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Just as there is a huge morphological and functional diversity of neuron types specialized
for specific aspects of information processing in the brain, astrocytes have equally
distinct morphologies and functions that aid optimal functioning of the circuits in
which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the
cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of
which is adapted to the cerebellar circuit and facilitates an impressive range of functions
that optimize information processing in the adult brain. In this review we expand on the
function of the BG in the cerebellum to highlight the importance of astrocytes not only in
housekeeping functions, but also in contributing to plasticity and information processing
in the cerebellum.
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Introduction

The versatile function of astrocytes is well highlighted by the Bergmann glial cell (BG)
of the cerebellum, an astrocyte type that outnumbers the principle neuronal output cell
of the cerebellar cortex, the Purkinje cell (PC), roughly eight-fold (Korbo et al., 1993;
Reichenbach et al., 1995). BGs are essential for migration and correct layering of granule
cells in early cerebellar development (Rakic, 1971), but they remain an integral part of
the adult cerebellar circuit, where they subserve an important role in extracellular ion
homeostasis (Wang et al., 2012), synapse stability (Iino et al., 2001; Saab et al., 2012),
plasticity (Balakrishnan and Bellamy, 2009; Balakrishnan et al., 2014), metabolic function and
neuroprotection (Poblete-Naredo et al., 2011; Jakoby et al., 2014). The functional relevance
of BGs is also reflected by the expression of cyto-architectural markers that largely overlap
with those of the cerebellar zones (Reeber et al., 2014), the canonical computational units
of cerebellum (Chambers and Sprague, 1955; Groenewegen and Voogd, 1977; Groenewegen
et al., 1979; Oscarsson, 1979; Zhou et al., 2014; De Zeeuw and Ten Brinke, 2015). In the
intact brain, activity in BGs as measured via in vivo calcium imaging reveal a diverse
repertoire of signals, including compartmented signaling in BG processes (Hoogland and
Kuhn, 2010; Nimmerjahn et al., 2009), large scale elevations of calcium during behavior that
are thought to correlate with changes in blood flow (Nimmerjahn et al., 2009), and more
confined radially expanding waves that are increased in awake behaving vs. anesthetized
animals (Nimmerjahn et al., 2009) and that increase in frequency with age (Mathiesen
et al., 2013). In addition, homeostatic control of calcium by BGs may be important for
neuroprotection and oxygen regulation (Mathiesen et al., 2013). Importantly, not only
direct optogenetic manipulation of calcium levels in BGs (Sasaki et al., 2012), but also inducible
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genetic deletion of AMPA receptors in BGs can affect associative
motor learning and/or motor performance (Saab et al., 2012).
Thus BGs are not just involved in essential housekeeping
functions, but may also contribute to information processing in
the cerebellum. Here, we provide more details on these diverse
functions and propose the hypothesis that BGs are involved
in fine-tuning activity in cyto-architecturally distinct cerebellar
zones.

Cerebellar Architecture

In order to understand how BGs are integrated in the cerebellum,
a brief introduction to its architecture is required. The basic
circuit of the cerebellum is evolutionary conserved across
vertebrates—from lampreys (Larsell, 1947) to cetaceans (Hanson
et al., 2013)—and confers unique computational properties
to enable sensorimotor integration and motor coordination
with high temporal precision (Llinás and Sasaki, 1989; Welsh
et al., 1995; Kistler and De Zeeuw, 2002). There are two
main distinguishing features. One includes a rostral-caudal
organization of cyto-architectural and functionally distinct
sagittally oriented PC zones with further subdivisions into
microzones (Groenewegen and Voogd, 1977; Zhou et al., 2014;
Tsutsumi et al., 2015). The PCs provide the output of the
cerebellar cortex to the cerebellar nuclei (CN) and thereby
exert parcellated control over downstream effectors, which are
often recruited sequentially during movements (Welsh et al.,
1995; Hoogland et al., 2015). The climbing fibers (CFs), which
originate from the inferior olive in the ventral medulla oblongata,
project to the rostro-caudal zones of PCs (Sugihara et al.,
2007; Brown et al., 2012) where they can trigger complex
spikes synchronously to adjust movements (Marshall and Lang,
2009; Ozden et al., 2012; De Gruijl et al., 2014). Another
integral feature of cerebellar architecture is the transverse
alignment of granule cell parallel fiber axons (PFs), which
cross the entire width of a cerebellar folium at right angles
to the PC dendrites. The intrinsically generated simple spike
firing of PCs is tuned not only by PF input, but also by
CF input that can trigger short pauses of simple spike firing
and determine the phase of their modulation (Schmolesky
et al., 2002). Cerebellar zones are demarcated by preferential
expression of select proteins in alternating parasagittal bands.
The best-known example is aldolase C, or Zebrin II (Leclerc
et al., 1992). Zebrin-positive PCs fire intrinsically at lower
frequencies (∼60 Hz) than PCs in zebrin-negative zones (∼100
Hz) (Zhou et al., 2014) and these zones also appear to
respond differentially to sensory input (Tsutsumi et al., 2015;
Witter and De Zeeuw, 2015), lending support to the idea
that cerebellar zones are basic operational units of cerebellar
motor control. Other proteins with expression patterns similar
or complementary to Zebrin are e.g., the neuronal calcium
sensor protein (NCS-1; Jinno et al., 2003), the excitatory
amino acid transporter 4 (EAAT4; Dehnes et al., 1998), heat
shock protein HSP25 (Armstrong et al., 2001) and others
(Cerminara et al., 2015). CFs projecting to zebrin-positive
zones release more glutamate and generate more CS spikelets
(Paukert et al., 2010). Moreover, the susceptibility of their

PC targets for plasticity may be different as well (Wadiche
and Jahr, 2005; Wang et al., 2011), highlighting that zones
are functionally demarcated. How BGs are embedded in these
demarcated zones and contribute to their function is not yet fully
understood.

BG Structure, Circuit Embedding and
Structural Plasticity

Several studies have described the cellular and subcellular
structure of BGs in detail (de Blas, 1984; Siegel et al., 1991;
Reichenbach et al., 1995; Castejón et al., 2002). BGs are distinct
in having up to five polarized main processes (radial fibers)
that extend over the full depth of the molecular layer. The
BG fibers branch in the parasagittal plane (Figure 1), but
overlap with fibers of neighboring cells to form palisades. In
rodents BG fibers are regularly spaced at intervals of a few
µm oriented along the parallel fiber direction with a bit wider
spacing along the rostro-caudal axis of the cerebellum (de Blas,
1984; Reichenbach et al., 1995; Hoogland and Kuhn, 2010).
BG radial fibers give rise to small convoluted side branches
that form sites of putative neural-glial interaction and account
in rat for 90% of the BG membrane surface area (Grosche
et al., 1999, 2002). Two classes of protrusions from the main
BG fibers have been distinguished, short thorny processes and
more elaborate processes with long thin stalks several µm
long. The complex BG appendages form microdomains that
have surface-to-volume ratios six-fold higher than the main
radial fibers, show highly complex branching patterns, and
by nature of their structure can act as electrotonically and
biochemically compartmentalized microdomains subserving
on average five synapses (Grosche et al., 1999). Estimates on
the number of PC synapses that BG microdomains encompass
ranges from ∼2000–6000 (Reichenbach et al., 1995). The
ensheathment of PC synapses commences near onset of
synaptogenesis and could be important for regulation of
synapse number, though it does not affect synapse stability in
adulthood (Lippman Bell et al., 2010). What other functions
do BG microdomains have? One possibility is that they restrict
diffusion of neurotransmitter from the synaptic cleft (Grosche
et al., 2002) and thus help to improve the fidelity of synaptic
transmission. Due to the arrangement of BG palisades, side
processes are ideally positioned to sample and interact with
PFs (Herndon, 1964). High immuno-reactivity for glutamine
synthetase was found in BG processes (Reichenbach et al.,
1995) and BGs express high densities of glutamate transporters
(Storck et al., 1992; Rothstein et al., 1994; Bergles et al., 1997).
Together, this implicates that BGs may play a role in PF-
mediated synaptic transmission. Strikingly, the first postnatal
weeks show an impressive elaboration of BG appendages that
parallels the development of PFs (Shiga et al., 1983; Grosche
et al., 2002). Electron microscopy data have demonstrated
that BG processes not only enwrap PF–PC synapses, but also
appose PFs, CF collaterals, and processes of molecular layer
interneurons (MLIs; Castejón et al., 2002). BG processes also
express GABAA receptors in the vicinity of inhibitory synapses
close to PC somata, but in a small fraction also at excitatory
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FIGURE 1 | Embedding of Bergmann glial cells in cerebellar circuits and
zones (A). Arrangement of BGs relative to a single purkinje cell (PC). Left:
Single BG indicating that radial fibers predominantly branch in the parasagittal
plane, i.e., along the rostro-caudal axis of the cerebellum. BGs have up to 5
radial fibers that extend over the full depth of the molecular layer. In addition, BG
radial fibers give off small side branches or BG microdomains (not shown) that
predominantly wrap around parallel fiber- PC synapses (Grosche et al., 2002).
Right: planes at different depths illustrating the PC-BG relationship. Inset 1: PC
layer with arrangement of a monolayer of BG and PC somata at a density of 8
BGs (blue) to 1 PC. Inset 2: molecular layer BG processes arrange in palisades

to maximize interaction with parallel fibers. Inset 3: BG fibers terminate at the
surface with bulbous end-feet, the function of which has not been studied.
(B) Zonation in the cerebellum. Left: Zebrin II (zebrin) expression in the
cerebellum follows a pattern consisting of rostro-caudal parasagittal stripes that
constitute functional modules with distinct input-output relationships. Right:
coronal section through a cerebellar folium showing clear delineation of
zebrin-positive, or negative borders. Other proteins such as the HSP25 display
staining complementary to Zebrin II. BGs display a similar zonal expression of
HSP25 (Reeber et al., 2014), but with less distinct boundaries due to their
morphology. R: rostral, C: caudal, M: medial, L: lateral.

synapses near PC dendritic spines (Riquelme et al., 2002).
Thus, BGs are equipped to sense both inhibitory and excitatory
neurotransmitters. Indeed, glutamate transporters are densely
expressed on BG processes and can aid glutamate uptake
into BGs (Bergles et al., 1997). It has been demonstrated that
GLAST and GLT-1 also affect the time course of synaptically
evoked currents during repeated PF activation of a few fibers,
or during single stimuli when multiple nearby fibers are
activated (Marcaggi et al., 2003). By shaping the time course
of postsynaptic currents glutamate transporters in BGs could
regulate mGluR—mediated plasticity (Marcaggi and Attwell,
2005). Both electrical stimulation of PFs and ATP release
from MLIs can trigger calcium elevations in BG processes
(Beierlein and Regehr, 2006). BGs normally express calcium-
permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors, as demonstrated by the presence of
glutamate evoked AMPAR currents and immunocytochemistry
(Burnashev et al., 1992; Sato et al., 1993; Bellamy and Ogden,

2006; Saab et al., 2012). They are required for maintenance of
BG processes around PC dendritic spines (Iino et al., 2001).
Recent work in which (calcium-permeable) AMPA receptors
(GluR1 and GluR4) were conditionally knocked-out in BGs
has replicated this finding and demonstrated a co-occurrence
of such BG process retraction with impairments in associative
motor learning during both the ErasmusLadder task and
eyeblink conditioning (Saab et al., 2012). Moreover, since
these phenotypes occurred in adult but not young animals, the
picture emerges that BGs also serve specific and active functions
in adulthood. Interestingly, AMPA receptors probably also
regulate electrical coupling between BGs, as their activation
results in a strong reduction of BG-BG junctional conductance
(Müller et al., 1996). Even though the BG palisades are
oriented along the direction of the PFs, the electrical coupling
between BGs appears to be limited along the parasagittal plane
matching the orthogonal orientation of PC dendritic arbors
(Figure 1A).
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Types of Calcium Signaling in BGs

Calcium dynamics in BGs have been described in detail
in vitro and in vivo. Burst stimulation of PFs is sufficient
to trigger local calcium increases in BG processes (Grosche
et al., 1999; Beierlein and Regehr, 2006; Piet and Jahr, 2007).
Such calcium elevations are sensitive to block of group I
metabotropic glutamate receptors, purinergic (P2Y) receptors
or AMPAR currents (Beierlein and Regehr, 2006; Piet and
Jahr, 2007). Putative AMPAR-mediated calcium increases show
shorter duration and smaller amplitude calcium transients upon
stimulation, while larger calcium increases are sensitive to
cyclopiazonic acid (CPA), blocking release from calcium stores.
The slow calcium transients seen during burst stimulation can
be elicited by ATP released from MLIs upon PF stimulation
(Piet and Jahr, 2007). Stimulation of CFs does not elicit calcium
elevations in BGs, but does evoke currents in BGs. These currents
are of much lower magnitude than during PF stimulation.
PF stimulation results in BG AMPAR currents that display
paired pulse facilitation (PPF) as seen with synaptic PPF, but
such AMPAR-mediated BG currents are of short duration as
BG AMPAR currents with high-frequency stimulation cannot
be sustained (Bellamy and Ogden, 2005). Taken together, it
appears that BGs are more responsive to PF than to CF
activity. However, synchronous CF activity could in principle
boost glutamate spillover. Spillover from CF terminals has been
associated with larger CF mediated AMPAR currents and could
act as a cue to guide BG processes to enwrap synapses for
better isolation (Matsui and Jahr, 2004). Thus, functionally
BG AMPAR currents appear to be important for stabilizing
BG microdomains around synaptic elements to enable effective
clearance through BG glutamate transporters (Rothstein et al.,
1994; Bergles et al., 1997) and thereby increase the fidelity of
synaptic transmission.

Electrical stimulation of PF axonal beams in recent
experiments have demonstrated clustered activation of PFs
in response to sensory stimulation (Wilms and Häusser, 2015).
Such PF activation could result in calcium elevations in BG
processes in vivo similar to those that have been reported
in vitro. In vivo, several types of BG calcium responses have
been observed. These include for example single process calcium
elevations as revealed through sparse viral transduction of BGs
with a genetically encoded calcium indicator (GECI; Hoogland
et al., 2009) or synthetic calcium indicators in combination
with the astrocyte marker SR101 (Nimmerjahn et al., 2004).
In addition, elevations in large fields of BG processes can
occur in vivo during locomotion (Nimmerjahn et al., 2009;
Paukert et al., 2014) and/or transglial calcium waves (Hoogland
et al., 2009; Nimmerjahn et al., 2009). The frequency of
BG signals of mammals in the awake state is significantly
higher than those in the anesthetized state (Nimmerjahn
et al., 2009; Hoogland and Kuhn, 2010) and their rate is
generally sensitive to block of neural activity and glutamatergic
transmission with some remaining calcium responses that
might be intrinsically generated (Nimmerjahn et al., 2009).
The calcium elevations in BG processes during locomotion
probably reflect the increased synaptic drive observed in the

cerebellum during locomotion (Ozden et al., 2012). However,
it should be noted that the correlations with the onset of
locomotion are weak and that BGs do not always respond with
calcium increases during bouts of locomotion (Paukert et al.,
2014). Transglial calcium waves in the cerebellum are triggered
by ATP and rely on release of calcium from internal stores
(Hoogland and Kuhn, 2010). Their frequency also increases
when the animal is transferred from an anesthetized to an
awake state (Nimmerjahn et al., 2009) or when it is getting
older (Mathiesen et al., 2013). Indeed, the role of these waves
may be metabolic and neuroprotective in that their occurrence
increases with low oxygen tension (Mathiesen et al., 2013).
Future studies employing selective expression of GECIs should
further elucidate how calcium microdomains in BGs respond to
sensorimotor stimulation in detail (Kuhn et al., 2011; Paukert
et al., 2014).

BG K+ Siphoning and Functional
Implications

Astrocytes including BGs act as large sinks for redistribution
of ionic gradients and could thereby have significant impact
on neurotransmission and excitability of neurons (Newman
et al., 1984; Reichenbach et al., 1995). This can have clear
benefits for redistributing ions in regions where K+ accumulates
rapidly during periods of strong activity, ensuring that increased
neuronal activity can be sustained. In fact, large 1–3 mM
accumulations of extracellular K+ have been measured in vitro
around PCs in response to spiking activity (Hounsgaard and
Nicholson, 1983). The presence of inward rectifying K + (KIR)
channels can effectively shuttle K+ into BGs (Butt and Kalsi,
2006), which have strongly hyperpolarized resting membrane
potentials. In situ hybridization studies have shown that KIR4.1
has highest expression levels in hippocampus and cerebellar
cortex (Poopalasundaram et al., 2000). In the cerebellum
KIR4.1 channels are expressed in BGs near the PC primary
branches (Poopalasundaram et al., 2000). Recent work has
revealed the importance of BGs in regulating K+ concentrations
to influence PC membrane potential. Such modulation was
shown to be Ca2+-dependent and could trigger bistability
of PCs (Wang et al., 2012), a phenomenon in which PCs
show periods of firing alternated by quiescence. In the intact
animal PC bistability has been shown to be strongly influenced
by anesthetics and mostly absent in healthy tissue of awake
animals (Schonewille et al., 2006), but it could potentially be
present in the cerebellum during sleep, which currently is
an active area of investigation. The function of bistability is
contentious, but modeling studies suggest that it can increase
the capacity of PCs to learn input-output associations (Clopath
et al., 2012). Thus, since artificial elevation of calcium in BGs
in vitro transiently reduces extracellular K+ concentrations
(Wang et al., 2012), the question emerges to what extent a
particular type of calcium signal is preferably driving inward
K+ currents in BGs in vivo or whether other observed types
of calcium conductances also contribute to regulation of K+

in the intact cerebellum. While ATP-driven calcium elevations
could trigger transient shifts of PCs to an upstate in vitro,
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ATP-mediated transglial waves relying on calcium release from
intracellular stores could in principle modulate excitability of
nearby PCs in vivo (Hoogland et al., 2009). However, no
direct role of transglial waves in physiological function has
yet been demonstrated. As it stands now, these signals seem
to be involved predominantly in metabolic control or are
neuroprotective (Mathiesen et al., 2013). As mentioned above,
the frequency of transglial waves is significantly decreased
under anesthesia (∼7-fold) when bistability manifests itself
most prominently (Nimmerjahn et al., 2009). This could be
reconciled by the fact that increased frequency of BG calcium
signals in awake mice (Nimmerjahn et al., 2009; Hoogland
and Kuhn, 2010) could cause a constitutive reduction of
external K+ to drive PCs into prolonged (depolarized) up-
states. It has been proposed that PCs remain in the upstate
because calcium-dependent K+ channels gradually inactivate
after hyperpolarization (Wang et al., 2012), but the exact
mechanisms are still unclear. Both locally and globally BGs are
able to alter excitability by regulating extracellular K + but under
which conditions this happens in the intact brain requires further
investigation.

Activation of BGs during Vigilance

BGs like other astrocytes express receptors for the
neurotransmitter noradrenaline and activation of such receptors
can trigger calcium elevations (Salm and McCarthy, 1990;
Kirischuk et al., 1996). Recent studies have revealed that
noradrenaline-dependent calcium signaling in astrocytes
can be triggered in vivo (Bekar et al., 2008; Ding et al.,
2013), either after stimulating the source of noradrenergic
afferents, the locus coeruleus, after strong peripheral
stimulation, such as foot shocks, or even with whisker
stimulation as revealed by pharmacological block with alpha-
adrenergic receptor antagonists (Bekar et al., 2008; Ding
et al., 2013). The release of noradrenaline is non-synaptic,
diffuses throughout the neuropil volume and can thereby
trigger calcium elevations and down-stream signaling in
astrocytes.

Possibly, noradrenaline release also contributes to BG
activation during sensorimotor stimulation. Indeed during head-
fixed treadmill locomotion (Nimmerjahn et al., 2009) weak
responses can be seen in BGs of the cerebellum across the
field of view. These signals can be extracted from ROIs defined
by the co-loading of the astrocyte marker SR101 (Nimmerjahn
et al., 2004)—now known to also affect neuronal excitability
(Kang et al., 2010)—and OGB-1/AM, a synthetic calcium
indicator dye. Calcium signals in (purported) BG processes
occur during locomotion bouts and are attenuated with short
inter-movement intervals, suggesting that calcium release from
internal stores underlies the calcium increases. In a recent
study in which the GECI GCaMP3 was expressed selectively
in astrocytes, calcium elevations were also demonstrated to
encompass large fields of BG processes during locomotion
bouts, but they were of low amplitude and such events had
a failed rate of about one in three (Paukert et al., 2014).
Strikingly, when locomotion was enforced (and thus arousal

peaked) significantly larger whole field BG responses were
evoked in a consistent manner. These also appeared refractory.
Using pharmacological tools it was subsequently shown that
such arousal-induced BG calcium elevations were dependent
on noradrenaline release and activation of the α1-adrenergic
receptor similar to what has been observed for cortical astrocytes
(Ding et al., 2013). Calcium elevations were not restricted
to BGs, but also observed simultaneously in visual cortex
astrocytes—albeit with a slightly longer delay—suggesting that
release of noradrenaline during a state of arousal activates
astrocytes across the entire brain. Thus, the noradrenergic
system can act as a gain modulator not only for neurons
(Johnson et al., 1968), but also astrocytes during active
behavior. Which types of natural behaviors trigger the arousal
system to elicit calcium elevations in BGs remains to be
elucidated.

BGs and Cerebellar Zone Patterning

The modular organization of the cerebellum into parasagittal
zones as defined e.g., by Zebrin, or other markers (Figure 1B)
has been known for decades (Voogd, 1969; Groenewegen
et al., 1979), and although hypotheses were formulated on
their function (Oscarsson, 1979), it was not until much later
that their functional organization was investigated in awake
animals (Welsh et al., 1995; Lang et al., 1999; Ozden et al.,
2012; De Gruijl et al., 2014). In vivo two-photon microscopy
recently revealed that zebrin-positive zones not only define
sharp anatomical borders, but also show a sharp delineation
of functional responses to sensory stimuli (Tsutsumi et al.,
2015). Although it is logical to assume that BGs embedded
in cerebellar zones follow the same modular organization as
the neurons they interact with, it was not until recently that
evidence was presented that BGs indeed show overlap with
cerebellar zones (Reeber et al., 2014), as defined by marker
proteins also found in PCs. Specifically, it concerned the heat
shock protein, HSP25, which was shown earlier to be confined
to zebrin-like parasagittal bands of PCs in mice (Armstrong
et al., 2000). The function of this protein in the cerebellum is
still unknown. BG processes do not have the flat topography of
PC dendritic arbors and the BG borders defined by HSP25 are
not as tight as those seen for PCs (Figure 1B). Nevertheless,
there is substantial overlap. It is likely that other zone-delimiting
proteins will be found to co-localize not only with cerebellar
neurons, but also BGs. Interesting as this may be, the most
important question remains to be answered, namely do BGs
that are integrated in cerebellar zones also contribute actively
to the physiology of these zones? The recent establishment
of differential firing behavior of PCs in zebrin-positive vs.
zebrin-negative cerebellar zones—with the latter firing at higher
frequencies—(Zhou et al., 2014) has made this question quite
relevant. It was found that the higher frequency of PC firing
in zebrin-negative zones could be attributed to the activation
of the TRPC3 channel in PCs, a channel that is under control
of proteins that have expression patterns overlapping with
zebrin-negative zones. Although the firing rate differences were
strongly attenuated when blocking TRPC3 channel function,
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alternate pathways are feasible through which PCs activity levels
could be set in cerebellar zones. BGs have been shown to
tonically release GABA via bestrophin 1 (Best1) channels (Lee
et al., 2010; Yoon et al., 2011). The close apposition of BG
processes to PFs, PCs and MLIs suggest that through tonic
release of neurotransmitters BGs are capable to set activity
levels in the cerebellar circuit. In granule cells tonic GABA
release from astrocytes through Best1 could evoke tonic currents
of up to ∼30 pA. In BGs the concentration of GABA has
been estimated with the use of immunogold labeling to be
between 5–10 mM and is synthesized by monoamine oxidase
(Yoon et al., 2014). Thus a sufficient electrochemical gradient
exists to drive currents through Best1 in BGs and sustain
tonic GABA release. The GABAB receptor 2 (GABABr2)
is found in PCs of zones that label positively for zebrin
(Chung et al., 2008). Given the typical extrasynaptic localization
of such receptors (Fritschy et al., 1999) and their known
coupling to G protein-coupled inwardly-rectifying potassium
(GIRK) channels that can drive membrane hyperpolarization
(Lüscher and Slesinger, 2010), it is tempting to speculate
that tonic GABA release in Zebrin/GABABr2-positive zones
sets, or maintains lower activity levels. In addition, the exact
distribution of Best1 in the cerebellum has not been reported
in great detail as histology was performed on thin parasagittal
sections, making it hard to assess whether perhaps Best1 itself
is also expressed preferentially in a zebrin-like pattern (Lee
et al., 2010; Yoon et al., 2011). Regardless, tonic GABA release
from BGs (in combination with zone-delimited expression of
GABA receptors) adds another layer of glial control over
cerebellar circuit function over time courses that exceed the
typical time scale of seconds, during which BGs modulate their
activity.

BGs and Information Processing in the
Cerebellum: Future Challenges

BG are versatile in their function and highly integrated in
the cerebellar circuit. However, many questions remain about
their exact contribution to information processing in the
cerebellum. High surface-to-volume ratios and thin stalks endow
BG microdomains (Grosche et al., 1999) with the ability to act
as independent compartmentalized units that aid in glutamate
uptake (Bergles et al., 1997), shaping of fast and slow synaptic
currents (Marcaggi et al., 2003; Marcaggi and Attwell, 2005),
regulation of extracellular K+ (Wang et al., 2012) and tonic
GABA release (Lee et al., 2010). Furthermore, their activity is
co-modulated with neurons during increased states of vigilance
(Paukert et al., 2014). Thus at a local scale BGs can modulate the
efficacy of synaptic transmission of a cluster or even individual
synapses, possibly facilitating memory formation associated with
specific behaviorally relevant contexts. The co-expression with
PCs of zone-delimiting proteins suggest that BGs in cerebellar
zones could either sustain reported physiological differences in
firing behavior of neurons in such zones, or set their activity
levels. Concurrent electrophysiological targeting of BGs and
nearby neurons and post hoc immunohistochemistry for zone-
delimiting proteins, or transgenic mouse models that allow
direct visual selection of BGs in cerebellar zones should advance
our knowledge in this regard. A combination of targeted
electrophysiology (Kitamura et al., 2008) and cell-selective
expression of GECIs in BGs (Chen et al., 2013) should allow
better assessment of the relation between calcium dynamics
in BG fibers and microdomains and their temporal relation
with sub- and supra-threshold activity in the neurons they
interact with.
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