve hours

apart, twice a day over the course of 5 days (total of 10 injections). Novel environment expo-

sure or 5 mg/kg KA injections were performed 6 weeks later.

Enriched environment paradigm

The enriched environment (EE) paradigm followed a published protocol [26] in which mice

were placed in a novel cage containing a novel bedding type (Aspen wood shavings), a tray

from a pipette box tip, a repeat pipetter tip wrapped in red tape, a pool of water (in a pipette

box cover) with a floating 1-cm thick piece of banana, and a blue cap from a 50-mL conical

vial. Mice were allowed to explore the novel, enriched environment for 2 hours while being

video-recorded from above by a digital camcorder. Following the 2 hrs of EE exposure, mice

were sacrificed immediately along with control mice that had remained in their home cages.

Immunohistochemistry

Brains were cryoprotected in 30% sucrose in PBS, and coronal sections were cut with a freez-

ing sliding microtome (Microm). Sections were distributed into ten subseries, each containing

every tenth section throughout the rostral-caudal extent of the brain; each subseries therefore

includes 8–10 sections that contain hippocampus. One full subseries of free-floating sections

per mouse was used for each immunostain. After blocking nonspecific binding with 10%
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species-appropriate serum in PBS + 0.05% Triton X-100, sections were incubated overnight at

4˚C with primary antibody diluted in PBS + 0.05% Triton X-100 including 3% serum. Primary

antibodies included: rabbit anti-cFos (1:1,000, Calbiochem PC38 and 1:3,000, Millipore

ABE457), mouse anti-calbindin (1:1,000, Swant 300), goat anti-doublecortin (1:100, Santa

Cruz sc-8066), mouse anti-GAD67 (1:1,000, Millipore MAB5406), and rat anti-BrdU (1:1,000,

Accurate Chemical, OBT0030G). Sections were then rinsed with PBS + 0.05% Triton X-100

before incubation with secondary antibodies for 2 hours at room temperature. Secondary anti-

bodies included goat anti-rabbit FITC (1:200, Jackson Labs cat # 111-095-144), goat anti-

mouse rhodamine (1:200, Jackson Labs cat # 115-295-166), donkey anti-goat Cy3 (1:200, Jack-

son Labs cat # 705-165-147), goat anti-rat Alexafluor 594 (1:500, ThermoFisher cat # A-11007)

and goat anti-rabbit Alexafluor 488 (1:500, ThermoFisher cat # A-11034). For immunostaining

of BrdU, sections were first treated with 2M HCl for 30 minutes at 37˚C and 0.1M sodium tet-

raborate at room temperature before blockade of nonspecific binding. For all antibodies, after

secondary antibody incubation, sections were rinsed in PBS + 0.05% Triton X-100 and in PBS.

Stained sections were mounted on glass slides, and Prolong Gold with DAPI antifade mount-

ing medium (ThermoFisher) was used to allow visualization of nuclei.

Imaging and cell quantification

Fluorescent images were captured on a Zeiss AxioImager M2 epifluorescence microscope with

a 10X objective, using MetaMorph software (Molecular Devices). For each mouse, images

were taken of every section containing the dentate gyrus throughout its rostral-caudal extent.

The same exposure settings were used to image all mice within each experiment. Cell counts

were performed using ImageJ on 8 sections spanning the rostral-caudal extent of the dentate

gyrus for each mouse. Immunoreactive cells within the dentate granule cell layer were counted

in each section, and summed for each mouse. The person performing the quantification was

blinded with respect to experimental condition of the mice.

Statistics

Statistical analyses were performed using Prism 5 (GraphPad Software, San Diego, CA). Unless

otherwise stated, results are represented as sample means ± standard errors of the mean. Dif-

ferences between 5 mg/kg KA and 15 mg/kg KA with regard to seizures and spike counts were

assessed using a Mann Whitney U test to compare total numbers of seizures or spikes, or two-

way repeated measures ANOVA to compare occurrence of seizures/spikes over the recording

period. For all other comparisons, differences between two independent sample means were

assessed using a two-tailed, unpaired Student’s t-test. Differences among 3 or more sample

means were assessed via one-way ANOVA when sample variances were equal and Brown-For-

sythe ANOVA when sample variances were unequal, or a two-way ANOVA when there were

two independent experimental variables involved. Subsequent post hoc analyses were applied

when appropriate to detect focal differences between groups, and include Tukey’s Honestly

Significant Difference, Fisher’s Least Significant Difference, and Dunnett T3 tests. For all cell

count analyses, the experimenters were blinded to the treatment of each mouse.

Results

c-Fos expression in the dentate granule cell layer is increased to a similar

extent by physiologic and pharmacological stimuli

Exploration of a novel, enriched environment reliably engages a sparse pattern of dentate

granule cells, which can be assayed by the expression of the neuronal activity marker cFos
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[27–29]. We found a nearly two-fold increase in cFos-expressing dentate granule cells when

mice were removed from their home cages and exposed to a novel, enriched environment

(EE) for 2 hours, where interaction with new and unfamiliar objects stimulated the DG in a

physiologic manner (Fig 1A and 1B).

When testing responses of the DG to varying doses of the excitotoxin kainic acid (KA), we

discovered that treating mice with a low, non-seizure-inducing dose of KA (5 mg/kg) can

sparsely activate neurons in the GCL, similar to physiologic stimulation. Interestingly, the

Fig 1. Low-dose KA (5 mg/kg) or exploration of a novel enriched environment (EE) increases GCL cFos expression in a similarly sparse manner. A, B:

Images and quantification of cFos immunoreactive (IR) cells in the GCL after 2-hour exposure to EE (n = 8 per group; ��p = 0.0043). C, D: Representative

images and quantification of cFos IR cells in the GCL 2 hours after administration of 0, 5, or 15 mg/kg KA (n = 5 per group; ���p = 8x10-6). E, F: Images and

quantification of cFos IR cells in the GCL 3 days after administration of 0, 5, or 15 mg/kg KA (n = 4 per group; 15 vs. 0 mg/kg, �p = 0.047; 5 vs. 0 mg/kg,
��p = 0.0078; 15 vs. 5 mg/kg, ���p = 0.0002). G: Quantification of cFos IR cells in the suprapyramidal (SP) and infrapyramidal (IP) blades of the dentate

gyrus after 2-hour exposure to EE. Two-way ANOVA found significant effects of treatment (p< 0.0001), blade (p = 0.0013), and an interaction (p = 0.0003;

n = 8 per group). Posthoc tests revealed ���p<0.0001 for HC-SP vs EE-SP blades, EE-SP vs HC-IP blades, and EE-SP an EE-IP blades. H: Quantification of

cFos IR cells in the SP and IP blades of the dentate gyrus 3 days after administration of 0 (saline) or 5 mg/kg KA. Two-way ANOVA revealed an effect of

KA (p = 0.0008) but not of blade (p = 0.4838) nor an interaction (p = 0.7242; n = 4 per group). Posthoc tests revealed �p = 0.0157 for Sal-SP vs KA-IP

blades, �p = 0.0245 for Sal-IP vs KA-IP blades. I: Number of seizures observed in the first 16 hours post injection with 5 mg/kg KA or 15 mg/kg KA (n = 4

for 5 mg/kg KA, n = 5 for 15 mg/kg KA; ��p = 0.0079). J: Number of seizures exhibited in 2 hour bins following KA injection. K: Number of epileptic

spikes/hr over the first 16 hours post injection with 5 mg/kg or 15 mg/kg KA (�p = 0.0159). L: Number of spikes observed in each 2-hr bin following KA

injection. Dotted lines in A, C, E demarcate the boundaries of the GCL. Arrows indicate cFos-IR cells. Scale bar, 100μm.

https://doi.org/10.1371/journal.pone.0232241.g001
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effect of low-dose KA administration was not observed acutely, as it did not generate behav-

ioral seizures (stage 1.7 ± 0.2 on a modified Racine scale; see Detailed Methods) or alter GCL

expression of cFos within 2 hrs of administration (Fig 1C and 1D). However, 3 days after

administration, 5 mg/kg KA increased the number of GCL neurons that expressed cFos by

approximately two-fold that of saline-treated controls (Fig 1E and 1F). By contrast, a higher

dose of KA (15 mg/kg) induced acute behavioral seizures (stage 3.6 ± 0.8; p = 0.04 vs. 5 mg/kg

KA) that was associated with a robust increase in cFos expression 2 hrs after administration

(Fig 1C and 1D), and decreased cFos expression 3 days after administration (Fig 1E and 1F),

consistent with previous reports [26, 28, 30].

Previous studies have found differences in degree of neuronal activation, assessed by Arc or

zif268 expression, in the supra- and infrapyramidal blades of the dentate gyrus after environ-

mental exploration, with the suprapyramidal blade exhibiting higher activity [31]. Indeed, when

we examined whether the expression of cFos by dentate granule cells differed by blade, we found

that the EE-induced increase was specific to the suprapyramidal blade, whereas the infrapyrami-

dal blade did not exhibit increased cell activation (Fig 1G). Two-way ANOVA detected a signifi-

cant effect of treatment (p< 0.0001), DG blade (p = 0.0013), and an interaction (p = 0.0003).

Interestingly, although a low dose of KA 3 days after administration increased overall numbers

of cFos-expressing granule cells to a similar extent as EE, the expression of cFos induced by KA

did not vary by blade (Fig 1H). Two-way ANOVA detected a significant effect of KA treatment

(p = 0.0008), but not of DG blade (p = 0.4838) nor an interaction (p = 0.7242).

To confirm that 5 mg/kg KA did not induce seizures that we could not detect behaviorally,

we performed video-EEG recordings. One of four mice that received 5 mg/kg KA exhibited

one electrographic seizure shortly after receiving KA, but no other seizures were observed

afterwards, or in any other mouse, for three days post-KA injection (Fig 1I and 1J). In contrast,

all mice that received 15 mg/kg KA exhibited seizures within the first 8 hours post-KA injec-

tion (Fig 1I and 1J). The total number of seizures observed within the first 16 hours after KA

was significantly different between 5 mg/kg and 15 mg/kg KA (Fig 1I). We also plotted the

number of seizures in 2-hr bins post-KA injection to gain perspective on the timing of seizures.

Although two-way RM ANOVA did not detect a significant difference between these time-

lines, the graphs demonstrate the occurrence of a high number of seizures within the first 8

hours post injection of 15 mg/kg KA, but not for 5 mg/kg KA (Fig 1J). We also found that 5

mg/kg KA did not induce the occurrence of epileptic spikes, whereas 15 mg/kg KA did (Fig 1K

and 1L). The number of spikes/hr in the first 16 hours post injection of 15 mg/kg KA was sig-

nificantly higher than that of mice that received 5 mg/kg KA (Fig 1K). We also plotted the

number of spikes observed in 2-hr bins post-KA injection (Fig 1L). Two-way RM ANOVA

detect a significant effect of time (p = 0.025) and strong trends for effects of KA dose

(p = 0.087) and interaction between timing and dose (p = 0.057). Together these results indi-

cate that the low dose of 5 mg/kg KA does not generally induce seizures or epileptic spikes.

Novel enriched environment exposure activates young and older dentate

granule cells

We took advantage of the sparse activation of GCL neurons by 5 mg/kg KA to investigate how

the DG responded to non-physiologic stimulation comparable in magnitude to physiologic

stimulation. As mentioned previously, intrinsic properties of the DG network (e.g., neurogen-

esis and GABAergic tone) are thought to contribute to the sparse activation of neurons in the

GCL when the DG is stimulated. However, whether the etiology of DG stimulation (physio-

logic versus pharmacologic) plays a major role in the selective engagement of specific neuronal

types is unknown. Presumably, if intrinsic properties of the DG circuitry are sufficient to
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generate a sparse and selective pattern of cell activation in the GCL, then stimulation of the

DG via 5 mg/kg KA should activate cells in the same manner and pattern as EE. Therefore, to

assess whether the sparse and selective activation of GCL neurons was a unique property of

physiologic stimulation, or could be replicated by a low-intensity, non-physiologic stimulus,

we compared the repertoire of cell types in the DG that were activated by physiologic (EE) or

low-level aberrant (5 mg/kg KA) stimulation.

We first classified the types of cells in the GCL that were activated to express cFos in wild-

type mice exposed to EE. We found that nearly all of the cells activated by EE were more

mature granule cells (defined here as�4 weeks of age) (Fig 2A and 2B), since they expressed

calbindin [32, 33]. This finding was not surprising, since granule cells are the predominant cell

type in the GCL [34], and previous studies have demonstrated that their synaptic responses

Fig 2. EE activates young granule cells. A,B: Representative images and quantification of calbindin (CB)-positive cells that express cFos in the GCL after

EE exposure versus home cage (HC) control (n = 8 per group; ��p = 0.0032). C: The proportion of cFos-expressing cells that are CB-positive after EE

exposure (n = 8 per group; ���p = 0.00027). D,E: Images and quantification of doublecortin (DCX)-positive cells that express cFos in the GCL after EE

exposure (n = 10 per group; p = 0.26). F,G: Images and quantification of GAD67-positive cells that express cFos in the GCL after EE exposure (n = 8 per

group; p = 0.57). H: Experimental timeline for BrdU injection and EE exposure. I: Quantification of BrdU-labeled cells in the GCL in mice exposed to EE 6

weeks after BrdU injection (n = 8 per group; p = 0.6). J,K: Images and quantification of cFos and BrdU co-labeling in the GCL after EE exposure (n = 8 per

group; �p = 0.017). In panel J, dotted lines demarcate the boundaries of the GCL. Arrows indicate cells that express both cFos and CB (panel A), cFos and

DCX (panel D), cFos and GAD67 (panel F), or cFos and BrdU (panel J). Arrowheads indicate cells that only express cFos in corresponding images. Scale

bar, 25μm.

https://doi.org/10.1371/journal.pone.0232241.g002
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stabilize at ~4 weeks of age [7, 35]. Notably, we found that the proportion of cFos-expressing

cells that also express calbindin was increased by EE exposure (Fig 2C), indicating that physio-

logic stimulation of the DG preferentially activated the more mature granule cells over other

GCL cell types. Indeed, EE exposure did not induce cFos expression in immature granule

cells < 4 weeks old (Fig 2D and 2E), which express doublecortin [33], or GABAergic interneu-

rons (Fig 2F and 2G), which express GAD67 [36].

We then asked whether EE exposure activated mature granule cells of various ages includ-

ing young, recently matured granule cells (6–8 weeks of age). To answer this question, we

labeled a cohort of newborn neurons in the GCL by treating naïve mice with BrdU, a cell divi-

sion marker that is incorporated into dividing cells (such as neural progenitors in the GCL)

and is passed on to their progeny [37]. We waited 6 weeks for the labeled neurons to develop

and mature, and then exposed BrdU-treated mice to EE. After EE, mice were sacrificed and

their brains processed to assess co-labeling of cFos and BrdU (Fig 2H). We found that overall

uptake of BrdU by the cells in the GCL was equivalent between the mice that were exposed to

EE versus home cage controls (Fig 2I). However, EE exposure increased the number of BrdU/

cFos co-labeled cells (Fig 2J and 2K), indicating the activation of younger granule cells by

physiologic DG stimulation.

Low-dose kainic acid activates older dentate granule cells and interneurons

We next evaluated how 5 mg/kg KA affected cFos expression in various GCL cell types 3 days

after administration. Similar to EE, the majority of cells activated by 5 mg/kg KA were calbin-

din-positive, more mature granule cells (Fig 3A and 3B). However, in contrast to EE stimula-

tion, 5 mg/kg KA treatment did not increase the proportion of cFos-expressing cells that also

express calbindin (Fig 3C), suggesting that other types of neurons within the granule cell layer

were also activated. We found that 5 mg/kg KA did not affect cFos expression in immature,

doublecortin-expressing granule cells (Fig 3D and 3E), but did increase cFos levels in

GAD67-expressing interneurons (Fig 3F and 3G), indicating increased activity of GABAergic

interneurons. Lastly, we treated a separate cohort of naïve mice with BrdU, and 6 weeks later

assessed whether 5 mg/kg KA also affected the number of cells that co-labeled with both cFos

and BrdU (Fig 3H). We found that uptake of BrdU by the GCL was equivalent between BrdU-

treated mice that were later treated with saline or with 5 mg/kg KA (Fig 3I). However, unlike

EE, 5 mg/kg KA treatment did not increase the number of BrdU/cFos co-labeled cells (Fig 3J

and 3K), suggesting that 5 mg/kg KA did not activate younger granule cells.

Novel enriched environment and low dose kainic acid activate different

patterns of DG cells

The experiments above that examined the effects of EE and 5 mg/kg KA kainic acid were per-

formed and assessed independently. To directly compare whether the patterns of DG cell acti-

vation were different between the two paradigms, we analyzed the data across all experimental

conditions after normalizing the cell counts of the experimental condition (e.g., EE or 5 mg/kg

KA kainic acid) to their respective controls (e.g., home cage or saline). Consistent with our

independent analyses, we found increased co-labeling of cFos and calbindin in the GCL of

mice exposed to EE as well as those that received 5 mg/kg KA kainic acid, indicating that the

two stimulation paradigms induced cFos expression in more mature, calbindin-expressing

granule cells (Fig 4A). However, only 5 mg/kg KA kainic acid induced cFos expression in

GABAergic interneurons, since there were significantly more cFos/GAD67 co-labeled cells in

mice that received 5 mg/kg KA compared to saline-treated mice or mice that were exposed to

EE (Fig 4B). Finally, we found that EE exposure significantly increased co-labeling of BrdU
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and cFos in the GCL, an effect that was not observed with 5 mg/kg KA administration (Fig

4C). This result demonstrates that EE activated a greater number of younger granule cells

compared to 5 mg/kg KA administration.

Discussion

Our study highlighted a notable difference between the responses of the DG to physiologic

stimulation (EE) and low-level pharmacologic stimulation (5 mg/kg KA). Despite activating a

similarly sparse number of cells in the GCL, 5 mg/kg KA did not mimic the specificity of cell

types engaged by EE. EE activated younger (6–8 weeks old) and older (� 8 weeks) granule

cells, whereas 5 mg/kg KA appeared to have activated older granule cells (� 8 weeks) as well as

Fig 3. Low-dose KA activates older dentate granule cells and GABAergic interneurons. A,B: Representative images and quantification of calbindin

(CB)-positive cells that express cFos in the GCL 3 days after 5 mg/kg KA administration versus saline (Sal) control (n = 4 per group; ��p = 0.0098). C: The

proportion of cFos-expressing cells that are CB-positive after 5 mg/kg KA administration (n = 4 per group; p = 0.75). D,E: Images and quantification of

doublecortin (DCX)-positive cells that express cFos in the GCL after 5 mg/kg KA administration (n = 4 per group; p = 0.09). F,G: Images and quantification

of GAD67-positive cells that express cFos in the GCL after 5 mg/kg KA administration (n = 10–12 per group; �p = 0.032). H: Experimental timeline for

BrdU injection and 5 mg/kg KA administration. I: Quantification of BrdU-labeled cells in the GCL in mice treated with 5mg/kg KA 6 weeks after BrdU

injection (n = 6–8 per group; p = 0.32). J,K: Images and quantification of cFos and BrdU co-labeling in the GCL after 5 mg/kg administration (n = 6–8 per

group; p = 0.88). In panel J, dotted lines demarcate the boundaries of the GCL. Arrows indicate cells that express both cFos and CB (panel A), cFos and

DCX (panel D), cFos and GAD67 (panel F), or cFos and BrdU (panel J). Arrowheads indicate cells that only express cFos in corresponding images. Scale

bar, 25μm.

https://doi.org/10.1371/journal.pone.0232241.g003
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GABAergic interneurons, but not younger granule cells (6–8 weeks old). The engagement of

older granule cells by low-dose KA may provide an explanation for the simultaneous increase

in cFos and GAD67 co-labeling in KA-treated mice, since activation of older granule cells

largely drives inhibitory feedback via reciprocal connections with GABAergic interneurons

[38, 39]. Overall, this study indicates that the specific pattern of cell activation important for

memory encoding is not simply a function of stimulation intensity but is influenced by a com-

plex interplay of factors unique to the physiologic stimulus. Moreover, the intrinsic properties

of the DG network may be necessary but are not sufficient for generating the sparse and partic-

ular pattern of GCL activation during physiologic stimulation; factors external to the DG likely

play important roles as well.

Such factors could include the etiology of DG stimulation. A previous study demonstrated

that high frequency stimulation of the perforant path, which carries information from the

entorhinal cortex to the DG, elicited cFos expression in nearly 100% of mature, calbindin-

expressing dentate granule cells [40]. Similar to our findings, the authors in the previous study

found that very few DCX-expressing immature neurons in the DG expressed cFos upon stimu-

lation. However, using a combination of BrdU labeling and perforant path stimulation, they

found that 75% of DG cells that were 35–77 days old could be activated. This finding indicates

that activation of the DG via stimulation of endogenous afferents can activate and induce cFos

expression in both younger (<8 weeks) and older (� 8 weeks) mature granule cells, which pro-

vides an interesting contrast to our findings that nonspecific stimulation of glutamate recep-

tors with KA activated only older granule cells along with interneurons. These results indicate

that activation of the DG via stimulation of endogenous afferents engages a more physiologi-

cally relevant set of DG cells, compared to nonspecific pharmacological activation of the DG.

These results also suggest that pharmacological methods that enhance glutamate receptor sig-

naling to boost neuronal activity [41–43] may benefit from characterization of cell types that

are activated.

In summary, our study compared physiologic stimulation of the DG (exploration of a novel

enriched environment) to aberrant pharmacological stimulation of the DG (low-dose KA).

Fig 4. Enriched environment and low-dose kainic acid activate different patterns of cells in the GCL of the DG. A: Direct comparison of cFos and CB

co-labeling between mice that were exposed to EE and those that received 5 mg/kg KA (n = 4–8 per group; One-way ANOVA followed by post hoc tests: EE

vs. HC, �p = 0.04; KA vs. Sal, �p = 0.048; EE vs. KA, p = 0.55). B: Direct comparison of cFos and GAD67 co-labeling between mice that were exposed to EE

and those that received 5 mg/kg KA (n = 8–12 per group; One-way ANOVA followed by post hoc tests: EE vs. HC, p = 0.81; KA vs. Sal, ��p = 0.007; EE vs.

KA, �p = 0.025). C: Direct comparison of cFos and BrdU co-labeling between mice that were exposed to EE and those that received 5 mg/kg KA (n = 6–8

per group; One-way ANOVA followed by post hoc tests: EE vs. HC, �p = 0.043; KA vs. Sal, p = 0.86; EE vs. KA, �p = 0.041). ns, non-significant. Cell count

values for EE and KA have been normalized to HC and Sal controls, respectively.

https://doi.org/10.1371/journal.pone.0232241.g004
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Both methods of stimulation generated similarly sparse activation of DG cells, but with differ-

ing patterns of cell types. These findings indicate that local circuit and network properties

shape the pattern of DG activation when stimulation occurs via physiologic afferent routes,

but that these properties can also be over-ridden by aberrant forms of stimulation.
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