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Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous
stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplanta-
tion may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and
mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the
immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for
MM. Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in
MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines
as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM,
immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM
antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated
the most promising preclinical results.

1. Introduction

In spite of recent advances [1, 2], MM remains an incurable
disease, and new approaches that induce long-term tumor
regression and improve disease outcome are needed.

Autologous stem cell transplantation is a common treat-
ment for MM and results in effective cytoreduction. How-
ever, the curative outcome remains elusive due to chemo-
therapy-resistant disease [3]. A promising route to overcome
chemotherapy resistance is the development of immunother-
apeutic approaches that target and eliminate myeloma cells
more selectively.

A critical indication that immunotherapy is effective is
that tumor-associated antigens (TAAs) are expressed in the
tumor cells if disease reemerges after therapy. Vaccination
strategies targeting single antigens and whole-cell approaches
have shown promise in clinical studies.

They also have the advantage of presenting patient-spe-
cific and potentially unidentified antigens to immune effec-
tor cells.

Monoclonal antibodies (mAbs) have been evaluated in
preclinical and clinical studies. Potential mAb candidates in-
clude growth factors and their receptors, other signalling
molecules, and antigens expressed exclusively or predomin-
antly on MM cells. Therapy with mAb may involve a range
of mechanisms, including antibody-dependent cellular cyto-
toxicity(ADCC), complement-dependent cytotoxicity (CDC),
interference with receptor-ligand interactions, and mAb con-
jugation to radioisotopes or toxins [4].

Effector cell dysfunction and the increased number of re-
gulatory T cells in patients with malignancy may limit the ef-
ficacy of immunotherapeutic approaches. Strategies to im-
prove immunotherapy for MM involve the depletion of T
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regulatory cells, combining active and passive immunother-
apy, the use of cytokine adjuvants, and using immunotherapy
in conjunction with autologous and allogeneic transplanta-
tion.

The unique value of immunotherapy, in allogeneic trans-
plantation, is the graft-versus-disease effect mediated by allo-
reactive lymphocytes, which attack the tumor.

However, the significant morbidity and mortality due to
regimen-related toxicity and graft-versus-host disease (GvHD)
pertain [5].

Immunotherapy is promising area of investigation that
focuses on developing strategies to elicit myeloma-specific im-
mune responses to eliminate the malignant plasma cell
selectively.

2. Tumor-Specific Immunity and Immune
Evasion: The Role of the Adoptive and
Innate Immune System in Controlling MM

MM is associated with a variety of immune defects; therefore,
immunotherapy is particularly challenging. It is considered,
at least to a certain extent, to be controlled by the adaptive
immune system. This hypothesis is supported by the fact
that the therapeutic effect of alloSCT is mediated in part by
immune effects exerted by donor-derived T cells and that
donor T cells infused into MM patients are capable of in-
ducing remission in case of relapse [6, 7].

The development of effective tumor-specific immuno-
therapy requires addressing several basic issues concerning
tumor cell biology and the complex interaction between can-
cer cells and host immunity.

Tumor cells may evade host immunity through a variety
of mechanisms. Some may contribute to myeloma cell “toler-
ance,” including myeloma-derived cytokines such as trans-
forming growth factor-b (TGF-b), which suppresses B cells
and T cells via inhibition of interleukin-2 (IL-2) autocrine
pathways, inadequate antigen presentation, resistance to NK
cell lysis, and defective T, B, and NK cells [8]. Much data sug-
gests that early-stage cancers are eliminated by immune sur-
veillance, whereas established tumors are more likely to in-
duce immune tolerance [9].

Tumor-specific CD4+ T cells have a central function in
the immune response against cancer [10, 11]. Early studies
in rats and mice indicated that adoptive transfer of tumour-
specific CD4+ T cells may be very efficient in eradicating
established cancers [12, 13]. CD4+ T cells are required for
activation of tumour-specific cytotoxic CD8+ T cells [14],
but they can also eradicate cancer in the absence of CD8+
T cells [15, 16]. Tumor-specific CD4+ T cells recognize
antigenic peptides presented by MHC class II molecules.
However, most cancer cells are MHC class II negative and
therefore cannot be directly recognized by CD4+ T cells.
Tumor-specific CD4+ T cells overcome this obstacle by
collaborating with macrophages and dendritic cells [17].
These professional antigen-presenting cells endocytose TSA,
process it, and display antigenic peptides on their MHC class
II molecules for recognition by tumor-specific CD4+ T cells
[10, 18, 19]. The number and function of T cell subsets

were reported to be abnormal in patients with MM. The
CD4 : CD8 ratio inverted, and the Th1 : Th2 ratio among
CD4+ cells is abnormal [20]. T cells from MM patients were
shown to function aberrantly [21]. In addition, the levels of
expression of CD28 and cytotoxic T lymphocyte-4 (CTLA-4)
costimulatory molecules required for T cell activation and
inhibition, respectively, were downregulated in T cells deri-
ved from MM patients [22]. Tumor cells express a variety
of factors that suppress the function and development of
APCs and T cells. The B7 family of cosignaling molecules
is expressed on the surface of T lymphocytes and is crucial
for their optimal activation, as well as for the prevention of
immunologic tolerance. These cosignaling molecules not
only provide critical positive signals that stimulate T cell
growth, upregulate cytokine production, and promote T cell
differentiation but also contribute key negative signals that
limit, terminate, and/or attenuate T cell responses [23, 24].

Although the antibodies may trigger direct antitumor
activity through their Fab2 portion causing apoptosis of
tumor cells [25], they more often mediate damage of can-
cer cells by recruiting other effector systems of innate immu-
nity through their Fc portion. Such effector cells include
mononuclear and polymorphonuclear leukocytes that pha-
gocytise opsonized tumor cells and NK cells primarily in-
volved in the process of ADCC [26]. Complement is the other
soluble effector system of innate immunity that can be re-
cruited by mAbs to control tumor growth CDCC [27, 28].

The role of innate effector cells, such as macrophages, NK
cells, NKT cells, and γδT cells, in natural tumor immunity
and tumor immunotherapy has been revisited [29, 30]. NK
cells are cytotoxic lymphocytes that have the ability to lyse
certain tumor and virus-infected cells, without prior immu-
nization [31]. The cytotoxic activity of NK cells is tightly
controlled by a balance between activating and inhibitory
signals from receptors on the cell surface [32]. Activating re-
ceptors include the natural cytotoxicity receptors and
NKG2D, all of which push the balance toward cytolytic ac-
tion through engagement with separate ligands on the target
cell surface [32]. The role of autologous NK cells in the im-
mune recovery, which is a strong prognostic indicator for
survival after autologous stem cell transplantation (ASCT),
was highlighted by Porrata et al. [33], who showed that re-
infusion of autologous NK cells correlates with absolute lym-
phocyte recovery after ASCT for MM and non-Hodgkin’s
lymphoma.

Defective NK cells have also been noted in patients with
MM [34]. This is of major importance since NK cells have
antimyeloma activity [35, 36]. In the setting of AlloSCT for
MM, there is emerging evidence that donor NK cells along
with donor Tlymphocytes exhibit anti-MM activity [37]. In
another study, it was shown that, after coincubation of NK
cells from normal volunteers with myeloma cells from three
different MM cell lines and fresh BM samples from nine
myeloma patients, myeloma cells were susceptible to NK cell
lysis, even in the absence of IL-2 [36]. Of note, CD34 he-
matopoietic stem cells, as well as peripheral blood mononu-
clear cells (PBMNCs), were completely resistant to NK cell
killing under similar conditions [36]. Recently, it has been
shown that autologous NK cells from myeloma patients



Clinical and Developmental Immunology 3

expanded ex vivo with IL-2 displayed significant cytotox-
ic activity against primary autologous plasma cells [38].
Furthermore, it has been demonstrated that the infusion
of haploidentical killer-cell immunoglobulin-like receptor
(KIR) ligand-mismatched NK cells in the autologous MM
setting resulted in 50% near complete remission of relapsed
MM patients [39]. However, ex vivo or in vivo expansion of
the NK cells with IL-2 carries a dose-limiting toxicity.

The role of dendritic cells (DCs) is dichotomous; they
may present both antigens, appropriate stimulator molecules
to initiate an adaptive immune response, or they may induce
tolerance and release anti-inflammatory signals. Circulating
DCs from MM patients were shown to be dysfunctional be-
cause they failed to upregulate costimulatory molecules re-
quired for activation [40]. It was suggested that a reduced
function of DCs indicates the progression of the disease
[40]. Cytokines, such as IL-6, TGF-b, IL-10, and vascular
endothelial growth factor (VEGF), which were actively pro-
duced by myeloma cells [40] and were found to be in the
tumor microenvironment as well as in the serum [41], played
a role in preventing the development of functional DCs. Fur-
thermore, DCs from MM patients had reduced phagocytic
capacity [42]. In addition, monocyte-derived DCs exhib-
ited downregulated expression of activation markers and
impaired presentation capacity to T cells [41]. Impaired ac-
tivity of DCs may be linked to the upregulation of Tregs [43].
T cell tolerance to tumor-associated antigens plays a signif-
icant role in immune evasion by tumors [44, 45]. Naturally
occurring and adaptive regulatory T cells (Tregs) are anergic
cells with suppressive capabilities that constitute 5–10% of
CD4 cells. These cells are induced early during tumor devel-
opment and were shown to contribute to tumor tolerance
[46, 47].

The presence of Tregs in tumors is associated with a poor
prognosis [48]. Patients with many different types of cancers
had increased numbers of Tregs in their blood, tumor mass,
and draining lymph nodes [49, 50]. Increased numbers of
Tregs were found in patients with MM as well [51–53]. Ther-
apeutic approaches for breaking tolerance to tumor cells have
been tried; the depletion of Tregs is the most studied strategy
[54–56]. Nevertheless, despite the tumor antigen-specific im-
munity [57], the tumors were not completely rejected [58].
Thus, it is essential to reveal the mechanism leading to Treg
expansion for developing strategies to eliminate them and to
improve the results of cancer immunotherapy [59].

There is also emerging evidence that the cellular bone
compartment affects MM cell growth and progression. This
is supported by the observation that osteoclasts can support
long-term survival and proliferation of primary MM cells
[60, 61], and osteoblasts (OB) may impede MM cell growth
[62, 63]. Thus, targeting these cellular elements may also
favorably affect disease control. The BM microenvironment
in MM controls the tumor growth, myeloma cell survival
[64] and drug resistance [65, 66]. In turn, MM cells were sug-
gested to modify the BM microenvironment in which they
reside in several ways including induction of osteoclasto-
genesis and suppression of osteoblast activity, both leading
to impaired bone formation [67]. BM-derived mesenchymal

stromal cells (MSCs) are precursors of osteoblasts and pref-
erentially differentiate into bone forming cells upon in vitro
culture and in vivo introduction. MM cells were suggested
to target MSCs thereby diverting their functions to serve the
MM cells. This idea led to studies of the functions of MSCs
derived from MM patients (MM-derived MSCs) compared
to those of healthy individuals; it was suggested that MSCs
from myeloma patients exhibit defective functions [68–
70]: MM-derived MSCs were reported to exhibit decreased
colony-forming unit number [70], growth impairment [70],
reduced osteogenic differentiation [68] and increased IL-6
secretion [68, 70].

To summarize, the task of developing effective immuno-
therapy for cancer relies on the identification of appropriate
tumor targets, the augmentation of antigen-presenting and
effector cell function, and the reversal of the tumor-mediated
immunosuppressive state [71]. In this review we focus on
MM antigens and their specific antibodies, which have de-
monstrated the most promising results in preclinical studies
and are therefore the best candidate for future MM humoral
immunotherapy.

3. Myeloma-Specific Antigens and Vaccines:
Idiotype—Preclinical Studies

The myeloma-specific antigen that can be targeted by immu-
notherapy is the idiotype (Id) protein representing the vari-
able segment of the monoclonal immunoglobulin generated
in the plasma cell clone [72]. Targeting of the idiotype pro-
tein by humoral or cellular immune mechanisms, in preclin-
ical models, results in death of the tumor cells and disease
regression. Induction of protective antitumor immunity
through immunization with a myeloma idiotype has been
most extensively studied with the murine plasmacytoma
MOPC-315 model. In this model, it was shown that weekly
immunizations with tumor-derived paraprotein protect syn-
geneic mice against a subsequent challenge with MOPC-315
cells [73]. Idiotype-specific T cells at a low frequency were
detected in 90% of patients with MM or MGUS [74, 75].
In addition, transfer of idiotype-specific CD4+ T cells has
been shown to be protective against tumor challenge [76].
Antigen-specific responses, of both CD4 and CD8 positive T
cells, upon in vitro stimulation with autologous paraprotein
have been described in patients with monoclonal gammo-
pathies [74]. Induction of cytotoxic T cell activity against
autologous myeloma cells was also shown for stimulation
with idiotype-loaded dendritic cells [77, 78]. Consistent with
these results, several authors have shown that T cells in my-
eloma patients respond to peptides corresponding to com-
plementarity-determining region I–III of heavy and light
chains of the autologous M-component [79, 80]. Yi found
[81] that idiotype-induced T cell stimulation was mainly
confined to the CD4+ subset in most of the patients ex-
amined and was MHC class II restricted. Idiotype-specific
CD8+ T cells were also demonstrated, but at a lower freq-
uency. Idiotype-specific CD4+ and CD8+ T cells were mainly
of the type 1 subsets, as judged by their secretion of inter-
feron (IFN)-γ and interleukin (IL)-2 [82, 83]. Moreover, the
number of individuals who had an idiotype-specific response
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of the T-helper-1 (Th1) type (IFN-γ- and/or IL-2-secreting
cells) [84] was significantly higher for patients with indolent
disease (MGUS and MM stage I) than for those with ad-
vanced MM (stage II/III). In contrast, cells secreting the Th2-
subtype cytokine profile (IL-4 only) [84] were observed more
frequently in patients with advanced MM (stage II/III) [75].

Collectively, these findings indicate that the existing
idiotype-specific immune response is too weak to control the
growth of myeloma cells in vivo. It is possible that a shift
from an idiotype-specific type-1 response, that is, Th1 and
T cytotoxic-1 (Tc1) [85], in early MM to a type 2 response
(Th2 and probably Tc2) [85] in advanced disease occurs.
These studies provide indirect evidence that idiotype-specific
T cells may have a regulatory impact on human tumor B cells.

4. Clinical Trials of Idiotype Vaccination for MM

Native idiotype protein can be obtained from the serum of
myeloma patients, making vaccination trials relatively easy.
Injection of paraprotein alone may lead to an increased cellu-
lar and humoral immune responses, but it seems insufficient
to generate sustained antimyeloma immunity [86]. Intrader-
mal injections of paraprotein, combined with subcutaneous
administration of GM-CSF at the same site, induced an
increase in the numbers of IFNγ- and IL-2-secreting T cells
[87]. This response was present in CD4+ and CD8+ T cell
subsets and could be inhibited by blockade of MHC class
I molecules. Furthermore, production of idiotype-specific
IgM was induced in vivo. However, there was no clear in-
dication of clinical efficacy since the paraprotein levels re-
mained essentially unchanged, and DTH (delayed-type hy-
persensitivity reaction) responses to idiotype protein were
not detected.

In contrast, in subcutaneous vaccination with keyhole
limpet haemocyanin (KLH)-coupled paraprotein and addi-
tional adjacent injections of GM-CSF in patients after a high-
dose chemotherapy and ASCT, DTH reactions to the vaccine
were induced in 85% of patients, but in vitro testing provided
little evidence for specific T cell immune responses [88, 89].

A potential concern with the use of idiotype-based vac-
cination approaches in MM is that plasma cells only express
the idiotype protein weakly, and idiotype may be associated
with the development of tolerance. One strategy for targeting
myeloma by host effector cells is the genetic manipulation of
T cells such that the idiotype antibody is expressed and in-
duces signalling via the T cell receptor.

When patients in stage I disease were immunized with
idiotype in conjunction with IL-12 +/−GM-CSF, there was a
decrease in circulating clonal cells as detected by quantitative
PCR monitoring in four of six patients [90]. Finally, intrader-
mal immunization with uncoupled recombinant idiotype in
conjunction with GM-CSF induced idiotype-specific T cell
reactivity in a patient with advanced myeloma [91].

Idiotype-loaded dendritic cells (DCs) have been used by
various groups as vaccines in MM patients, mostly in the
setting of clinical remission after autoSCT [92–96]. Although
the patient characteristics and vaccine particularities pre-
clude firm comparisons between these trials, they neverthe-
less have collectively shown that the induction of cellular

immune responses is possible in the setting of minimal dis-
ease burden after ASCT. However, no real evidence has been
obtained in these Phase I and II trials that the natural course
of the disease has been altered by idiotype vaccination, and
efforts to improve the immunogenicity of the vaccination are
ongoing.

5. Myeloma-Specific Tumor Antigens

A variety of tumor-associated antigens have been identified
in myeloma cells that may be targeted selectively by the im-
munity of the host. These include the cancer testis (CT) anti-
gens, MUC1, HM1.24, CYP1B1, SP17, PRAME, Wilms’ tu-
mour 1 (WT1), and heat shock protein gp96 [97–102].

MUC1 is a physiologically highly glycosylated epithelial
mucin. Since the molecule is often expressed but severely
underglycosylated on malignant cells, it may be recognized
by cytotoxic T cell lymphocyte (CTL) toxicity in a MHC-un-
restricted manner [103]. This effect has also been shown in
myeloma [104]. Furthermore, HLA class-I-restricted peptide
target epitopes have also been identified within the MUC1
sequence, and the majority of myelomas appear to express
and present these epitopes to T cells [97].

WT1 is a zinc finger transcription factor with overex-
pression in myeloid malignancies [105, 106]. While WT1 is
also frequently expressed, albeit at lower level, in lymphoid
malignancies, myeloma cells may be efficiently recognized
and lysed by WT1-specific CTL [107].

CD317/HM1.24, a cell surface protein involved in cell
signaling [108], is another potential tumor-associated anti-
gen overexpressed in MM [109]. HM1.24-specific CTL can
be induced in healthy volunteers and MM patients [110].

Recently, it has been shown that the pituitary tumor
transforming gene 1 is expressed aberrantly in multiple my-
eloma and may serve as a target for cellular immunotherapy
[111].

The RHAMM is an immunogenic antigen that is strongly
expressed in several hematologic malignancies [112, 113]
and induces humoral and cellular immune responses [114–
119].

CT antigens represent a family of proteins that are ex-
pressed in a variety of tumors, while their presence in normal
tissue is limited to the testis and placenta. Several groups have
described that CT antigens are also expressed by myeloma
cells [98, 120–125].

CT antigens are commonly capable of inducing anti-
body-mediated and T cell-mediated immunity in MM pa-
tients [100]. CT Ag-specific T cells can be detected in the
blood of myeloma patients and appear to be functionally
competent [124, 126]. Depending on the patient population
and the method used to detect CT gene expression, there
appears to be a trend towards higher likelihood of expression
with advanced stage [121, 123] and presence of cytogenetic
abnormalities [124], both representing adverse prognostic
factors in myeloma. These antigens represent potential ma-
rkers for minimal residual disease (MRD) after ASCT and
could also be used to target myeloma cells remaining in the
patients’ BM after standard therapy. In addition, in MM,
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expression of CT antigens has been shown to be strongly
correlated to the clinical outcome; that is, the presence of CT
antigens expression has been linked to shorter survival [127].

Baseline expression frequencies, measured by RT-PCR,
determined MAGE-C1/CT7 as the most frequently detected
antigen, possibly perform a gatekeeper function for the other
antigens examined. Importantly, 80% of the patients with a
significant number of plasma cells expressed at least one of
these antigens investigated [128].

A novel CT antigen, ropporin, is a testis-specific protein
localized in the sperm flagella. Comparing ropporin expres-
sion in healthy and MM samples, ropporin expression posi-
tive signals were found in 44% of the MM primary samples.
The immunogenicity of ropporin was confirmed by the pres-
ence of specific antibodies detected by enzyme-linked immu-
nosorbent assay in patients’ serum [129].

The gene expression of CT antigen in relapse samples and
in newly diagnosed MM cases was evaluated [130, 131]. The
CT antigen expression after treatment was shown for a lim-
ited number of CT antigens including PASD1, CTAG1B,
and MAGEC1/CT7 [123, 124, 128, 132, 133]. Multivariate
analysis demonstrated that for the set of newly diagnosed
cases shorter overall survival was associated with the presence
of MAGEA6 and CDCA1, and MAGEA9 was associated with
a shorter overall survival in [130]. In the set of the relapse
cases, the presence of CTAG2 was associated with a shorter
progression free-survival and the presence of SSX1 with
shorter overall survival [130].

NY-ESO-1 is the most immunogenic of the CT antigens
[99]. NY-ESO-specific CTLs generated from patients with
MM were shown to kill primary myeloma cells, normal cells
pulsed with a NY-ESO-1 peptide, but not normal cells puls-
ed with an irrelevant peptide. Spontaneous humoral and
CD8− T cell-mediated responses to NY-ESO-1 have been id-
entified in patients with advanced disease [99, 124, 126].
Vaccination strategies targeting NY-ESO-1 may be effective at
inducing specific antimyeloma immunity, and a clinical trial
evaluating the efficacy of an NY-ESO peptide vaccination
given in conjunction with GM-CSF is underway [99].

Importantly, the finding that immune responses against
CT antigens are induced by alloSCT [100] suggests that this
class of tumor antigens might indeed represent natural
targets for donor-derived alloimmune or even spontaneous
antimyeloma immune responses. Interestingly, in patients
undergoing an allogeneic transplantation, antibody respons-
es to NY-ESO-1 were detected after transplantation, suggest-
ing that this may represent a target for the graft-versus-my-
eloma effect. LAGE-1 mRNA was detected in 49% of MM
patients [134]. Recently, de Carvalho et al. reported that
LAGE-1a mRNA was more frequent than LAGE-1b expres-
sion in MM cases [135]. The LAGE-1a protein has 84% simi-
larity with the NY-ESO-1 protein, and the authors identified
seven peptides present in both CTAs that were recognized
by T lymphocytes in different tumors. Because spontaneous
humoral immunity against NY-ESO-1 was not detected
before the allogeneic transplant in previous study [100], the
LAGE-1a isoform and NY-ESO-1 could be considered as one
“single” CTA for immunotherapy purposes [135].

Currently, an immunotherapy trial targeting the CTAs
MAGE-A3 and NY-ESO-1 in MM patients is in progress
(NCT00090493).

6. Cell-Based Myeloma Vaccines

Instead of vaccinating myeloma patients against TAs, an
alternative principle aims at stimulating the immune system
with the entirety of the myeloma cell’s antigens [136]. Such
approaches may be implemented by using tumor cell lysates
or apoptotic tumor cells as a source for antigens. In a direct
comparison, irradiated, apoptotic tumor cells appear to be
a superior source for antigen compared to tumor lysates for
DC-mediated T cell stimulation [137]. Indeed, stimulation
of T cells from the peripheral blood or bone marrow with
autologous dendritic cells that had been coincubated with
purified, irradiated myeloma cells may give rise to T cell lines
with specific IFN-γ production and lytic activity of primary
autologous tumor cells. In this approach, presentation of
antigens from myeloma cell lines by DC s is greatly enhanced
by coating of myeloma cells with a specific antibody such
as anti-CD138 [138]. Similar results with induction of
specific, cytotoxic T cell activity against autologous myeloma
cells have also been reported when DCs were loaded with
myeloma cells lysed by repetitive freeze-thaw cycles [139].

Among the leukemia-associated antigens (LAAs),
RHAMM, proteinase 3, and WT-1 have been already tested
for clinical peptide vaccination [116, 140]. A Phase I/II R3
peptide vaccination for patients with AML, MDS, and MM
overexpressing RHAMM was initiated [141]. Patients with a
diagnosis of MM were included who fulfilled the following
criteria: partial remission (PR) or near-complete remission
(NCR) after a high-dose chemotherapy with melphalan and
ASCT; immunofixation still positive; free light chains in
serum and/or urine were detectable. The patients expressed
both RHAMM and HLA-A2 as assessed by RT-PCR and flow
cytometry. Authors found a significant increase of specific
CD8+ T cells recognizing the RHAMM-R3 peptide in 4/9
patients by ELISpot analysis and/or by tetramer staining.
However, due to the number of patients in this Phase I trial
no meaningful statistical analysis could be performed.

The interaction between the CD40 ligand (CD40L) on
activated T lymphocytes and CD40 on the APCs has been
shown to be crucial for the induction of cytotoxic T lym-
phocyte (CTL) immunity. CD40−B cells can be generated in
large numbers from small amounts of peripheral blood and
have the potential to serve as a cellular adjuvant for im-
munotherapy [142]. The CD40−B cells loaded with tumor
lysates induced strong target-specific CTLs, based on large
numbers of IFN-γ- secreting cells and higher cytotoxic ac-
tivity against target cells compared to the CD40−B cells with-
out the tumor lysates [142].

Recently, hTERT (human telomerase reverse transcrip-
tase) was detected in the majority of human malignancies.
HTERT can be a target for CT−T lymphocytes in several
malignancies including MM in vitro [143] and in vivo [144].
Kryukov et al. studied antigen-specific and HLA-A2-restric-
ted cytotoxic activity against an ARH77 myeloma cell line
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in vitro [145], when HLA-A2-specific hTERT-derived non-
apeptide was used as a TAA. Myeloma-specific cytotoxic ac-
tivity of hTERT-reactive CTLs was established by repeated
stimulation of the CTLs via DCs loaded with hTERT-derived
nonapeptide.

In cancer immunotherapy, including MM, there is no
proof that a cancer vaccine has to stimulate a large number
of T cells in order to initiate tumor rejection. T cell responses
to tumor antigens may be of a low level, and negative results
obtained with most ex vivo assays may not exclude the benefi-
cial effect of tumor-specific T cells in vivo. After stimulation,
myeloma-reactive T cells activate and produce IFN-γ. Such
activated T cells can be efficiently expanded in vitro without
loss of specificity to the target myeloma antigens. Cytotox-
icity of expanded myeloma-reactive T cells was evaluated
and demonstrated a strong and myeloma-specific response
which, as expected, was mainly CD8+ CTL dependent [146].
Further expansion of sorted myeloma-reactive T cells con-
taining both helper and cytotoxic T cells does not lead to
loss of antigen specificity but, rather, leads to potentiation of
cytotoxicity, probably via beneficial cytokine production by
helper T cells that positively influences further proliferation
and the cytotoxic potentiality of CD8+ CTLs. Immunization
with MUC1 protein results in activation of CT−T lympho-
cytes both in vitro and in vivo [147]. After immunization
with this antigen, activated T lymphocytes were separated
immunomagnetically and expanded in vitro [148]. Specific
cytotoxicity of the expanded T lymphocytes was tested
against a myeloma cell line [148]. Such an approach can also
be useful therapeutically as, after enrichment, myeloma-
reactive T cells can be expanded in vitro to reach amounts
useful and effective in clinical trials. An approach which was
recently introduced into the clinical setting relies on adoptive
transfer of T cells expressing transgenic T cell receptors
(TCRs) with antitumor function; however, there is a critical
bottleneck in identifying high-affinity TCR specificities nec-
essary for treatment of various malignancies [149].

In general, the process of identification and characteriza-
tion of individual myeloma specific T cell clones can be used
as a tool for immune monitoring during cancer treatment.

Depletion of CD25+ regulatory T cells by specific mon-
oclonal antibodies like denileukin diftitox (Ontak; [150]) or
addition of toll-like receptor stimulation oligodinucleotides
might pave the road for new approaches in the field of pep-
tide vaccination [151]. Moreover, advances are being made
in the combination of peptide vaccination with alloSCT
[140].

7. Vaccines for Myeloma Based on
Dendritic Cells

Preclinical studies have shown that DCs generated from my-
eloma patients were functional and could efficiently present
Id determinants to autologous T cells [83, 152]. DCs pulsed
with Id protein can be used to induce the type-1 anti-Id
response in myeloma patients. Wen and coworkers [79, 95]
reported results from vaccinating an MM patient with auto-
logous Id protein-pulsed DCs generated from blood adher-
ent cells. An immune response against Id was demonstrated

in many of the patients. A minor clinical response (25% re-
duction in the M-component) was observed in one patient
and stable disease in the remaining patients. Cull and co-
workers [153] reported on vaccinating two patients with
advanced refractory MM with Id-pulsed DCs combined
with GM-CSF. An anti-Id T cell proliferative response was
detected in both patients, which was associated with IFN-γ
production by the T cells. One patient also had an anti-Id
humoral response. Subcutaneous DC vaccination indeed in-
duces better antimyeloma responses than intravenous DC
vaccination [154–156].

DC vaccines can also be produced in the form of fusion
of tumor cells with DCs. Vaccination with fusions of tumor
cells and DCs is an effective treatment in animal tumor mod-
els [157]. In a murine plasmacytoma model, vaccination with
DCs fused with mouse 4TOO plasmacytoma cells was as-
sociated with induction of antitumor humoral and CTL re-
sponses [158]. Immunization with the fusion cells protected
mice against tumor challenge and extended the survival of
tumor-established mice without eradication of the tumor
cells. Addition of IL-12 helped eradicate the established
tumor. In a more recent study, human myeloma cells, either
primary myeloma cells from patients or a myeloma cell line
U266, were fused to human DCs [159]. Fusions with mature
rather than immature DCs induced higher levels of T cell
proliferation and activation, as assessed by intracellular
IFN-γ expression, and stronger CTL activity against the tu-
mor cells [160, 161].

Based on these results, a clinical trial was designed to
evaluate the efficacy of vaccinating myeloma patients with a
fusion of myeloma cells and autologous mature DCs [159].

However, patients with MM have DCs that are function-
ally defective [42]. In order to generate potent functional
DCs, alternative methods for blocking some inhibitory
signals have been tested [41, 162]. It was reported that the
inhibitory factors and abnormal signaling pathways of DCs
during maturation with tumor antigen might be responsible
for the defective activity of DCs in MM and suggested that
the way to overcome these abnormalities is by neutralizing
the signaling that would lead to suppressing the immune
response [163]. In an attempt to increase DC potency by the
use of cytokine combinations, alpha-type-1-polarized DCs
(αDC1s) that are induced to mature using the αDC1-po-
larizing cytokine cocktail (interleukin (IL)-1β, tumor necro-
sis factor (TNF)-α, interferon (IFN)-α, IFN-γ, and polyinosi-
nic:polycytidylic acid [poly(I:C)]) can be developed to gen-
erate strong functional CTLs in several diseases, compared
to standard DCs (sDCs) [164]. When mononuclear cells
(MNCs) from the BM are used as a source of tumor an-
tigen, the DCs usually show weak antigenicity due to pos-
sible contamination with normal cells. To overcome this pro-
blem, the previous report demonstrated that DCs pulsed
with purified and optimized myeloma antigen could generate
potent myeloma-specific CTLs [165]. Recently, the possibil-
ity of cellular therapy using autologous αDC1 pulsed with
the ultraviolet B (UVB)-irradiated allogeneic myeloma cell
line, ARH77 with HLA-A0201+, which could generate my-
eloma-specific CTLs against autologous myeloma cells was
investigated [166].
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Vaccination with DC/tumor fusions induces antitumor
immunity in the majority of the patients; however, the re-
sponses are transient and not always associated with clinical
benefit. One potential limiting factor is the regulatory T
cells. Developing strategies that promote the expansion of
functionally competent tumor reactive T cells and limit the
influence of regulatory T cells is necessary to improve the
efficacy of the DC/MM fusion vaccine. One approach is
vaccination in conjunction with ASCT which facilitates vac-
cine response by inducing a minimal residual disease state
and limiting the inhibitory influence of the myeloma cells.
In preclinical models, stem cell transplantation results in the
in vivo depletion of regulatory T cells, transient loss of tumor
mediated tolerance, and enhanced capacity to respond to
tumor vaccines [167, 168].

PD-1 expression is upregulated on T cells isolated from
patients with MM, and PD-1 blockade is associated with
enhancement of T cell response to the vaccine. Luptakova
et al. examined the effect of lenalidomide on T cell activa-
tion and polarization, PD-1 signaling, and vaccine-induced
responses in vitro [169]. In vitro exposure to lenalidomide
results in enhanced T cell activation in response to direct
ligation of the costimulatory complex and stimulation by the
DC/myeloma fusion vaccine, suppressed T cell expression
of PD-1 and regulatory T cells, 2 critical pathways respon-
sible for tumor-mediated immune suppression. This is the
first demonstration of an interaction between lenalidomide
and the PD-1/PDL-1 pathway. These findings support the
development of cellular immunotherapy in conjunction with
lenalidomide, including its use with the DC/myeloma fusion
vaccine [169]. Lenalidomide resulted in greater degree of Th1
polarization as manifested by a 2-fold increase in the per-
centage of CD8+ T cells expressing IFN-γ (P = 0.02) and a
decrease in the percentage of regulatory T cells from 6.88%
to 3.13% (P = 0.02). In addition, the percentage of NK cells
expressing IFN-γ was 5-fold greater (P = 0.03) in the pre-
sence of lenalidomide.

Lastly, Luptakova et al. found that vaccination with
fusion-mediated stimulation of autologous T cells in the pre-
sence of lenalidomide resulted in an increase in the percen-
tage CD4+ and CD8+ T cells expressing IFN-γ (5.35% to
8.79%, P = 0.06, and 6.37% to 9.85%, P = 0.03, resp.). The
proportion of regulatory T cells decreased from 9.57% to
4.43% in the presence of lenalidomide (P < 0.01). As with
nonspecific stimulation, PD-1 expression on CD4+ cells in
the presence of lenalidomide decreased from 24% to 19%. In
concert with these findings, exposure to lenalidomide re-
sulted in increased cytotoxic T lymphocyte-mediated lysis of
autologous tumor targets (from 25% to 36%). At this time
several clinical studies recruit patients for clinical investi-
gation [169].

8. NK Cells

DCs and NK cells reciprocally activate each other during the
immune response. DCs can stimulate NK cells to produce in-
terferon-γ (IFN-γ) and to expand NK cells in vitro [170, 171].
Reversely, the DCs can be activated by NK cells to increase the
production of cytokine, costimulatory molecules expression,

and T cell stimulation, resulting in a more efficient Th1-type
polarization and CTL generation [172, 173]. Nguyen-Pham
et al. investigated the possibility of generating potent DCs
through stimulation with NK cells in the presence of different
cytokines in order to induce myeloma-specific CTLs against
MM in vitro [174]. They demonstrated that potent DCs can
be generated by stimulation with NK cells, as activator help-
er cells, in the presence of TLR3 agonists, IFN-γ, and IL-2.
NK cell-stimulated DCs exhibited high expression of costim-
ulatory molecules and high production of IL-12p70 [174].
These DCs induce high potency of Th1 polarization and
exhibit a high ability to generate myeloma-specific CTL re-
sponses. These results suggest that functionally potent DCs
can be generated by stimulation with NK cells and may
provide an effective source of DC-based immunotherapy in
multiple myeloma [174].

Recently, it has been shown that autologous NK cells
from myeloma patients expanded ex vivo with IL-2 displayed
significant cytotoxic activity against primary autologous
plasma cells [38]. However, ex vivo or in vivo expansion of the
NK cells with IL-2 carries a dose-limiting toxicity.

The potential of tumor-activated (TaNK) cells to induce
lysis has been explored [175]. Recent study was designed to
assess the relative function in vitro of NK and TaNK cells
from MM patients compared to normal healthy controls in
the lysis of tumor cell lines and freshly isolated primary auto-
logous and allogeneic MM cells [175]. In this study, the au-
thors demonstrated that TaNKs from myeloma patients can
induce a substantial lysis of myeloma cell lines as well as au-
tologous and allogeneic freshly isolated BM malignant plas-
ma cells. This was in accordance with the degree of killing
reported in the study by Alici et al. [38], where NK cells
underwent ex vivo expansion with the addition of IL-2. This
potential is not affected either by the disease status or
by the antimyeloma treatment, including novel agents and
dexamethasone. These findings provide information for
the use of TaNK cells in MM therapy and particularly in
combination with the novel agents.

Modulation of inhibitory and activating NK receptor
ligands on tumor cells represents a promising therapeutic
approach against cancer, including MM. Proteasome in-
hibitors, in particular lactacystin, that most probably target
inhibitory KIR ligand class I on the MM tumor cells may
contribute to the activation of cytolytic effector NK cells in
vitro, enhancing their antimyeloma activity [176].

Several reports showed a reciprocal relationship between
NK and Tregs [177]. In addition Tregs could suppress the
function of NK cells [178]. A unique mouse model of MM,
namely, 5T2MM-bearing mouse, was useful for elucidating
the pathophysiological mechanisms underlying the disease
[179]. Depletion of Tregs, a proposed strategy in cancer
immunotherapy, was tested using cyclophosphamide (CY).
Low-dose CY, which selectively depletes Tregs, decreased
MM incidence, in contrast to high-dose CY, which was
generally cytotoxic, and did not reduce MM incidence. On
the other hand, the number and function of NK cells could be
recovered, the production of IFN-γ was enhanced, and DCs
could continue their differentiation and become mature and
ready for activation [179].
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Th1-type cytokines invariant natural killer T (iNKT) cells
have been shown important in initiating antitumor immune
responses. Through the production of IFN-γ, iNKT cells can
stimulate the activation of downstream effectors including T
cells, NK cells, dendritic cells, and macrophages and increase
NK and T cell proliferation and cytotoxicity through IL-2
production [180–183]. However, both quantitative and qua-
litative defects of iNKT cells in advanced MM hamper their
antitumor effects. Song et al. developed a novel immunother-
apeutic strategy directed at the activation and expansion of
Th1-polarized iNKT cells from MM patients [184]. Func-
tional iNKT cell lines were generated from MM patients with
a-GalCer-pulsed DCs and further improved by lenalidomide.
These results provide the preclinical feasibility and rationale
for iNKT cell-mediated immunotherapy in MM [184].

9. Monoclonal Antibodies in
the Treatment of MM

9.1. General Considerations. A wide range of antigens may
ultimately be targeted in MM therapy, including those in-
volved in cell survival, antiapoptotic pathways, cell-to-cell
communication, angiogenesis, and interactions between
MM cells and bone marrow stromal cells (BMSCs) and/or
other cells in the BM microenvironment [26, 185]. These
potential targets include signalling molecules, cell surface
receptors and other cell surface proteins, plasma cell growth
factors, and mediators for adhesion. Ideally, a useful target
for mAb-based MM therapy should be expressed exclusively
on the majority of the MM cells (or other target cells such as
those involved in angiogenesis) [26]. The clinical efficiency
of most therapeutic antibodies is based on their capacity
to recruit and activate cytotoxic effector mechanisms of the
innate immune system. This occurs either by engagement of
activating Fc receptors expressed on NK cells or macrophages
on the tumor cell surface leading to ADCC or by activating
the complement cascade through tumor cell-bound antibod-
ies (CDCC). Other possible mechanisms include interference
with ligand binding (e.g., growth factor or G-protein coupled
receptors) and the use of mAbs as targeted “carriers” of
cytotoxic agents [4].

CD20. Clinical studies of rituximab therapy for MM have
been disappointing, as only a few of the patients showed min-
imal response [186]. The failure of rituximab in this setting is
potentially attributable to the small number of MM patients
(estimated at 13–22%) who express CD20 in primarily a low
proportion of plasma cells. Another mechanism that may
render MM refractory to rituximab is the possibility that
MM cells express increased levels of complement-inhibiting
proteins, thus reducing the effectiveness of CDC. In addition,
Fc-c receptor polymorphism may limit the effectiveness of
ADCC as a killing mechanism. Finally, the use of rituximab
for MM may induce a selective loss of the CD20 expression
[186]. Although it is conceivable that rituximab may be
useful for some carefully-selected MM patients, such as t (11;
14) translocation patients, who exhibit relatively high CD20
expression [187], it is unlikely to be of value for the majority
of cases.

CD40. CD40 is a transmembrane protein belonging to the
TNF-α superfamily, normally expressed in the resting cell
types, with the highest levels of expression found in B and
DCs [188–190]. CD40 is expressed at high levels on the
surface of MM cell lines and primary MM cells [191]. The
binding of CD40 to its natural ligand determines its func-
tional activation that, in turn, induces diverse biologic events
including MM-cell proliferation and migration via the
PI3K/AKT/-NF κB signaling pathway. CD40 is also expressed
by BMSCs, and upon activation it triggers the secretion of IL-
6 and VEGF [192–194]. Thus, inhibition of CD40−CD40L
interaction could exert antimyeloma activity through the
blockage of several critical pathways in MM or in BMSCs.
Monoclonal antibodies developed against CD40 (SGN-40,
CHIR-12.12) [195] have shown a modest cytotoxic activity
against MM cell lines and primary MM cells when used as
single agents for treatment [196]. The mechanisms of action
rely on the inhibition of CD40−CD40L interaction and ac-
tivation as well as on ADCC [197, 198]. Although earlier
trials in NHL and MM were promising, a Phase II NHL tri-
al comparing therapy with the anti-CD40 antibody SGN-40
with existing treatments alone was stopped because of lack of
efficacy. Horton et al. described the characterization of
XmAbCD40, a humanized anti-CD40 antibody with in-
creased FcγR binding that facilitates highly enhanced ADCC
against B-lymphoma, leukemia, and MM cell lines and
against primary tumor cells from patients with CLL and
plasma cell leukemia (PCL) [199]. XmAbCD40 shows nearly
2 orders of magnitude increased binding to FcγRIIIa and 1
order of magnitude increased binding to FcγRIIa. The in-
creased affinity for FcγRIIIa translated into dramatically
increased NK cell-mediated ADCC. Results were consistent
in several cell lines expressing different levels of CD40 an-
tigen as well as in patient-derived primary tumors [199].

The observation that SGN-40-induced MM cell death is
enhanced by lenalidomide [200] led to its evaluation in a
Phase I study in combination with lenalidomide and dexa-
methasone in patients with relapsed or refractory MM; an
overall response (OR) of 39% (13/36) was seen, with some
activity noted in patients receiving prior lenalidomide [201].
Phase I clinical trials of SGN-40 in combination with other
agents are currently ongoing [202].

Lucatumumab is a fully human anti-CD40 MAb that
inhibits MM cell growth in vitro, even when MM cells are
cocultured with BMSCs. Animal studies have shown that
the primary cytotoxic mechanism is ADCC [198]. However,
a Phase I study of lucatumumab in patients with relapsed/
refractory MM was terminated because of minimal biological
and clinical activity (NCT00231166).

CS1 (CD2 Subset 1, CRACC, SLAMF7, CD319, or 19A24).
CS1 is a cell surface glycoprotein of the immunoglobulin-
gene superfamily with high expression on the surface of MM
cell lines and on plasma cells from MM patients [203]. It
is not expressed on other normal tissues [203]. The role of
CS1 is not well understood; however, there is evidence that it
participates in promoting and supporting MM cell adhesion,
tumor growth, and proliferation through interactions with
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bone marrow stromal cells mediated by c-maf pathway ac-
tivation [203, 204].

A humanized mAb developed against CS1 elotuzumab
(HuLuc63) has been proven to induce significant antimye-
loma activity both in vitro and in vivo [203, 205]. In vitro,
the employment of bortezomib has been shown to increase
HuLuc63-induced ADCC [206]. In vivo injection of the mAb
significantly induced tumor regression in xenograft myeloma
mouse models [203]. Based on these results, Phase I clinical
trials are underway to evaluate the safety and toxicity of
the HuLuc63 in myeloma patients [207]. Elotuzumab de-
monstrated acceptable toxicity but its antitumor activity was
only modest: no responses were seen, although elotuzumab
did induce stable disease (SD) in six of 19 patients [208].
Clinical studies of elotuzumab combined with either lena-
lidomide plus dexamethasone or with bortezomib were
therefore initiated and are showing considerable promise. In
a preliminary analysis of an ongoing phase I study of elo-
tuzumab plus bortezomib, the ORR (partial pesponse (PR)
or better) was 48% for 27 evaluable patients, and responses
were achieved for several bortezomib-refractory patients. A
clinical response was seen in 17/27 (63%) patients. The re-
sponse rate was lower among heavily pretreated patients (>3
prior therapies) and the median time to progression was
9–46 months [209]. In a preliminary analysis of an on-
going Phase Ib combination study with lenalidomide and
dexamethasone, the ORR was 82% for all treated patients
(n = 28), 96% for lenalidomide-naı̈ve patients (n = 22), and
82% among patients who had been refractory to their most
recent treatment (n = 11) [210]. In a Phase II study of the
same combination, the ORR was 85% for evaluable patients
(22/26), and the remaining four patients had SD; 31% achie-
ved either a complete remission (CR) or very good partial
response (VGPR) [211]. Elotuzumab is therefore the first
mAb in combination with either bortezomib or lenalidomide
and dexamethasone to demonstrate clinically meaningful ef-
ficacy in relapsed/refractory MM.

CD138 (syndecan-1). syndecan-1 is a member of the synde-
can family, which includes cell-surface heparan sulfate pro-
teoglycans involved in cell adhesion, maturation, and pro-
liferation [212]. The high levels of heparan sulfate in the
tumor microenvironment resulting from syndecan-1 shed-
ding also act as positive regulators that condition the micro-
environment for robust tumor growth. This antigen is usu-
ally absent on haematopoietic cells; conversely it is frequently
expressed on normal and myeloma plasma cells. When
present at high levels in the serum, syndecan-1 is an in-
dependent indicator of poor prognosis [213–215]. Studies in
animal models have shown that high levels of soluble syn-
decan-1 enhance both the growth and metastasis of tumors
[216]. Syndecan-1 has been explored as a candidate antigen
for antibody targeting of toxins to the tumor cell surface
[138, 217–219].

CD74. CD74 expression has been demonstrated for more
than 90% of B-cell malignancies [220] and for a high per-
centage of MM cases (around 80%). To assess CD74 as a

therapeutic target, an anti-CD74 mAb, LL1, has been de-
veloped [221]. LL1 activity hardly relied on ADCC and CDC
mechanisms. This feature makes it feasible to use drug- and
toxin-conjugated or radiolabelled forms of LL1 instead of
unconjugated ones. hLL1-dox (IMMU-110), for example, is
an immunoconjugate composed of doxorubicin conjugated
to hLL1 IMMU-110 which has been evaluated in preclinical
studies with non-Hodgkin’s lymphomas and MM models,
resulting in the achievement of an excellent therapeutic re-
sponse [221, 222]. IMMU-110 appeared to be safe in a
monkey model of MM [222]. IMMU-110 is being evaluated
in a Phase 1/2 study (NCT00421525), and a Phase 2 study is
currently ongoing (NCT01101594).

CD162. CD162 has been found to be constitutively ex-
pressed in indolent and aggressive plasma cell disorders, in-
cluding MM, and in normal plasma cells [223]. The anti-
CD162 blocking mAb KPL1 has been recently tested in vitro.
KPL1-mediated CD162 crosslinking was proven to induce
death MM cells, in MM cell lines and in neoplastic cells puri-
fied from patients, mainly by activating the mitochondrial
pathway of apoptosis [224]. KPL1 also mediated a significant
induction of ADCC and to a lesser extent complement-
dependent cell lysis. Its action could be strongly enhanced
by adding blocking mAbs against the complement regulatory
proteins CD46, CD55, and CD59 highly expressed on the
surface of MM cells [224].

CD66. CD66 proteins are expressed in a number of iso-
forms, which have a wide range of biologically important
functions including cell adhesion, cellular migration, patho-
gen binding, and activation of signalling pathways. This was
utilized in recent Phase I and II clinical trials [225, 226]
for targeted delivery of radiotherapy to the BM as a part of
the conditioning regimen for transplantation in acute leuk-
emias and MM. The expression of CD66a but no other
CD66 isoforms on two human myeloma cell lines (U266 and
ARH77) and on plasma cells from patients with MM [227]
may help in the optimization of future radioimmunother-
apeutic strategies by supporting the use of a monoclonal
CD66a antibody for targeted radiotherapy in patients with
MM [227].

Beta2-Microglobulin (β2M). β2M is a nonglycosylated poly-
peptide, which is a part of the MHC class I molecule on the
surface of nucleated cells [228]. β2M is normally found in
body fluids, but elevated serum levels are present in hema-
tological malignancies [229], including MM [230], and cor-
relate with a poor prognosis. The mAbs against β2M have a
remarkably strong apoptotic effect on myeloma cells [231].
The anti-MM activity of this antibody was confirmed by
in vivo in a MM xenograft mouse model experiment which
demonstrated selective effect on tumor cells without dam-
aging BM hematopoietic cells of implanted human bone
or murine organs expressing β2M/HLA-A2 molecules [231,
232]. Therefore, such mAbs offer the potential for a thera-
peutic approach to hematological malignancies [233].

CD38. Under normal conditions, CD38 is expressed at rel-
atively low levels on lymphoid and myeloid cells and in some
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tissues of non-hematopoietic origin [234]. In the past, several
Abs to human CD38 have been generated. These Abs induce
killing of neoplastic B cell lines [235, 236]. The relatively high
expression of CD38 on all malignant cells in MM [237, 238]
in combination with its role in cell signaling suggests CD38
as a potential therapeutic Ab target for the treatment of MM.
Two CD38 mAbs are currently in clinical development: a hu-
manized mAb (SAR650984) and a human mAb (daratumu-
mab) [239]. Daratumumab was found to effectively kill MM
tumor cells by ADCC and CDC. It was active at low con-
centrations in a SCID mouse xenograft tumor model. Dara-
tumumab is currently in a Phase I/II safety and dose finding
study for the treatment of MM (NCT00574288). Results of
this preliminary study are awaited with interest, with early
reports suggesting favourable tolerability and disease stabi-
lization for some patients [28]. In a series of experiments
using a CD38+ MM cell line, purified MM cells, and full
BM mononuclear cells (BM-MNC) of MM patients contain-
ing 2–50% malignant plasma cells, van der Veer et al. de-
monstrated that lenalidomide significantly improves dara-
tumumab-dependent lysis of MM cells [240].

PD1. Accumulating experimental evidence indicates that
PD1 is a coinhibitor and primarily involved in the regulation
of T cell and NK-cell responses. Anticancer immunotherapy
based on antibodies directed against the B7 family of recep-
tors, particularly the B7 homologue 1 (B7-H1)-programmed
death 1 (PD1) system, suggests a promising novel approach
for promoting immune responses against cancer as well as
breaking up tumor resistance and dormancy. CT-011 is a
humanized IgG1 mAb that modulates the immune response.
Interaction of CT-011 with PD-1 leads to stimulation of the
NK-cell activity and to extended survival of effector/memory
T cells, culminating in the enhancement of antitumor im-
mune response and the generation of tumor-specific mem-
ory cells [241]. CT-011 was recently administered to patients
with various hematologic malignancies, including MM at an
advanced stage of their disease and following chemotherapy
and/or stem cell transplantation [242]. Clinical benefit was
observed for 33% of the patients with one CR [242].
Currently a new clinical study recruits patients to evaluate the
efficacy and safety of CT-011 following autologous trans-
plantation and a Phase II study to determine if cellular
immunity is induced by treatment with CT-011 and DC/my-
eloma fusion cells in conjunction with stem cell transplanta-
tion (NCT01067287).

IL-6. IL-6 has been recognized as a key cytokine in the
development and progression of MM, exerting antiapoptotic
activity and multiple additional effects within the BM. IL-6
is produced predominantly by BMSCs and is upregulated by
multiple cytokines [185]. Both IL-6 and its receptor, IL-6R,
are potential targets for mAb-based intervention. A chim-
seric anti-IL-6 mAb, siltuximab (CNTO 328), enhances dexa-
methasone-induced cytotoxicity in MM cell lines, and in
MM cells from patients refractory to dexamethasone therapy,
it also enhances the cytotoxicity of the bortezomib plus dexa-
methasone combination [243]. Siltuximab is currently being

evaluated in MM in multiple single-arm and randomized
Phase II studies, either alone or in combination with bor-
tezomib (NCT01219010, NCT00402181, NCT00911859,
NCT00412321, NCT00401843). Preliminary results in com-
bination with bortezomib have shown promise, with a 57%
objective response rate (ORR), although grade 3+ haemato-
logical toxicities were somewhat common [244]. A Phase III
study of siltuximab or placebo in combination with borte-
zomib and dexamethasone is underway (NCT01266811).

A murine anti-IL-6 mAb, BE-8, has been evaluated in
combination with dexamethasone and high-dose melphalan
as a conditioning regimen for ASCT. The combination in-
duced a response in 13 of 16 patients (81%) and a CR in 6
patients (37.5%). The overall response (OR) was similar to
historical controls by the same group of high-dose melpha-
lan; however, the CR rate appeared to be higher and was
correlated with IL-6 neutralization [245]. In a subsequent
prospective, multicentre randomized trial by the same group,
the addition of BE-8 to the melphalan plus dexamethasone
conditioning regimen showed no improvement in response
or survival rates for patients with high-risk MM [246].

Tocilizumab is a humanized anti-IL-6 mAb currently
approved for rheumatoid arthritis in several countries, and
for the Castleman disease in Japan, has demonstrated efficacy
in a murine MM model [247] and is currently being eva-
luated clinically in MM. Another anti-IL-6 mAb, 1339, has
demonstrated activity on MM cell lines (cocultured with
BMSCs) in vitro and in murine xenograft MM models; it is
not yet being evaluated clinically [248].

VEGF. VEGF is a key cytokine that promotes angiogenesis in
a variety of tumour types. Bevacizumab, a humanized anti-
VEGF mAb, is currently indicated for treatment of colorec-
tal cancer. In a Phase II study in patients with relapsed/re-
fractory MM, seven out of 10 patients responded partial res-
ponse (PR) to bevacizumab in combination with low-dose
dexamethasone and lenalidomide [249]. An additional phase
II study of the same combination reported similar results in
a larger patient population (OR 19/27, 70%) [250], noting
that this response rate was not significantly different from
that seen in the pivotal Phase III trial of lenalido-
mide plus dexamethasone (61%) [251]. An additional
Phase II study of this combination is currently recruit-
ing patients (NCT00410605), and the drug is also being
evaluated in combination with bortezomib (NCT00464178,
NCT00473590).

GM-2. GM-2 is a ganglioside expressed on MM cells. A
humanized anti-GM-2 mAb, BIW-8962, has demonstrated
in vitro killing of MM cell lines and in vivo effectiveness in
mouse xenograft models, with ADCC and CDC the most
prominent cytotoxic mechanisms [252]. BIW-8962 is being
evaluated as monotherapy in a Phase I/II study for patients
with relapsed/refractory MM (NCT00775502).

CD200. CD200 is a highly conserved transmembrane gly-
coprotein expressed on a wide range of cell types; however,
expression of the receptor for CD200 (CD200R1) is appar-
ently limited to APC of myeloid lineage and certain T cell
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populations and is thought to deliver inhibitory signals. The
expression of the CD200 gene by MM cells has been found to
be a predictor of poor prognosis in patients with MM [253].
ALXN6000 is a humanized anti-CD200 mAb that is currently
being evaluated in a Phase 1/2 study in patients with MM or
B-cell CLL (NCT00648739), with results expected in the near
future.

Killer Cell Immunoglobulin-Like Receptors (KIRs). KIRs are
receptors expressed on natural killer (NK) cells and a sub-
set of T cells and function as key regulators of NK cell activi-
ty [254]. IPH 2101 (anti-KIR) is a fully human monoclon-
al antibody blocking interaction between KIR inhibitory
receptors on NK cells with their ligands. By blocking
these receptors, it facilitates activation of NK cells and,
potentially, destruction of tumor cells by the latter. Several
studies are currently underway in smoldering and first-
relapse MM (NCT01222286, NCT01217203, NCT00999830,
NCT01248455) and safety and tolerability results are ex-
pected later in 2011 for a Phase 1 study in relapsed or re-
fractory MM (NCT00552396).

10. Monoclonal Antibodies and Highly
Cytotoxic Compounds

The immune system of MM patients is impaired by the dis-
ease or by cancer treatments. Along with efforts to develop
functional antibodies, substantial efforts are underway to
develop therapies using antibodies conjugated with potent
cytotoxic agents. A variety of highly cytotoxic compounds are
being evaluated for antibody-based delivery, including cali-
cheamicin, doxorubicin, taxanes, maytansinoids, dolas-
tatins, and CC-1065 analogs [255–258]. Immunoconjugate
IMGN901 (BB-10901; huN901-DM1) is composed of a hu-
manized monoclonal antibody that binds with high affinity
to CD56 conjugated with the cytotoxic maytansinoid DM1
through a disulfide linkage [258]. Upon binding to a target
tumor cell, the antibody-maytansinoid conjugate is internal-
ized by natural processes, where the conjugate is metabolized
and active maytansinoid metabolites are released [259].
Within the hematopoietic compartment, while CD56 expres-
sion is normally restricted to NK cells and a subset of T ly-
mphocytes [260, 261] and is absent from normal plasma cells
[262], it is strongly expressed on MM cells in the majority
of MM patients [263–266]. Tassone et al. demonstrated the
activity of IMGN901 against CD56+ MM cells both in vitro
and in vivo. Target-dependent cytotoxicity was shown in
cocultures of CD56+ and CD56− cells [263]. Treatment
with IMGN901 in a human MM tumor xenograft model in
immunocompromised mice showed that the immunoconju-
gate was effective in both a minimal and bulky disease setting.
The clinical evaluation of IMGN901 was initiated with a
Phase I study in patients with relapsed or relapsed/refractory
MM who failed at least one prior therapy and have CD56+
MM (NCT00346255) [258]. Additive to synergistic activity
has been observed in combinations of IMGN901 with len-
alidomide, bortezomib, or melphalan in MM xenograft
models [267, 268].

BT062 is a chimeric mAb conjugated to maytansinoid
derivatives that demonstrates in vitro cytotoxicity and inhibi-
tion of MM cells in mouse xenograft models, apparently via
apoptotic mechanisms; BT062 also inhibits the adherence
of MM cells to BMSCs and abrogates the protective effects
exerted by growth factors and BMSCs on MM cells [269].
The local release of potent maytansinoid moieties from target
cells and uptake into nearby nontarget cells is the proposed
mechanism for this activity [269] and may have an important
impact on BT062 efficacy through eradication of tumor cells
that heterogeneously express CD138 or disruption of the
tumor microenvironment by elimination of tumor stromal
cells. A Phase I dose finding study of BT062 for patients with
relapsed/refractory MM is underway (NCT00723359), and
an additional Phase I/IIa study is ongoing but not recruiting
patients with advanced MM (NCT01001442).

11. Immunotherapy Approaches
Targeting Microenvironment and the
Neoplastic Niche of MM

The BM microenvironment encompasses a wide spectrum of
cell types and extracellular matrix proteins, including fibro-
nectin, collagen, laminin, and osteopontin. Multistep genetic
and microenvironmental changes lead to the transformation
of plasma cells into a malignant neoplasm. Genetic abnor-
malities alter the expression of adhesion molecules on my-
eloma cells, as well as responses to growth stimuli in the mi-
croenvironment [270].

A cardinal clinical feature of MM is the presence of os-
teolytic bone lesions. Myeloma cells disrupt the delicate ba-
lance between bone formation and bone resorption [271,
272]. The inhibition of the Wnt pathway suppresses osteo-
blasts, whereas the amplification of the RANK pathway and
the action of macrophage inflammatory protein 1 α (MIP1α)
activate osteoclasts [271]. The induction of proangiogenic
molecules (e.g., VEGF) enhances the microvascular density
of bone marrow and accounts for the abnormal structure of
myeloma tumor vessels [273]. Various clinical observations
[274] and experimental studies [275, 276] have linked the
level of the MM bone disease with the disease burden. Tu-
mor cells and stromal cells interact via adhesion molecules
and cytokine networks to simultaneously promote tumor
cell survival, drug resistance, angiogenesis, and disordered
bone metabolism. In addition, the amounts of several of
immunologically active compounds increase including TGF-
b, IL-10, IL-6, VEGF, Fas ligand, MUC-1, cyclooxygenase
(COX)-2, and related prostanoids and metalloproteinases
[277].

In addition to therapy directed at MM cells and tumour
promoting interactions, some efforts have been devoted to
mAb therapy directed against the development of end-organ
complications; to date, these efforts have been restricted to
the suppression of myeloma-related bone disease.

Angiogenesis is considered a hallmark of MM progres-
sion. As indicated before in patients affected by MM sy-
ndecan-1, a heparan sulphate proteoglycan is overexpressed
by myeloma cells in the BM and peripheral blood [212].
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The high levels of heparan sulfate in the tumor microen-
vironment resulting from syndecan-1 shedding also act as
positive regulators that condition the microenvironment for
robust tumor growth. For example, heparan sulfate binds to
and promotes the activity of important angiogenic growth
factors such as fibroblast growth factor-2 (FGF-2) and VEGF
[278, 279]. Recent research has shown that syndecan-1 could
also be involved in the modulation of the growth and survival
of endothelial cells (ECs) within the BM microenvironment
[280]. Enzymatic remodeling of heparan sulfate proteogly-
can structure and function within the tumor microenviron-
ment is emerging as an important mechanism for dynamic
regulation of tumor growth [281]. There are three forms of
enzymatic remodeling of heparan sulfate proteoglycans that
are known to occur in myeloma, and other tumors, sulfa-
tases, sheddases, and heparanase, which are active within the
tumor microenvironment, point out the importance of re-
gulated remodeling of heparan sulfate proteoglycans [216,
281–284]. Certain heparinase gene SNPs may contribute to
basal heparanase gene expression. Alterations in this gene are
an important determinant in the pathogenesis of ALL, AML,
and MM [285]. Dynamic regulation of heparan sulfate struc-
ture by sulfate 6-O-endosulfatases (Sulfs) present within the
tumor microenvironment can have a dramatic impact on the
growth and progression of malignant cells in vivo [283].

The high serum level of shed syndecan-1 has been asso-
ciated with an unfavourable prognosis [213, 215].

Hence, the designing of novel agents that regulate the re-
modeling processes of heparan sulfate proteoglycans or in-
hibiting of VEGF as discussed previously represents a new
opportunity for therapeutic control of malignant cell growth.
Huang and zhan investigated the effect of VEGF antisense
(AS) RNA on proliferation and apoptosis in myeloma cell
line U266 as well as on angiogenesis in endothelial cell
ECV304 and to explore the feasibility of gene therapy for
MM using VEGF antisense RNA [286]. VEGF121 cDNA was
inserted into a multiple clone site of eukaryotic expression
vector pIRES2-EGFP to construct the recombinant plasmid
AS-VEGF. The recombinant plasmid was transfected into a
human myeloma cell line U266. Expression of VEGF mRNA
and protein decreased more significantly in U266 cells trans-
fected by AS-VEGF than that in control group. VEGF anti-
sense RNA can inhibit the expression of VEGF gene in
U266 cells, thereby inhibits the proliferation of U266 cells,
increases the apoptosis of U266 cells, and inhibits angiogen-
esis in vitro [286].

Another novel therapeutic concept related to the micro-
environment is the introduction of antiadhesion strategies.
Podar et al. evaluated the therapeutic potential of the new-in-
class molecule-selective adhesion molecule (SAM) inhibitor
Natalizumab, a recombinant humanized IgG4 monoclonal
antibody, which binds integrin-α4, in MM [287]. Natalizu-
mab, but not a control antibody, inhibited adhesion of MM
cells to non cellular and cellular components of the microen-
vironment as well as disrupted the binding of already adher-
ent MM cells. Moreover, natalizumab also blocked VEGF-
and insulin-like growth factor 1 (IGF-1)-induced signalling
sequelae triggering MM cell migration. Natalizumab not
only blocked tumour cell adhesion but also chemosensitized

MM cells to bortezomib, in an in vitro therapeutically repres-
entative human MM-stroma cell coculture system model.

Some MM cells that harbor oncogenic translocations re-
main dependent on the stroma for their survival, while oth-
ers acquire additional mutations which affect NF-κB path-
ways and remove their reliance on the bone marrow micro-
environment [288]. Mutations affecting the activation of
NF-κB-inducing kinase (NIK) have been identified in MM
samples and cell lines, suggesting that NIK could be an im-
portant target for therapy of MM. The majority of MM
samples display high constitutive NF-κB activity and up to
20% results from mutations in NF-κB signaling components,
including NIK. Inhibition of NIK may be an effective thera-
peutic for some MM cases. There are several new agents un-
der investigation that induce apoptosis of myeloma cells.
Celastrol is a quinone methide triterpene derived from the
medicinal plant Tripterygium wilfordii, acts by NF-κB path-
way, and induces cell cycle arrest at the G1 phase followed
by apoptosis in human myeloma cell line U266 cells [289].
Several studies have showed that miRNAs play important
roles in the regulation of cell proliferation, differentiation,
and apoptosis [290, 291]. The deregulation of miRNAs ex-
pression contributes to tumorogenesis by modulating onco-
genic and tumor suppressor signaling pathways.

12. Receptor Activator of Nuclear Factor
Kappa-B Ligand (RANKL)

RANKL promotes bone loss in osteoporosis and contributes
to the development of bone lesions in MM. The inhibition
of RANKL may directly impact myeloma cells that express
RANK and have a therapeutic role in the treatment of MM.
The fully human anti-RANKL mAb, denosumab, has de-
monstrated some efficacy in a Phase II study of patients with
plateau-phase or relapsed MM, including suppression of
the bone turnover marker serum C-terminal telopeptide of
type 1 collagen (sCTx) [292]. Denosumab is currently being
compared with zoledronic acid (the standard of care for pre-
vention of bone disease in several cancers) in patients with
advanced cancers or MM in a randomized Phase III trial
(NCT00330759); results in the MM cohort have thus far been
mixed although positive in other cancers; future trials are
planned in MM to better define its role.

13. Dickkopf-Related Protein 1 (DKK1)

The canonical Wnt pathway plays an important role in con-
trolling proliferation, differentiation, and survival of OBs.
In MM, high serum DKK1 levels were correlated with
focal bone lesions [293]. The DKK1 produced by MM cells
can inhibit the differentiation of OB precursor cells [293] and
bone formation in vitro [294] through a DKK1-mediated at-
tenuation of Wnt3a-induced stabilization of β-catenin [295].
These findings confirm DKK1 as an important regulator of
bone formation in the bone microenvironment. The broad
expression in myeloma but highly restricted expression in
normal tissues, together with its functional roles as an OB
formation inhibitor and a potential myeloma growth en-
hancer, make DKK1 an ideal and universal target for
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immunotherapy. DKK1 (peptide)-specific CTLs can effec-
tively lyse primary myeloma cells in vitro [296]. A fully
human anti-DKK1 mAb, BHQ880, has demonstrated im-
provement in the bone parameters in murine models and
also appears to have direct effects on the MM cell growth,
possibly via interactions with the BMSCs and the IL-6-re-
lated pathways [297, 298]. BHQ880 is being evaluated in
combination with zoledronic acid in a Phase 2 study in pa-
tients with relapsed/refractory MM (NCT00741377), and
studies in early MM (i.e., smoldering MM) are also under-
way.

14. Biphosphonates-Activated
T Cell-Based Immunotherapy

Aminobiphosphonates, such as pamidronate and zoledron-
ate, were originally developed for osteoporosis but are in-
creasingly used for cancer therapy. They have been shown to
activate Vγ9Vδ2 T cells, and the activated cells were func-
tionally characterized in vitro and in vivo [299–302]. In vivo
study, evaluated administration of low-dose IL-2 in combi-
nation with pamidronate to patients with low-grade non-
Hodgkin lymphoma or MM, showed that only patients with
significant in vivo proliferation of γδ T cells responded to
treatment [303]. Abe et al. [304] in a clinical phase I study
evaluated the clinical and immunological effects of zole-
dronate-activated Vγ9Vδ2 T lymphocyte-activated killer
(LAK). Six patients with MM received no antimyeloma ther-
apy in the preceding 2 months and during the study period
received four biweekly intravenous infusions of zoledronate-
activated Vγ9Vδ2 T LAK cells generated from the culture
of PBMCs in the presence of zoledronate and IL-2.
This showed that administration of zoledronate-activated
Vγ9Vδ2 T LAK cells, a safe and immunotherapy for MM pa-
tients, is promising, and zoledronate-activated Vγ9Vδ2T cel-
ls warrant further clinical investigations.

15. Changes in Mesenchymal Stromal Cells from
Multiple Myeloma Patients

BM-derived mesenchymal stromal cells (MSCs) are precur-
sors of OBs and differentiate preferentially into bone-form-
ing cells both in vitro and in vivo. MM cells were suggested
to target MSCs thereby diverting their functions to serve the
MM cells. This idea led to studies of the functions of MSCs
derived from MM patients (MM-derived MSCs) compared
to those of healthy individuals; it was suggested that MSCs
from myeloma patients exhibit defective functions [68–70]:
MM-derived MSCs were reported to exhibit decreased col-
ony-forming unit number [70], growth impairment [70],
reduced osteogenic differentiation [68], and increased IL-6
secretion [68, 70]. However, these observations were not re-
producible in all reports [68–70]. Some authors focused on
toll-like receptor (TLR) ligands and on the cytokine epider-
mal growth factor (EGF). They [305–310] have shown that
TLR activation modulates MSC proliferation, migration, and
differentiation. However, MM-derived MSCs exhibited re-
duced activation of extracellular signal-regulated kinases
(ERK1/2) and may therefore represent a general property of

this signaling pathway in MM-derived MSCs. These altered
responses persisted in MSCs from MM patients following
extended culture and passaging in vitro, indicating that these
cells are permanently modified. Activation of MAPK path-
way contributes to drug resistance, growth, and survival
[311]. MSCs derived from MM patients have been shown to
exhibit different gene expression profiles when compared to
control MSCs [68, 312]. Furthermore, these MSCs have been
suggested to be genomically altered [313]. MM-derived
MSCs are intrinsically and permanently modified. The treat-
ment of the disease may therefore require not only the
elimination of the tumor cells but concomitantly treatment
or replacement of stromal elements.

16. Immunotherapy after Autologous Stem Cell
Transplantation for MM

A major area of investigation is to develop strategies to elicit
myeloma-specific immune responses that will selectively
eliminate malignant cells and eradicate residual disease fol-
lowing ASCT. High-dose melphalan induces severe and per-
sistent immunosuppression characterized by a delayed recov-
ery of CD4 T cells that remain below normal counts for
months to years after ASCT [314, 315], a restricted T cell re-
pertoire [316], and impaired T cell functions including an
increased susceptibility to apoptosis [317], a reduced prolif-
eration intensity upon stimulation with mitogens or defined
antigens and a default in Th1 cytokine production that lasts
at least one year after ASCT in patients with MM [318, 319].
The B-cell immune response is also altered after ASCT since
levels of plasma antibodies after one recall vaccination are
below those found in healthy donors [315]. T cell functions
are impaired after transplantation in patients with MM de-
spite a recovery of normal numbers of T lymphocytes [317–
319]. In theory, the posttransplantation phase should be
highly amenable to the application of immunotherapy be-
cause of a lower tumor burden. However, after high-dose
therapy, the immune system is characterized by immune cell
depletion and impaired function that may last for years
[314]. The therapeutic induction of rapid lymphocyte re-
covery consistents that unmanipulated lymphocyte levels
in patients with myeloma correlate to event-free survival
(EFS) [320–323]. Rapoport et al. have developed a strategy
for inducing an effective antitumor immune response during
the posttransplantation period and to control or eliminate
residual disease [324]. The authors hypothesized that en-
hanced numeric and functional recovery of T cells might
provide a platform for posttransplantation tumor vaccine
immunotherapy. The autologous T cells were costimulated
with paramagnetic beads that deliver CD3 and CD28 signals
designed to reverse T cell anergy [325–328]. Patients with
myeloma received costimulated autologous T cells after auto-
transplantation, along with immunizations with a 7-valent
pneumococcal conjugate vaccine (PCV; Prevnar; Wyeth)
[324, 329]. In addition, patients who were positive for hu-
man leukocyte antigen A2 (HLA-A2) received a multipeptide
tumor antigen vaccine that was based on peptides derived
from human telomerase reverse transcriptase (hTERT) and
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survivin, 2 “universal” tumor antigens that are often over-
expressed in myeloma and may have prognostic relevance
[330–332]. In this study adoptive transfer of vaccine-prim-
ed and costimulated autologous T cells generates a rapid
and schedule-dependent recovery of the cellular and hu-
moral immune system in patients with myeloma. Immune
responses to a cancer vaccine occur in a substantial propor-
tion of patients early after autotransplantation [324]. Some
studies have shown high IL-6 plasma levels after ASCT
[333, 334]. Condomines et al. showed that IL-7 and IL-15
plasma levels increase and peak at a median day 8 after HDM
and ASCT in patients with MM [335], supporting results
found in mice by Restifo and coworkers [336]. Increasing
data support the idea that the early period following-ly-
mphodepletion is propitious to promote amplification of
adoptively transferred T cells and to enhance their functions.
Several studies in mice and humans showed that homeos-
tatic expansion is associated with faster and more efficient
immune response and that immunization with tumor an-
tigens during lymphopenia generates CD8 T cells with en-
hanced antitumor capacities [337–340]. IL-7, produced by
stromal cells, is required for homeostatic expansion of naı̈ve
and memory CD4 and CD8 T cells and is critical for their
survival [341]. IL-15 drives antigen-independent homeosta-
tic memory CD8+ αβT cell proliferation [341, 342]. IL-7 and
IL-15 are also required for γδT cell homeostatic expansion
[343]. The γ9δ2T cells exert antimyeloma-specific cytotoxic-
ity, can be expanded 100-fold with IL-2 and biphosphonate
ex vivo [344], and are present in mobilized autografts [345].
These γ9δ2T cells could be expanded ex vivo and then
grafted after ASCT. CD8 T cells recognizing several myeloma
antigens as MUC-1 [346], cancer-testis antigens [124, 126,
127], or IgG epitopes [347], detected in peripheral blood
of patients, may also be present in HSC harvests. Once
stimulated ex vivo with antigen-pulsed DCs [348], these
antimyeloma cell CD8+ T cells are able to kill myeloma cells.

17. Immunotherapy after Allogeneic SCT

Allogeneic transplantation results in long-term disease-free
survival for a subset of patients with MM. The unique ef-
ficacy of allogeneic transplantation is due to the graft-versus-
disease effect that is mediated by alloreactive donor T cells
[5, 349, 350].

Compared with autologous transplantation, allogeneic
transplantation results in lower rates of disease relapse and
higher rates of molecular remission [5, 351–353]. Standard
myeloablative alloSCT for myeloma is associated with a ra-
ther high treatment-related mortality. One approach to re-
duce transplant-related mortality is the use of reduced-in-
tensity conditioning regimens [354] in which the primary
antimyeloma cytoreductive agent is the donor lymphocytes
contained in the graft or administered as part of DLI at a
subsequent time point. The CR rate of allogeneic stem cell
transplantation after standard myeloablative and dose-re-
duced conditioning ranged between 27% and 81% [354–
358]. The ability of donor lymphocyte infusions (DLIs) to
eradicate posttransplant disease relapse demonstrates the
potency of the graft-versus-myeloma effect [37]. Because

only those patients who achieved molecular remission have a
high probability of long-term freedom from disease and cure
[359], a higher number of CRs, especially molecular CRs,
must be reached. For upgrading non-CR into CR may be
used DLI as adoptive immunotherapy after allogeneic stem
cell transplantation. In most reports on DLI in myeloma, DLI
was given for relapse [360–362] and only a few reported on
prophylactic DLI [363, 364]. Most studies till date have used
relatively high T cell doses, resulting in a high rate of aGvHD
up to 55%. DLI given after reduced-intensity conditioning in
a dose-escalating manner resulted in less acute and chronic
GVHD [363]. Ayuk et al. thus considered it important to find
DLI doses that may induce a graft-versus-myeloma effect
without GvHD [362]. Their data show that it is possible to
achieve remission in myeloma patients who have relapsed,
persistent, or progressive disease following RIC allografting
with much lower T cell numbers with relatively low starting
doses (1.0 106 CD3+/kg BW for unrelated grafts and 4.7 106

CD3+/kg BW for sibling grafts). The incidence and severity
of aGvHD and cGvHD were relatively low [362]. Kroger et al.
investigated the effect of DLI alone or in combination with s-
thalidomide, bortezomib, and lenalidomide in patients with
MM who achieved only partial remission or very good partial
remission after allogeneic stem cell transplantation [365].
Fifty-nine percent of patients achieved CR, and this CR re-
sulted in significantly improved progression-free survival at
5 years (58% versus 35%). CR by flow cytometry could be
achieved in 63%, and this resulted in an even more favorable
event-free survival at 5 years (74% versus 15%) [365].

18. Combined Donor Vaccination and
Allogeneic Stem-Cell Transplantation

A special aspect of active immunotherapy in MM is the com-
bination of alloSCT with the induction of myeloma-spe-
cific immunity in the donor’s immune system. The donor
immune system is presumably naive for the patient’s mye-
loma idiotype and therefore not tolerized or anergic. There-
fore, induction of tumor-specific immunity in donors of
haematopoietic stem cells for myeloma patients by idiotype
immunization, followed by adoptive transfer of specific im-
mune cells into the transplanted patient, may render allo-
geneic SCT from a nonspecific form of active immunother-
apy into a tumor-specific therapy. In the 38C13 mouse ly-
mphoma model, mice receiving marrow from a donor im-
munized with 38C13 idiotype had a statistically significant
survival advantage after a lethal challenge with 38C13 lym-
phoma cells compared to animals transplanted with control
marrow [366]. When preimmunized marrow transplanta-
tion was combined with a subsequent booster immunization,
even tumor-bearing mice could evidently be cured of their
disease. The protective effect was mediated by donor-derived
T cells.

More recently, results from a formal clinical trial of donor
idiotype immunization were reported. Five patients and their
related donors received three subcutaneous vaccinations
with idiotype (coupled to KLH at the 1st vaccination) and
GM-CSF prior to alloSCT. All donors developed cellular
and humoral anti-idiotype immune responses. After bone
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marrow transplantation, the three patients who survived
longer than 30 days received 3 booster vaccinations with
KLH-coupled idiotype and GM-CSF. Remarkably, these
patients survived without evidence for disease recurrence for
5.5 to more than 8 years, and all had evidence for [367] idio-
type-specific immunity after alloSCT.

One recipient suffered from chronic GvHD and was on
chronic steroid therapy, while the other 2 recipients and all
of the donors were medically well, without any significant
complications.

In order to avoid immunization of the healthy donor, at-
tempts have been made to generate myeloma idiotype-spec-
ific donor immunity through in vitro stimulation of donor T
cells with monocyte-derived, idiotype-presenting DC [368].
Implementation of this approach would permit to extend the
principle of transfer of tumour-specific immunity to the vast
pool of unrelated stem cell donors for alloSCT.

19. Conclusions

MM continues to be an incurable disease with fatal outcome
for the majority of patients at advanced stages. Therefore,
exploration of novel therapeutic modalities should be pur-
sued.

Immunotherapy seems promising and may prove effec-
tive in eradicating the malignant stem cell pool that is non-
proliferating and generally resistant to chemotherapy.

Various clinical immunotherapy treatment strategies
have been tested. Most of these strategies have focused on tar-
geting idiotype-specific immunity. Idiotype-based vaccines
have been shown in preclinical tests to induce or enhance
idiotype-specific immunity. But clinical response is rare, oc-
curring only in a minority of treated patients, suggesting that
the effect is too weak to cause significant tumor destruction.
Ideally, a tumor-specific immunotherapy should induce or
expand only the beneficial immune responses mediated by
CTLs (Th1 and Tc1 subsets) that have sufficient cytotoxic
effects toward tumor cells but not normal cells. Further stud-
ies are warranted so to better understand the immune re-
gulation mechanism in MM.

TSAs continue to be identified in myeloma, and a sys-
tematic assessment and comparisons to identify the most
promising candidates for clinical trials, are necessary. Vacci-
nation with DC/tumor fusions induces antitumor immunity
in a majority of the patients; however, responses are transient
and not always associated with clinical benefit. One potential
limiting factor is the regulatory T cells. It is necessary to
develop ways to promote the expansion and increase the
amount of functionally competent tumor-reactive T cells and
to limit the influence of regulatory T cells in order to im-
prove the efficacy of the DC/MM fusion vaccine. One ap-
proach is vaccination in conjunction with ASCT which faci-
litates vaccine response by inducing a minimal disease state
and limiting the inhibitory influence of the myeloma cells.
In preclinical models, stem cell transplantation results in
the in vivo depletion of regulatory T cells, transient loss of
tumor mediated tolerance, and enhanced capacity to re-
spond to tumor vaccines [167, 168]. Exposure to lenali-
domide increased cytotoxic T lymphocyte-mediated lysis

autologous tumor targets indicating of the potential of cel-
lular immunotherapy in conjunction with lenalidomide in-
cluding its use as part in the DC/myeloma fusion vaccine
[169].

Functionally potent DCs can be generated by stimulation
with NK cells and may provide an effective source of DC-
based immunotherapy in MM [174]. Modulation of inhibi-
tory and activating NK receptor ligands on tumor cells re-
presents a promising therapeutic approach against MM.

Perhaps the most interesting field for active immuno-
therapy in myeloma lies in the combination with allogeneic
stem cell transplantation. This setting offers the advantage
of an immune system that is unaffected by potential negative
influences exerted by the tumor on the immune system.
Transfer of tumor antigen-specific immunity from the donor
to the myeloma patient may help to enhance the immuno-
logical efficacy of allogeneic SCT and to separate graft-ver-
sus-myeloma from graft-versus-host activity. The most cru-
cial question to develop this concept further is whether the
donor has to be immunized personally or whether effica-
cious, specific antitumor immunity can be induced ex vivo
or in the transplanted patient.

MM exhibits a number of potentially valuable targets
for mAb therapy that await further investigation in clinical
studies. As has been the case with other cancers, mAbs, when
employed as monotherapy in MM, have generally not pro-
duced impressive levels of response with respect to either
response rates or extent of response in individual patients.
However, preclinical results in MM cell lines and murine
explant models and preliminary clinical results in patients
with relapsed/refractory MM suggest that mAbs are likely
to act synergistically with traditional therapies (dexametha-
sone), immune modulators (thalidomide, lenalidomide),
and other novel therapies (such as the first-in-class protea-
some inhibitor bortezomib); in addition, mAbs have shown
the ability to overcome resistance to these therapies. These
observations suggest that future work may be most pro-
ductively directed at the rational development of multiagent
therapies incorporating specific mAbs on the basis of clinical
trial results and, possibly, on the identification of patient-
specific MM disease factors. Indeed, many of the molecules
composing the surface profile of plasma cells, such as CD38,
CD138, CD162, and CD49d, are involved in the adhesive
dynamics regulating the crosstalk between MM cells and the
BM stromal environment. The search for new treatment stra-
tegies to improve outcomes for MM patients has led to the
development of novel antibody-based therapies currently
undergoing clinical evaluation.

Major progress in understanding interactions between
the immune system and malignant cells will strongly aug-
ment the design of clinically more efficient study protocols in
MM. Multiple different approaches are currently evaluated in
clinical trials.

Acknowledgments

The authors wish to thank the Naor family for their support
memorizing their dear son-in-law, Mr. Guy Weinstock,
with the Guy Weinstock Multiple Myeloma Foundation,



16 Clinical and Developmental Immunology

which supports research in the field of MM at the Division
of Hematology at the Chaim Sheba Medical Center (Tel
Hashomer, Israel) and the Jacqueline Seroussi Grant Award
(A. Nagler).

References

[1] M. S. Raab, K. Podar, I. Breitkreutz, P. G. Richardson, and K.
C. Anderson, “Multiple myeloma,” The Lancet, vol. 374, no.
9686, pp. 324–339, 2009.

[2] K. Podar, Y. T. Tai, T. Hideshima, S. Vallet, P. G. Richardson,
and K. C. Anderson, “Emerging therapies for multiple
myeloma,” Expert Opinion on Emerging Drugs, vol. 14, no. 1,
pp. 99–127, 2009.

[3] J. A. Child, G. J. Morgan, F. E. Davies et al., “High-
dose chemotherapy with hematopoietic stem-cell rescue for
multiple myeloma,” The New England Journal of Medicine,
vol. 348, no. 19, pp. 1875–1883, 2003.

[4] L. M. Weiner, R. Surana, and S. Wang, “Monoclonal
antibodies: versatile platforms for cancer immunotherapy,”
Nature Reviews Immunology, vol. 10, no. 5, pp. 317–327,
2010.

[5] C. Crawley, S. Iacobelli, B. Björkstrand, J. F. Apperley, D.
Niederwieser, and G. Gahrton, “Reduced-intensity condi-
tioning for myeloma: lower nonrelapse mortality but higher
relapse rates compared with myeloablative conditioning,”
Blood, vol. 109, no. 8, pp. 3588–3594, 2007.

[6] M. Mielcarek and R. Storb, “Non-myeloablative hematopoi-
etic cell transplantation as immunotherapy for hematologic
malignancies,” Cancer Treatment Reviews, vol. 29, no. 4, pp.
283–290, 2003.

[7] J. Schetelig, A. Kiani, M. Schmitz, G. Ehninger, and M.
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and H. Mellstedt, “Idiotype vaccination in multiple myeloma
induced a reduction of circulating clonal tumor B cells,”
Blood, vol. 101, no. 11, pp. 4607–4610, 2003.

[91] C. Bertinetti, K. Zirlik, K. Heining-Mikesch et al., “Phase
I trial of a novel intradermal idiotype vaccine in patients
with advanced B-cell lymphoma: specific immune responses
despite profound immunosuppression,” Cancer Research, vol.
66, no. 8, pp. 4496–4502, 2006.

[92] V. L. Reichardt, C. Y. Okada, A. Liso et al., “Idiotype
vaccination using dendritic cells after autologous peripheral
blood stem cell transplantation for multiple myeloma—a
feasibility study,” Blood, vol. 93, no. 7, pp. 2411–2419, 1999.

[93] V. L. Reichardt, C. Milazzo, W. Brugger, H. Einsele, L.
Kanz, and P. Brossart, “Idiotype vaccination of multiple
myeloma patients using monocyte-derived dendritic cells,”
Haematologica, vol. 88, no. 10, pp. 1139–1149, 2003.



Clinical and Developmental Immunology 19

[94] S. Titzer, O. Christensen, O. Manzke et al., “Vaccination of
multiple myeloma patients with idiotype-pulsed dendritic
cells: immunological and clinical aspects,” British Journal of
Haematology, vol. 108, no. 4, pp. 805–816, 2000.

[95] S. H. Lim and R. Bailey-Wood, “Idiotypic protein-pulsed
dendritic cell vaccination in multiple myeloma,” Interna-
tional Journal of Cancer, vol. 83, no. 2, pp. 215–222, 1999.

[96] A. Liso, K. E. Stockerl-Goldstein, S. Auffermann-Gretzinger
et al., “Idiotype Vaccination Using Dendritic Cells after
Autologous Peripheral Blood Progenitor Cell Transplanta-
tion for Multiple Myeloma,” Biology of Blood and Marrow
Transplantation, vol. 6, no. 6, pp. 621–627, 2000.

[97] P. Brossart, A. Schneider, P. Dill et al., “The epithelial
tumor antigen MUC1 is expressed in hematological malig-
nancies and is recognized by MUC1-specific cytotoxic T-
lymphocytes,” Cancer Research, vol. 61, no. 18, pp. 6846–
6850, 2001.

[98] S. H. Lim, Z. Wang, M. Chiriva-Internati, and Y. Xue, “Sperm
protein 17 is a novel cancer-testis antigen in multiple mye-
loma,” Blood, vol. 97, no. 5, pp. 1508–1510, 2001.

[99] S. Szmania, G. Tricot, and F. van Rhee, “NY-ESO-1 im-
munotherapy for multiple myeloma,” Leukemia and Lym-
phoma, vol. 47, no. 10, pp. 2037–2048, 2006.

[100] D. Atanackovic, J. Arfsten, Y. Cao et al., “Cancer-testis
antigens are commonly expressed in multiple myeloma and
induce systemic immunity following allogeneic stem cell
transplantation,” Blood, vol. 109, no. 3, pp. 1103–1112, 2007.

[101] R. B. Batchu, A. M. Moreno, S. M. Szmania et al., “Pro-
tein transduction of dendritic cells for NY-ESO-1-based
immunotherapy of myeloma,” Cancer Research, vol. 65, no.
21, pp. 10041–10049, 2005.

[102] M. Hundemer, S. Schmidt, M. Condomines et al., “Identi-
fication of a new HLA-A2-restricted T-cell epitope within
HM1.24 as immunotherapy target for multiple myeloma,”
Experimental Hematology, vol. 34, no. 4, pp. 486–496, 2006.

[103] J. Burchell, J. Taylor-Papadimitriou, M. Boshell, S. Gendler,
and T. Duhig, “A short sequence, within the amino acid
tandem repeat of a cancer-associated mucin, contains
immunodominant epitopes,” International Journal of Cancer,
vol. 44, no. 4, pp. 691–696, 1989.

[104] T. Takahashi, Y. Makiguchi, Y. Hinoda et al., “Expression of
MUC1 on myeloma cells and induction of HLA-unrestricted
CTL against MUC1 from a multiple myeloma patient,”
Journal of Immunology, vol. 153, no. 5, pp. 2102–2109, 1994.

[105] C. Rosenfeld, M. A. Cheever, and A. Gaiger, “WT1 in acute
leukemia, chronic myelogenous leukemia and myelodys-
plastic syndrome: therapeutic potential of WT1 targeted
therapies,” Leukemia, vol. 17, no. 7, pp. 1301–1312, 2003.

[106] C. Scheibenbogen, A. Letsch, E. Thiel et al., “CD8 T-cell
responses to Wilms tumor gene product WT1 and proteinase
3 in patients with acute myeloid leukemia,” Blood, vol. 100,
no. 6, pp. 2132–2137, 2002.

[107] T. Azuma, T. Otsuki, K. Kuzushima, C. J. Froelich, S. Fujita,
and M. Yasukawa, “Myeloma cells are highly sensitive to
the granule exocytosis pathway mediated by WT1-specific
cytotoxic T lymphocytes,” Clinical Cancer Research, vol. 10,
no. 21, pp. 7402–7412, 2004.

[108] A. Matsuda, Y. Suzuki, G. Honda et al., “Large-scale identifi-
cation and characterization of human genes that activate NF-
κB and MAPK signaling pathways,” Oncogene, vol. 22, no. 21,
pp. 3307–3318, 2003.

[109] T. Goto, S. J. Kennel, M. Abe et al., “A novel membrane
antigen selectively expressed on terminally differentiated
human B cells,” Blood, vol. 84, no. 6, pp. 1922–1930, 1994.

[110] A. Jalili, S. Ozaki, T. Hara et al., “Induction of HM1.24
peptide-specific cytotoxic T lymphocytes by using peri-
pheral-blood stem-cell harvests in patients with multiple my-
eloma,” Blood, vol. 106, no. 10, pp. 3538–3545, 2005.

[111] M. Chiriva-Internati, R. Ferraro, M. Prabhakar et al., “The
pituitary tumor transforming gene 1 (PTTG-1): an immuno-
logical target for multiple myeloma,” Journal of Translational
Medicine, vol. 6, article no. 15, 2008.

[112] C. A. Maxwell, E. Rasmussen, F. Zhan et al., “RHAMM ex-
pression and isoform balance predict aggressive disease and
poor survival in multiple myeloma,” Blood, vol. 104, no. 4,
pp. 1151–1158, 2004.

[113] M. Crainie, A. R. Belch, M. J. Mant, and L. M. Pilarski, “Over-
expression of the receptor for hyaluronan-mediated motility
(RHAMM) characterizes the malignant clone in multiple
myeloma: identification of three distinct RHAMM variants,”
Blood, vol. 93, no. 5, pp. 1684–1696, 1999.

[114] J. Greiner, M. Schmitt, L. Li et al., “Expression of tumor-as-
sociated antigens in acute myeloid leukemia: implications for
specific immunotherapeutic approaches,” Blood, vol. 108, no.
13, pp. 4109–4117, 2006.

[115] J. Greiner, L. Li, M. Ringhoffer et al., “Identification and
characterization of epitopes of the receptor for hyaluronic
acid-mediated motility (RHAMM/CD168) recognized by
CD8+ T cells of HLA-A2-positive patients with acute myeloid
leukemia,” Blood, vol. 106, no. 3, pp. 938–945, 2005.

[116] M. Schmitt, A. Schmitt, M. T. Rojewski et al., “RHAMM-R3
peptide vaccination in patients with acute myeloid leukemia,
myelodysplastic syndrome, and multiple myeloma elicits
immunologic and clinical responses,” Blood, vol. 111, no. 3,
pp. 1357–1365, 2008.

[117] J. Greiner, M. Ringhoffer, M. Taniguchi et al., “Receptor for
hyaluronan acid-mediated motility (RHAMM) is a new im-
munogenic leukemia-associated antigen in acute and chronic
myeloid leukemia,” Experimental Hematology, vol. 30, no. 9,
pp. 1029–1035, 2002.
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Hájek, and J. Michálek, “In vitro activation of cytotoxic T-
lymphocytes by hTERT-pulsed dendritic cells,” Journal of Im-
munotoxicology, vol. 6, no. 4, pp. 243–248, 2009.

[146] J. Michalek, D. Ocadlikova, E. Matejkova et al., “Individual
myeloma-specific T-cell clones eliminate tumour cells and
correlate with clinical outcomes in patients with multiple
myeloma: research paper,” British Journal of Haematology,
vol. 148, no. 6, pp. 859–867, 2010.

[147] H. Noto, T. Takahashi, Y. Makiguchi, T. Hayashi, Y. Hinoda,
and K. Imai, “Cytotoxic T lymphocytes derived from bone
marrow mononuclear cells of multiple myeloma patients re-
cognize an underglycosylated form of MUC1 mucin,” Inter-
national Immunology, vol. 9, no. 5, pp. 791–798, 1997.

[148] D. Ocadlikova, F. Kryukov, K. Mollova et al., “Generation
of myeloma-specific T cells using dendritic cells loaded with
MUC1- and hTERT- drived nonapeptides or myeloma cell
apoptotic bodies,” Neoplasma, vol. 57, no. 5, pp. 455–464,
2010.

[149] S. Wilde, D. Sommermeyer, B. Frankenberger et al., “Den-
dritic cells pulsed with RNA encoding allogeneic MHC and
antigen induce T cells with superior antitumor activity and
higher TCR functional avidity,” Blood, vol. 114, no. 10, pp.
2131–2139, 2009.

[150] S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and
E. Nakayama, “Tumor rejection by in vivo administration of
anti-CD25 (interleukin-2 receptor α) monoclonal antibody,”
Cancer Research, vol. 59, no. 13, pp. 3128–3133, 1999.

[151] A. M. Krieg, “CpG motifs in bacterial DNA and their
immune effects,” Annual Review of Immunology, vol. 20, pp.
709–760, 2002.

[152] A. W. Butch, K. A. Kelly, and N. C. Munshi, “Dendritic cells
derived from multiple myeloma patients efficiently interna-
lize different classes of myeloma protein,” Experimental
Hematology, vol. 29, no. 1, pp. 85–92, 2001.

[153] G. Cull, L. Durrant, C. Stainer, A. Haynes, and N. Russell,
“Generation of anti-idiotype immune responses following
vaccination with idiotype-protein pulsed dendritic cells in



Clinical and Developmental Immunology 21

myeloma,” British Journal of Haematology, vol. 107, no. 3, pp.
648–655, 1999.

[154] Q. Yi, R. Desikan, B. Barlogie, and N. Munshi, “Optimizing
dendritic cell-based immunotherapy in multiple myeloma,”
British Journal of Haematology, vol. 117, no. 2, pp. 297–305,
2002.

[155] A. Curti, P. Tosi, P. Comoli et al., “Phase I/II clinical trial
of sequential subcutaneous and intravenous delivery of de-
ndritic cell vaccination for refractory multiple myeloma us-
ing patient-specific tumour idiotype protein or idiotype
(VDJ)-derived class I-restricted peptides,” British Journal of
Haematology, vol. 139, no. 3, pp. 415–424, 2007.

[156] M. Bendandi, M. Rodrı́guez-Calvillo, S. Inogés et al., “Com-
bined vaccination with idiotype-pulsed allogeneic dendritic
cells and soluble protein idiotype for multiple myeloma
patients relapsing after reduced-intensity conditioning allo-
geneic stem cell transplantation,” Leukemia and Lymphoma,
vol. 47, no. 1, pp. 29–37, 2006.

[157] J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, “Induction of
antitumor activity by immunization with fusions of dendritic
and carcinoma cells,” Nature Medicine, vol. 3, no. 5, pp. 558–
561, 1997.

[158] J. Gong, S. Koido, D. Chen et al., “Immunization against
murine multiple myeloma with fusions of dendritic and
plasmacytoma cells is potentiated by interleukin 12,” Blood,
vol. 99, no. 7, pp. 2512–2517, 2002.

[159] N. Raje, T. Hideshima, F. E. Davies et al., “Tumour cell/
dendritic cell fusions as a vaccination strategy for multiple
myeloma,” British Journal of Haematology, vol. 125, no. 3, pp.
343–352, 2004.

[160] S. Hao, X. Bi, S. Xu et al., “Enhanced antitumor immunity
derived from a novel vaccine of fusion hybrid between dend-
ritic and engineered myeloma cells,” Experimental Oncology,
vol. 26, no. 4, pp. 300–306, 2004.

[161] R. Walewska, I. Teobald, D. Dunnion et al., “Preclinical
development of hybrid cell vaccines for multiple myeloma,”
European Journal of Haematology, vol. 78, no. 1, pp. 11–20,
2007.

[162] Y. Nefedova, S. Nagaraj, A. Rosenbauer, C. Muro-Cacho, S.
M. Sebti, and D. I. Gabrilovich, “Regulation of dendritic cell
differentiation and antitumor immune response in cancer
by pharmacologic-selective inhibition of the Janus-activated
kinase 2/signal transducers and activators of transcription 3
pathway,” Cancer Research, vol. 65, no. 20, pp. 9525–9535,
2005.

[163] D. H. Yang, J. S. Park, C. J. Jin et al., “The dysfunction and
abnormal signaling pathway of dendritic cells loaded by
tumor antigen can be overcome by neutralizing VEGF in
multiple myeloma,” Leukemia Research, vol. 33, no. 5, pp.
665–670, 2009.

[164] R. B. Mailliard, A. Wankowicz-Kalinska, Q. Cai et al., “α-
type-1 polarized dendritic cells: a novel immunization tool
with optimized CTL-inducing activity,” Cancer Research, vol.
64, no. 17, pp. 5934–5937, 2004.

[165] J. J. Lee, B. H. Choi, H. K. Kang et al., “Induction of multiple
myeloma-specific cytotoxic T lymphocyte stimulation by
dendritic cell pulsing with purified and optimized myeloma
cell lysates,” Leukemia and Lymphoma, vol. 48, no. 10, pp.
2022–2031, 2007.

[166] D. H. Yang, M. H. Kim, C. Y. Hong et al., “Alpha-type 1-
polarized dendritic cells loaded with apoptotic allogeneic
myeloma cell line induce strong CTL responses against

autologous myeloma cells,” Annals of Hematology, vol. 89, no.
8, pp. 795–801, 2010.

[167] I. Borrello, E. M. Sotomayor, F. M. Rattis, S. K. Cooke, L.
Gu, and H. I. Levitsky, “Sustaining the graft-versus-tu-
mor effect through posttransplant immunization with gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF)-
producing tumor vaccines,” Blood, vol. 95, no. 10, pp. 3011–
3019, 2000.

[168] K. M. Williams, F. T. Hakim, R. E. Gress et al., “T cell im-
mune reconstitution following lymphodepletion,” Seminars
in Immunology, vol. 19, no. 5, pp. 318–330, 2007.

[169] K. Luptakova, B. Glotzbecker, and H. Mills, “Lenalidomide
decreases PD-1 expression, depletes regulatory T-cells and
improves cellular response to a multiple myeloma/dendritic
cell fusion vaccine in vitro,” ASH Annual Meeting and Ex-
position, 2011.

[170] N. C. Fernandez, A. Lozier, C. Flament et al., “Dendritic
cells directly trigger NK cell functions: cross-talk relevant in
innate anti-tumor immune responses in vivo,” Nature Medi-
cine, vol. 5, no. 4, pp. 405–411, 1999.

[171] G. Ferlazzo, M. L. Tsang, L. Moretta, G. Melioli, R. M.
Steinman, and C. Münz, “Human dendritic cells activate
resting natural killer (NK) cells and are recognized via the
NKp30 receptor by activated NK cells,” Journal of Experimen-
tal Medicine, vol. 195, no. 3, pp. 343–351, 2002.

[172] M. A. Cooper, T. A. Fehniger, A. Fuchs, M. Colonna, and M.
A. Caligiuri, “NK cell and DC interactions,” Trends in Im-
munology, vol. 25, no. 1, pp. 47–52, 2004.
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