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ABSTRACT

Transcription factors (TFs) are the key elements
responsible for controlling the expression of genes
in bacterial genomes and when visualized on a
genomic scale form a dense network of transcrip-
tional interactions among themselves and with other
protein coding genes. Although the structure of
transcriptional regulatory networks (TRNs) is well
understood, it is not clear what constrains govern
them. Here, we explore this question using the TRNs
of model prokaryotes and provide a link between
the transcriptional hierarchy of regulons and their
genome organization. We show that, to drive the
kinetics and concentration gradients, TFs belonging
to big and small regulons, depending on the number
of genes they regulate, organize themselves differ-
ently on the genome with respect to their targets.
We then propose a conceptual model that can
explain how the hierarchical structure of TRNs
might be ultimately governed by the dynamic bio-
physical requirements for targeting DNA-binding
sites by TFs. Our results suggest that the main para-
meters defining the position of a TF in the network
hierarchy are the number and chromosomal dis-
tances of the genes they regulate and their protein
concentration gradients. These observations
give insights into how the hierarchical structure of
transcriptional networks can be encoded on the
chromosome to drive the kinetics and concentration
gradients of TFs depending on the number of genes
they regulate and could be a common theme valid
for other prokaryotes, proposing the role of tran-
scriptional regulation in shaping the organization
of genes on a chromosome.

INTRODUCTION

Products of genes have different functional roles and
hence not all genes are used at the same time and for
the same purpose. This explains why groups of genes are
differentially expressed. For instance, genes encoding for
enzymes in krebs’s cycle are constitutively expressed in
response to most growing conditions while genes respon-
sible for using alternative carbon sources are sporadically
required. The decision about which genes should be turned
on or off is executed by transcription factors (TFs) that
use metabolites/signals as input information from the
environmental state and give a transcriptional response
as output (1–3). As a result, the notion that different
TFs are expressed in different proportions came into exis-
tence. For instance, LacI, a repressor of the operon for
lactose consumption, is expressed in the order of tens’ of
molecules per cell, while global regulators such as CRP
(cAMP receptor protein) or IHF (integration host
factor) occur in the order of thousands of molecules in
the course of the cell cycle (4,5). In bacterial cells, where
transcription and translation are coupled to happen in the
same compartment these considerations become especially
important for regulating gene expression. During tran-
scription, regulatory proteins (TFs) should find and bind
to specific DNA sequences on the operator region of their
target genes to repress or induce their transcription (6).
The protein-DNA interaction is a critical step in gene reg-
ulation as TFs find their DNA-binding sites as result of a
passive process. Furthermore, TFs do not use energy (e.g.
ATP hydrolysis) to get DNA-sequence information (7),
which forces these systems to use additional strategies
for the optimal performance of different TFs. In the
early era of molecular biology, brownian diffusion was
thought to be the determining step in DNA-binding site
recognition by TFs. However, this assumption was chal-
lenged when it was reported that the LacI repressor finds
its DNA-targets 90–100 times faster than that predicted by
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a mere diffusive mechanism (8,9). This observation led
to the suggestion of ‘facilitated diffusion’ mechanism.
In such a mechanism, TFs alternate between a three
dimensional (3D) diffusion in the cell jumping between
DNA-strands and one-dimensional (1D) sliding along
the DNA to rapidly locate their binding sites (10–12).
This hypothesis was corroborated by several works
mostly with single molecule studies in which the authors
visualized individual TFs interacting with the DNA
(4,9,13,14). Several groups have also mathematically mod-
eled the sliding process along the DNA and shown it
to be a plausible way of making the search significantly
faster than 3D diffusion alone, in particular for TFs in low
cellular concentrations (7,15–17). However, it is unclear
what factors govern a TF to adopt one or the other strat-
egy discussed above and if there is an interplay between
nucleoid structure, genome organization and the biophy-
sical aspects of transcriptional regulation in bacterial
systems.

From a genomic perspective, recent works have
suggested the importance of chromosomal gene order in
bacterial genomes from transcription units and operon
organization to divergent and convergent transcriptional
control (18–21). Since TFs regulate the expression of genes
including themselves and that of other TFs, a functional
network of TFs is formed in each organism (22,23). It has
been suggested by several groups that biological networks
are hierarchical and scale-free in their structure (24,25),
however, our understanding on the functional constrains
governing this network structure is very limited. Thus,
addressing the design behind these architectures in the
context of genome organization can provide important
insights to a better understanding of genome structure
and function. In this study, we first show a link between
the out-degree of a TF, their genomic organization with
respect to their targets and their concentration at mRNA
and protein levels and then propose a conceptual model
that explains how the biophysics for the recognition of
DNA targets for global and local TFs, concentration gra-
dients for TFs and the gene order of regulons on the chro-
mosome interplay in the larger context of transcriptional
networks, using the currently available TRNs of the best
characterized gram-negative bacterial model, Escherichia
coli (26) and that of the not as well-characterized gram-
positive representative, Bacillus subtilis (27).

MATERIALS AND METHODS

Identification of regulon groups

To identify the different regulon groups based on normal-
ized regulon size and normalized average chromosomal
distance between TF and its TGs in a regulon, we used
K-means clustering implemented in cluster (28). To find
the number of distinct clusters present in the data we first
varied the number of clusters (parameter number of clus-
ters in K-means clustering) to identify how many times the
optimal solution has been found in 1000 runs using euclid-
ean distance as the similarity metric. We found that
when the number of clusters was set to three the optimal
solution was found in 350 times out of 1000 runs while

when the numbers of clusters was set to 2, 4, 5 the optimal
solution was reached in 120, 167 and 84 times, respec-
tively, suggesting that the number of clusters in the set is
indeed three. Similar approaches have been used by others
in calculating the significance of clusters with other clus-
tering approaches, as principled clustering frequently
results in suboptimal solutions in a single run (29).
To determine the composition of the clusters, we ran the

K-means clustering algorithm using three as the number
of clusters and 1000 as the number of runs. However since
different runs of the k-means clustering algorithm may not
give the same final clustering solution, we repeated this
experiment 10 times and finally took a consensus of the
groupings identified in these runs. We repeated the whole
approach to identify the distinct clusters in B. subtilis.

Estimating the statistical significance of the regulon groups

To calculate the probability of expecting the chromosomal
distances seen in each regulon group by chance, we com-
pared the average chromosomal distance observed in each
regulon group against the average chromosomal distances
seen in 1000 randomly generated regulon groups obtained
by preserving the number of regulatory interactions for
each TF in a regulon group. Such a randomization pre-
serves the number of TFs and the interactions in a regulon
group but still associates to randomly selected genes in the
complete genome thus preserving the topology of the reg-
ulon group while shuffling the genomic organization of the
targets with respect to their regulating TF.
Statistical significance was assessed based on (i) Z-score,

calculated as the number of standard deviations the
observed value is away from the randomly expected
mean. This is obtained as the ratio between the differences
of the observed, x, and random expected, �, values to the
standard deviation, � i.e. Z=(x – �)/�) and (ii) P-values,
defined as the fraction of the 1000 random trails which
showed a value � what was observed in the real dataset.

RESULTS

Genomic co-localization of TFs and target genes is
observed in small regulons

Simple regulons comprise of TFs and the set of genes they
regulate and were defined as early as 1964 (30). The func-
tional properties of these sets of genes can be diverse, vary
in number and be encoded dispersedly on the chromo-
some. However, it is unclear if there is any relationship
between regulon size and the chromosomal positioning
of their genetic components, neither is it known if their
relative genome organization has an influence on the
cellular concentrations of the TFs.
In a previous study we reported a distinct organiza-

tion of genes coding for TFs and their effector genes
(whose products control TFs), depending on whether the
effector proteins sense signals from endogenous or exoge-
nous origin in Escherichia coli (21). Here, we analyze if this
observed distance, when extended to all members of a
regulon, shows any trends depending on the size of the
regulon. It should be noted that there is a clear distinction
between TF-effector gene pairs and TF-target gene pairs.
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While the product of the former controls the activity of
the TFs the later correspond to the set of genes transcrip-
tionally regulated by the TF (forming part of a regulon).
In this work our interest is to understand how the chro-
mosomal distances (measured as number of intervening
protein coding genes on a circular genome) between TF
and its target genes in different regulons can explain or
reflect the network structure. To address these questions,
we obtained all regulons wherein TFs regulate at least
two genes (excluding auto-regulation) in E. coli and in
B. subtilis, taken from regulonDB (26) and DBTBS (31),
respectively. We included heterodimeric TFs and excluded
auto regulatory interactions. In E. coli K12, our final data-
set contained 141 regulons comprising of 1597 regulatory
interactions between TFs and their regulated genes; in
B. subtilis the dataset contained 54 regulons comprising
of 499 genes. First we asked if there is any link between
regulon size (number of regulated genes by each TF) and
the average chromosomal distance [calculated as the
number of intervening protein coding genes on the circular
chromosome as described earlier (21)] between the TF and
its target genes in each case. As a result of clustering
(see ‘Materials and methods’ section), regulons in both
organisms can be grouped into three main categories
(see Figure 1a and b and Table 1): (A) a few big regulons
(10 in E. coli and 7 in B. subtilis) regulating more that 50%
of the genes in their transcriptional networks (group A in
Figure 1a and b). (B) An intermediate and heterogeneous
group of regulons consisting of varying regulon sizes and
chromosomal distances (group B); and (C) a group of
small regulons having short chromosomal distances
(group C). Notably, small regulons (group C) are smaller
than the biggest operons of E. coli (15 genes) and B. sub-
tilus (22 genes), possibly suggesting limitations on their
sizes to act as functional modules either in the context
of co-expression or for horizontal transfer (18,32). The
group of 10 TFs in E. coli having the most number of
regulated genes, all are classified as global regulators
according to one or more previous studies (33) while
most of the TFs constituting small regulons were found
to sense external fluctuant signals resembling local genetic
modules (2). In particular, we found that highly connected
TFs were either Nucleoid Associated Proteins (NAPs) like
IHF, FIS, HNS or growth condition associated global
regulators like CRP (use of carbon sources), Fnr and
NarL (anaerobiosis), central intermediary regulators like
Lrp, ferric uptake regulator (Fur) or developmental path-
way associated factors like FlhDC (responsible for biofilm
formation), suggesting that these regulators indeed have
key functional roles in controlling the transcriptional
responses of the cell depending on the condition of
growth. It is interesting to note that several NAPs which
are known to act as bacterial analogs of chromatin remo-
deling factors are enriched in this class (see below).
Similarly, a functional analysis of the TFs from group B
suggested that several of them are involved in basic cellu-
lar activities like regulation of the biosynthesis of amino
acids, regulation of cell division and repair, regulation of
the uptake of elements, cellular stress and response to
antibiotics indicating a limited functional role of these
TFs compared to those from group A. Finally, an analysis

of TFs from group C suggested that they are involved in
the uptake of specific carbon sources, degradation of small
molecules and are abundant in two component response
regulators (see Supplementary Data for detailed annota-
tions of TFs from different classes). To estimate if the
average chromosomal distance seen in each group is sig-
nificant, we compared this distance against those seen in
randomly generated sets as described in ‘Materials and
Methods’ section. We found that the observed distances
for each of the three groups are significantly smaller than
expected by chance, with regulons from group C being the
closest (Table 1).

Transcriptional regulatory flow in the network of TFs

To find out if there is any coordination between the TFs
heading the different groups of regulons identified above,
we analyzed the regulatory flow among the TFs consti-
tuting the regulatory network (34–36). Figure 1c and d
shows the regulatory interactions present between at
least two TFs in E. coli and B. subtilis. Note that, all the
TFs of group A are at the top of the network hierarchy
initiating the regulatory interactions in the network of
TFs. The regulatory flow follows an order, from TF mem-
bers of group A to B to C, and there are no regulatory
interactions from members of group C directed to B or A,
indicating no feedback at the level of transcriptional
regulation from the bottom to the top. However, there
are some regulatory interactions between members of
the same group and from members of group B towards
members of group A. Other approaches for constructing
hierarchical networks, such as the bottom-up strategy
(36), using TF–TF network did not change our observa-
tions that group A shows a preference to occur at the top
of the hierarchy while group C appears at the bottom
of the hierarchical network (see Supplementary Data).
The partitioning of transcriptional network into big, inter-
mediate and small regulons illustrates how the network
components could be structured on a chromosome in
a scale-free distribution, observed in various biological
networks (24,25). It is possible to generalize from our
observations, that the TFs at the bottom of this hierarchy
often correspond to very specific functional roles like
those sensing specific environmental conditions (37) (see
Supplementary Data).

Absolute and average mRNA abundance of TFs suggests
correlation with regulon size and network hierarchy in
E. coli

It is believed that global regulators should be present in
higher concentrations in the cell compared to local or
dedicated TFs (4). In fact, it is known to be valid for
nucleoid-associated proteins and other global regulators
like CRP, Lrp and Fur in E. coli, whose protein concen-
trations reach more than 1000 units per cell (5,38). On the
other hand, the number of TF proteins of LacI, a dedi-
cated TF for lactose utilization, rises from around 5 to a
maximum of 20 upon induction of lactose (39). Indeed,
early genomic approaches to study gene expression
patterns on a genomic scale which exploited the codon
frequency bias of highly expressed cellular machinery
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like ribosomal, transcription and cheparone associated
classes, have shown that sequence specific TFs are
generally poorly expressed (40). However, so far,
no global analysis has been performed to compare TF
protein concentration with their connectivity and network
hierarchy. Therefore to address this, we used mRNA pro-
file data from two experiments performed in the

M9+glucose medium, in which the absolute number of
mRNA molecules were quantified (41–43). We obtained
the number of mRNA molecules (per cell) of genes encod-
ing for TFs from this dataset, to see if it correlates with
their connectivity and grouping as identified in Figure 1
(see Figure 2a). We found that TFs higher in the network
hierarchy had greater number of mRNA molecules per
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Figure 1. Relationship between size (defined as the number of target genes) and average chromosomal distance for all known regulons in (a) E. coli
and (b) B. subtilis. Regulon size is plotted on Y-axis and is normalized with respect to size of the biggest regulon in each genome for the sake of
comparison across genomes and the average chromosomal distance between the TF encoding gene and their respective target genes is shown on
X-axis. Chromosomal distances were calculated as defined earlier (21) with the maximum distance being half the number of protein coding genes on a
circular chromosome. Note that both regulon sizes and average chromosomal distances are normalized with respect to the maximum and both the
axes are shown on a logarithmic scale. Flow of regulatory interactions between the TFs heading the regulons, grouped according to their size and
chromosomal distance in (c) E. coli and (d) B. subtilis; it can be noted that the regulatory flux among TFs typically follows the order, big to
intermediate to small regulons, coloured respectively in red (big), green (intermediate) and blue (small).
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cell associated with them, suggesting that more protein
molecules are produced (Figure 2a and Supplementary
Data). To investigate further, the relationship between
concentration of a TF and its network hierarchy, we com-
pared TF’s outdegree against its average gene expression
using a large compendium of E. coli microarrays reported
recently (44). We found that TF’s outdegree and its aver-
age mRNA level across experiments follows the hierarchy
described above (Figure 2b). Our results suggest that sev-
eral regulators from group C in Figure 1 are poorly
expressed, consistent with previous observations that
two-component systems which are enriched in group C
and are proximal on the chromosome show poor predicted
expression values using codon usage measures (21,40).
If we assume that mRNA formation is a determining
step in protein synthesis, these data might correspond to
the absolute protein concentrations of the respective TFs

per bacterial cell implying a correlation between a TF’s
out-degree and its concentration, extending upon previous
studies (22,45,46). These observations clearly indicate
that the concentration of a TF is related to the way it is
encoded on the chromosome with respect to its target
genes, with local TFs regulating few genes present in phys-
ical proximity to their target genes and global TFs facil-
itating the regulation of many genes by increasing their
cellular concentration. Indeed it has been postulated
using simulations that low copy number TFs need to colo-
calize with their targets to enable a rapid and reliable gene
regulation, confirming the need to place low copy local
TFs in physical proximity to their targets in the genome
(47). Proteome profiles for TFs were limited to a countable
number until recently when two massive proteomic experi-
ments were reported for E. coli (42,48). Excluding the
nucleoid-associated proteins which are discussed below,
we could obtain protein concentrations for 25 TFs belong-
ing to different levels of E. coli network from these experi-
ments (see Figure 3 and Supplementary Data). Consistent
with our observations at mRNA level, TFs with high
intracellular levels corresponded with high out-degree
when their protein concentration is plotted as a function
of the number of target genes (Figure 3). With respect to
NAPs, these high-throughput experiments confirm their
high abundance reported almost ten years ago using quan-
titative western blot analyses (49). Indeed, a closer look at
the peak expression by the same authors suggested that
the production of these NAPs is distributed along the bac-
terial growth-phases (see Figure 4d). The high cellular
levels of these proteins with concentrations varying from
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Figure 2. (a) Relationship between mRNA abundance and out-degree
of a TF in the regulatory network of E. coli. TFs are colored as per
their grouping in Figure 1 with big regulons in red, intermediate ones in
green and small regulons in blue. Bigger the regulon, stronger is its
tendency to be expressed in higher concentrations. (b) Relationship
between out-degree of a TF and its average mRNA level, calculated
after processing and normalizing the expression data according to
RMA normalization, as reported by the authors (44).

Table 1. Properties of the main groups of regulons identified in the regulatory network of E. coli, based on average chromosomal distance between

TF and its target genes

Regulon
group

Number of regulons
(% of total regulons)

Regulon size
(average no. of
genes/regulon)

Total number of regulated
genes (% of total
regulated genes)

Average distance
(in gene numbers)
between the TF and
the target genes

P-value significance
(Z-score)

A 10 (7%) 76–399 (159) 1595 (99) 1059.45 <0.001 (–9.98)
B 73 (52%) 2–48 (13) 953 (59) 889.69 <0.001 (–10.74)
C 58 (41%) <12 (4.8) 281 (17.5) 2.42 <0.001 (–20.44)

Figure 3. Number of proteins/cell for TFs as a function of the number
of genes transcriptionally regulated by it (excluding NAPs as their pro-
tein levels are shown in Figure 4d and ArcA and NarL which are
known to be poorly expressed in aerobic condition where the experi-
ment is performed). Data are available as Supplementary Data.
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20 000 and 50 000 units made it possible to estimate that
on an average each monomer may bind every 500 bp along
the genomic DNA (49). In summary, in agreement with
the data for mRNAs, we observe that protein abundance
corresponds with the out-degree of a TF in the network,
with NAPs being particularly abundant and expressed in a
growth-phase dependent manner, possibly to re-structure
the nucleoid, facilitating the running of particular tran-
scriptional programs depending on growth phase status
(see below), (5,49,50). Therefore, one can hypothesize
from these results that the scalefree structure of bacterial
transcriptional regulatory networks (TRNs) is encoded in
the chromosome itself and that genome organization of
bacterial chromosomes might indeed be influenced by
their TRNs.

A conceptual model for the structuring of regulatory
networks in bacteria

In the integrated model we propose here (Figure 4),
the biophysical aspects of TFs for reaching their

DNA-binding sites might be the main driving force for
structuring the regulatory networks in bacteria as we
know presently. This conceptual model is supported by
the following observations and evidences:

(i) TFs governing small regulons are located close to
their regulated genes on the chromosome and this
spatial arrangement together with the fact that tran-
scription and translational mechanisms occur simul-
taneously, should favor that the newly synthesized
protein can contact quickly its target DNA through
the sliding and hopping mechanism as was shown in
the case of LacI (4,9) (Figure 4c). These local reg-
ulators are normally expressed in lower cellular con-
centrations as they would be required sporadically
to regulate few operons whose products have dedi-
cated functions. For instance, regulation of alterna-
tive carbon sources in E. coli is mainly governed
by the global regulator CRP and a group of local
TFs controlling small regulons which are located
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abundance of different nucleoid-associated proteins along the growth-phases, acting as analog regulators.
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proximally on the chromosome with respect to their
target genes (Figure 4b). The role of the products
encoded in these small regulons is to transport and
carry out the first catabolic steps of alternative
sugars until their catabolism converges in the glycol-
ysis pathway. Additionally, note that most of these
TFs in bacteria are autoregulated (22). Thus, this
sliding mechanism could be a generalized strategy
for a quicker and tighter control of TFs over their
own expression (51).

(ii) In contrast, global regulators which are distantly
located with respect to the large number of genes
they regulate employ a different strategy. Targeting
DNA seems to be accurately managed by raising the
concentration of the respective TFs and the actual
mechanism used for binding DNA would be 3D
diffusion and jumping between the DNA strands
(Figure 4a and CRP path in Figure 4b). The large
cellular concentrations of these proteins might be
maintained, in part, given that most global regula-
tors are autoregulated in both positive and negative
manner (22). Such a mechanism would also make
sure that the concentrations of these proteins are
maintained at high intracellular levels.

(iii) A third major player for gene regulation in bacteria
is the way the DNA molecule is packed into
nucleoids (5,49,52). Recent studies provide evidence
that the DNA molecule is organized into loops of
different lengths (10–100 kbp) which make it possi-
ble for some DNA regions to be spatially proximal
which would otherwise be distant on a linear
molecule of DNA (53–56). Although the exact co-
ordinates of these DNA loops is yet to be unveiled
even in well-studied systems like E. coli, it is known
that nucleoid associated proteins (NAPs) are specif-
ically engaged in structuring DNA depending on
the growth condition. These proteins bridge or
bend the DNA molecule facilitating DNA loops
and nucleoid’s structuring (5,52). In particular,
NAPs are shown to express in growth-phase depen-
dent manner with FIS at the beginning of stationary
phase, HNS in the mid-exponential and IHF in the
arrested phase (see Figure 4d) (49). These observa-
tions suggest that NAPs might structure the DNA
molecule in a different way depending on the
growth phase and this action should facilitate or
predispose off only a section of the DNA template
for the activity of global and local regulators and
the running of specific transcriptional programs.
Accordingly, it has been suggested that NAPs act
as analog regulators whereas the rest of the TFs
responding to specific conditions (e.g. by binding
signal effectors) act as digital regulators (50,57)
(Figure 4c).

DISCUSSION AND CONCLUSIONS

In this study we take advantage of the wealth of infor-
mation about the transcriptional networks in the best
characterized bacterial models and integrate a series of

observations to understand the principles behind the
structure of transcriptional networks. We show that the
regulatory flux is driven from big to small regulons in both
E. coli and B. subtilis. Using data from independently
reported studies in E. coli we demonstrate that higher a
TF is in the transcriptional hierarchy more are its detected
number of mRNA and protein molecules per cell, reflect-
ing its need to be expressed in higher concentrations to
regulate target genes located dispersedly on the chromo-
some. In contrast to big regulons, local or dedicated
TFs (lower in the network hierarchy) were found to be
expressed in much lower concentrations explaining the
reasons for their proximity on the chromosome to their
target genes. These observations give insights into how the
scale-free structure of transcriptional networks can be
encoded on the chromosome to drive the kinetics and con-
centration gradients of TFs, depending on the number of
genes they regulate and could facilitate the horizontal
transfer of local environment-specific transcriptional mod-
ules. Although our distance calculations do not take into
account the three dimensional topology of the chromo-
some under a given cellular condition, it is easy to note
that the chromosomal proximity of TFs to their targets in
the case of small regulons can not be explained due to
chance alone. While in the case of global TFs one can
argue that as they regulate several genes, their average
linear chromosomal distance could be an over-estimation
of intracellular proximity considering the dynamic nature
of the nucleoid. However, global TFs with their fuzzy
binding sites in contrast to local TFs could complement
their affinity to targets by increasing their concentrations
to a sufficient degree when needed (46,47). Thus, our
results suggest that TRNs play an important role in
genome organization by shaping the organization of
genes in genomes. These observations illustrate how bac-
teria as simple biological systems fit predicted theoretical
principles in order to optimize their cellular performance
in a compacted genome.

SUPPLEMENTARY DATA

Supplementary Data available at http://www.mrc-lmb.
cam.ac.uk/genomes/sarath/ScalefreeTRN/.
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