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Type 1 Diabetes (T1D) is one of the most common chronic autoimmune diseases

in children. The disease is characterized by the destruction of beta cells, leading to

hyperglycemia, and to a lifelong insulin-dependent state. Although several studies in the

last decades have added relevant insights, the complex pathogenesis of the disease is

not yet completely understood. Recent studies have been focused on several factors,

including family history and genetic predisposition (HLA and non-HLA genes) as well as

environmental and metabolic biomarkers, with the aim of predicting the development and

progression of T1D. Once a child becomes symptomatic, beta cell mass has already

reached a critical threshold (usually a residual of 20–30% of normal amounts), thus

representing only the very late phase of the disease. In particular, this final stage follows

two preceding asymptomatic stages, which have been precisely identified. In view of the

long natural history and complex pathogenesis of the disease, many strategies may be

proposed for primary, secondary, and tertiary prevention. Strategies of primary prevention

aim to prevent the onset of autoimmunity against beta cells in asymptomatic individuals

at high risk for T1D. In addition, the availability of novel humoral andmetabolic biomarkers

that are able to characterize subjects at high risk of progression, have stimulated several

studies on secondary and tertiary prevention, aimed to preserve residual beta cell

destruction and/or to prolong the remission phase after the onset of T1D. This review

focuses on the major current knowledge on prediction and prevention of T1D in children.

Keywords: type 1 diabetes, children, prediction, primary prevention, secondary prevention, tertiary prevention

INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic beta
cell destruction in which genetic susceptibility combined with environmental factors, mostly
in early life, plays a crucial role. Several studies have been focusing on the identification of
individuals at risk for T1D, early in the natural history of the disease, using prediction models
in which the genetic factors are considered to be important for their time-independence in
all subjects. These results have offered the possibility of identifying people at risk and to
follow them during the years, in order to try to prevent or revert the progression of T1D.
Nevertheless, genetic factors do not provide a sufficient explanation regarding the development
of the disease. In the last decade, the Eisenbarth model has tried to explain the progression
of T1D (1), suggesting three main stages in the natural history of T1D. The first stage is
featured by the presence of autoantibodies (at least two islet autoantibodies) with normal blood
glucose levels and no symptoms (stage 1, or the “asymptomatic phase”) (2). In genetically
predisposed individuals, environmental factors could act as a trigger of T-cell and humoral
autoimmune responses against beta cells (3). Stage 2 is defined by the positivity of two or
more autoantibodies with alterations of glucose metabolism not diagnostic for diabetes still
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TABLE 1 | Staging of Type 1 Diabetes according to JDRF, the Endocrine Society,

and the American Diabetes Association (4).

Stage 1 Stage 2 Stage 3

Beta cell autoimmunity Beta cell autoimmunity Beta cell autoimmunity

Normoglycemia Dysglycemia Dysglycemia

Presymptomatic Presymptomatic Symptomatic

in absence of clinical symptoms (“early metabolic alterations
with asymptomatic state”). “Clinical diabetes,” or stage 3, is
characterized by the onset of clinical manifestations (Table 1) (4).
The duration of each phase and the risk of progression from one
stage to the other are not completely known. At the moment,
one relevant focus is to characterize each phase of this complex
disease in order to predict and prevent T1D, which is the dream as
well as the most challenging obstacle for clinicians and scientists.
This review has the aim to describe the most recent knowledges
on the main and recent strategies of prediction and prevention
of T1D.

Predictors of Risk for T1D
Ongoing research on T1D has produced abundant data
evaluating potential predictive factors associated with the risk
of beta cell destruction. Although several factors have been
proposed, the genetic, infective, dietary, and humoral factors
are the most relevant. More importantly, due the multifactorial
nature of the disease, these factors might be considered not
individually but as being on a spectrum and interactive factors
that if combined might strongly enhance the risk of developing
the disease. Therefore, the complete characterization of each of
these components might be of relevance in order to properly
define the risk of T1D development.

Genetic Factors
In T1D, a clear pattern of inheritance is lacking; nevertheless,
many studies have reported that genetic predisposition might
explain up to 50% of the risk (5). Relatives of T1D patients have
higher risk of developing T1D (about 15–20 times, since the
risk is about 0.4% among the general population) (6, 7). The
concordance rate for T1D is, respectively, 25–50% in identical
twins and 6–7% in dizygotic twins and siblings (7, 8). The human
leukocyte antigen (HLA) complex plays a critical role in the
pathogenesis of T1D, representing a substantial component of
the genetic risk (about 50%). The HLA region on chromosome
6p21 encodes class-I, class-II, and class-III genes. The telomeric
boundary of the locus comprises the class-I genes, including
HLA-A, HLA-B, and HLA-C, whereas the centromeric boundary
comprises the class-II genes, including HLA-DP, HLA-DQ, and
HLA-DR. Class III is located in themiddle part of the HLA region
(9). Combinations of specific alleles of HLA class II strongly
influence the risk of T1D. For example, the combination of
HLA-DRB1∗04 with DQA1∗03:01-DQB1∗03:02 (known as DR4-
DQ8) increases the risk of developing T1D, while HLA DRB1∗04
combined with DQA1∗03-DQB1∗03:01 does not (10, 11). The
highest risk of T1D is linked not only to DR4-DQ8 haplotype,

but also to another class-II haplotype known as DR3-DQ2
(DRB1∗03:01-DQA1∗05:01-DQB1∗02:01) (2). HLA is involved
in the immune process of antigen presentation; therefore, it
is clear how this gene region can influence both etiology and
pathogenesis of T1D, and this is confirmed by the sequence of
appearance of islet autoantibodies. Insulin autoantibodies (IAA)
appear in children up to 6 years of age with DR4-DQ8 haplotype,
while GAD65 autoantibodies first appear in carriers of DR3-
DQ2 (12). If the haplotype of HLA influences the appearance
of the first autoantibody, no similar associations are reported
for the appearance of subsequent autoantibodies (13). Some
haplotypes could be protective factors for the development of
T1D for example, DQB1∗06:02-DRB1∗15:01-DQA1∗01:02 (also
known as DR2) is detected in ∼20% of the individuals, but in
only 1% of patients with T1D (14). HLA class I is expressed
in all nucleated cells, and it is also involved in the antigen-
presenting process to lymphocytes. However, the risk for T1D in
patients with HLA class-I haplotypes is relatively low compared
to those with HLA-DR and HLA-DQ (15). In addition, it is
important to underline that <10% of individuals with HLA-
conferred susceptibility develop T1D (16). Therefore, new genes
probably need to be characterized to better define the risk of
the disease. In fact, to date our knowledge on HLA haplotypes
does not completely define the genetic risk of the disease,
suggesting the direct effects of other genes (17, 18). Thus, non-
HLA genes have been described as likewise playing a pivotal role
in the pathogenesis of T1D as with other autoimmune diseases.
Amon them, particularly the genes encoding, respectively,
for pre-proinsulin (INS), or protein tyrosine phosphatase
(PTPN22) or IL-2 receptor subunit alpha (IL2RA) are largely
described (19). Other genes have been identified by genome
wide association study (GWAS); among these, the 6q22.23
chromosomal region encoding protein tyrosine phosphatase
receptor kappa (PTPRK) and thymocyte expressed molecule
involved in selection (THEMIS) are well-studied for their critical
role in thymic T cell development (20). In addition, genetic scores
were proposed in recent years in order to evaluate the combined
effects of different genes on the risk of T1D. Among them, Type
1 Diabetes Genetic Risk Score (T1D GRS) has been validated
to predict progression of islet autoimmunity and development
of T1D in at-risk individuals. Oram et al. (21) have validated
a T1D GRS that incorporates HLA and non-HLA genes T1D-
associated single nucleotide polymorphisms (SNPs) and that
also discriminates T1D from Type 2 diabetes (T2D), monogenic
diabetes, and controls (22). Redondo et al. have tested the
prognostic utility of T1DGRS to differentiate rates of progression
of autoimmunity against beta cells and development of clinical
T1D in autoantibody-positive relatives of patients with T1D (23).
GRS can predict more than 10% of risk for pre-symptomatic T1D
in children without afflicted first-degree relatives (24).

Infections
Childhood infections are surely among the most widely studied
factors. The role of viral infections in the pathogenesis
of T1D is supported by epidemiological, serological, and
histological studies. Two main hypotheses have been proposed:
the hygiene hypothesis and the triggering hypothesis. It has
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been speculated that infections in early childhood may be
a protection against T1D as described in explanations of
childhood allergy. On the other hand, specific or combined
infections might cause T1D by destroying pancreatic beta cells
(25). Among viruses, enteroviruses are the most commonly
studied. The Diabetes Prediction and Prevention (DIPP) study
demonstrated a relationship between the enteroviruses infection
and the appearance of first autoantibody (26, 27); in particular,
early serological studies suggested coxsackie B viruses (CBVs),
especially the CBV4 serotype, may be linked to T1D (28, 29).
In contrast, the role of rubella infection is controversial, because
an atypical form of T1D without islet autoimmunity is described
in congenital rubella syndrome. It is interesting to observe the
correlation in young children between respiratory infections
and the increased risk of islet autoimmunity described in The
Environmental Determinants of Diabetes in the Young (TEDDY)
study. The incidence of islet autoimmunity has a peak between 6
and 9 months, followed by a decline; the same trend is described
for respiratory infections episodes (30). Although these results
add relevant information, further studies are needed in order to
properly define the role of viruses and infections in the risk of
T1D in children and adolescents.

Diet
The role of diet in T1D history is not fully understood, and
the results are still conflicting. Cow’s milk proteins have been
proposed as triggers of an autoimmune response in hosts at
genetic risk, leading to pancreatic beta cell destruction (31–35).
Studies in animals have suggested that bovine serum albumin
(BSA) is the milk protein responsible of the development of
diabetes (31). Karjalainen et al. have studied the serum of
142 Finnish children with newly diagnosed insulin-dependent
diabetes mellitus, 79 healthy children and 300 adult blood donors
(32); all diabetic patients had increased serum concentrations of
anti-bovine serum albumin (BSA) antibodies at the beginning
of the disease. Anti-BSA antibodies were predominantly IgG
and react against an albumin peptide containing 17 amino acids
(ABBOS) (32). This epitope could cross-react with a beta cell
surface protein 69 kd in size (p69) inducible by interferon gamma
representing the target antigen for milk-induced beta cell-specific
immunity. The Diabetes Autoimmunity Study in the Young
(DAISY) has shown that only in low-/moderate-risk HLA-DR
individuals, was the intake of cow’s milk protein associated with
a higher risk of developing beta cell autoimmunity, at variance
of children at high risk (33). These results have been confirmed
by the Trial to Reduce Insulin-Dependent Diabetes Mellitus in
the Genetically at Risk (TRIGR), since no difference between the
ingestion of cow’s milk and the ingestion of hydrolyzed formula
was found (34, 35).

Conflicting results have been also described on the use of
vitamin D. Several studies demonstrate the beneficial effect of
vitamin D supplementation against some autoimmune diseases
(36). It has been demonstrated that all cells of the immune system
have vitamin D receptors, and thus they could be regulated by
calcitriol (37). Vitamin D influences the innate immune system
cells (dendritic cells and macropaghes) as well as the adaptive
immune system cells (B and T lymphocytes). Calcitriol enhances

the tolerogenic status which results in a suppression and
increase of pro-inflammatory and anti-inflammatory cytokines,
respectively. It also reduces the expression of MHC class I
and II and costimulatory molecules (38). Regarding vitamin D
and T1D, it would seem that calcitriol supplementation would
reduce serum levels of antibodies and delay the progression of
beta cell destruction but only in the early stages of the disease
(39). This could explain the reported controversial results. A
recent study shows that the integration of vitamin D with ω-
3 co-supplementation and arachidonic acid reduction in the
Mediterranean diet have benefits for T1D children at onset (40).
On the other hand, in the Type 1 Diabetes Prediction and
Prevention Study (DIPP), Mäkinen et al. compared the 25(OH)D
umbilical cord serum concentration of 764 children born
between 1994 and 2004 who participated in DIPP in Finland.
Results reported in this study have shown that fetal vitamin
D status, measured through the concentration of 25(OH)D in
umbilical cord serum, is not linked to the islet autoimmunity
(41). Although these results add relevant information on the risk
of T1D, other components still need to be evaluated. In fact,
it might be postulated that a complex combination of early-life
and probably even fetal-life factors influence the development of
pancreatic autoimmunity. Understanding the burden of each of
these components is the way to strategically prevent one of the
most demanding chronic illnesses in children.

Serological Biomarkers
The characterization of serological biomarkers that evaluate the
pancreatic autoimmunity and the beta cell dysfunction or death
represents an effective way to try to outline the progression of
the disease. The positivity of autoantibodies against beta cells
and the combination of them are considered the main relevant
strategies to predict T1D progression. There are five primary
types of islet autoantibodies: autoantibodies against insulin
(IAA), autoantibodies against insulinoma-associated antigen-
2 (IA-2), autoantibodies against glutamic acid decarboxylase
(GAD), autoantibodies against zinc-transporter 8 (ZnT8), and
islet cell antibodies (ICA) (42). Although these autoantibodies
could appear at any age, they rarely appear before the age of 6
months (43). The peak incidence of appearance of a first islet
autoantibody is before the age of 3 years (43–45). After this
age the risk of developing islet autoimmunity declines. Both
the young age of seroconversion and the positivity for multiple
autoantibodies are considered the major risk factors for the
development of the disease. Ziegler et al. have demonstrated that
the progression to clinical T1D was faster in children who had
the appearance of autoantibodies against beta cells before the
age of 3 years than those who were 3 years old or older (46).
In addition, progression to T1D at 10-year follow-up was about
14.5% in 474 children with a single islet autoantibody, in contrast
to 69.7% in 585 children with multiple islet autoantibodies.
By the age of 15 years the risk of diabetes was about 0.4%
in children without islet autoantibodies (46). The titers of
autoantibodies also influence the risk of progression; high titer
of islet cell autoantibodies of IAA and IA-2 is associated with a
high risk of progression in the 5 years following the appearance
of the first autoantibody. In contrast, GADA concentrations
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FIGURE 1 | Main predictive factors associated to the risk of T1D.

did not differ between progressors and non-progressors (47).
Nevertheless, it is important to underline that the role of islet
autoantibodies positivity and titers have not a clear prognostic
significance because a revert to seronegativity was found up
to 60% of individuals with a single autoantibody and the
antibody titers may actually change (48, 49). To date, islet
autoantibody remains as the gold standard for risk stratification
for the development of clinically manifest T1D, although not
even the positivity of multiple autoantibodies is specific for
the disease.

Therefore, the better characterization of the main risk
factors previously discussed (namely genetic factors, the role
of infections, diet, and serological markers) combined with the
definition of novel and still unknown factors will surely help in
the future to predict the development of the disease (Figure 1).
Further, ongoing researches will likely offer new perspectives in
this field.

Prevention
Prediction strategies are important to avoid the development
of autoimmunity processes in subjects at risk of T1D. More
importantly, they are extremely relevant to stop the natural
progression of the disease. To date there are three levels of
prevention: primary prevention, intended for individuals at
high risk of developing T1D and aimed at preventing the
autoimmunity against islet autoantigens; secondary prevention,
which relates to individuals with multiple islet autoantibodies
with the aim of halting autoimmunity processes and possibly
avoid the clinical onset of diabetes; and, once the disease is
clinically manifested, the tertiary prevention of T1D that is
focused on complications of the disease, attempting to reduce
or minimize these with the main goal at least of delaying their
onset (50).

Primary Prevention
Strategies for primary prevention must be started early in life,
because when the earlier process of beta cell autoimmunity
is initiated, the progression to T1D accelerates significantly
(46). The POInT study, an investigator-initiated, randomized,
placebo-controlled, double-blind, primary prevention trial has
been started through a network of collaborating clinical study
centers from European countries in Belgium, Germany, Poland,
the United Kingdom, and Sweden. This study seeks to determine
whether daily administration of oral insulin, from the age
of 4–7 months until the age of 36 months to children with
elevated genetic risk for T1D, reduces the incidence of beta
cell autoantibodies and diabetes (51). The rationale of this
study was that immunological tolerance can be achieved by
the administration of antigens (52, 53). However, although the
rationale of this study is very promising, complete data are not
yet available; we will probably have new data in the years to
come. Nevertheless, a previous study conducted between March
2, 2007 and December 21, 2015 has demonstrated that oral
insulin at a dose of 7.5 mg/d, compared with a placebo, did
not delay or prevent the development of T1D over 2.7 years in
autoantibody-positive relatives of T1D patients (54).

Due to the potential role of infections in the pathogenesis
of T1D, the opportunity to administer a vaccine against viruses
associated to T1D is being explored. In particular, the Juvenile
Diabetes Research Foundation (JDRF) is now funding research
in this field, likely offering promising perspectives in the near
future (55). Under development are not only viral vaccines, but
also vaccines inducing immune tolerance to beta cell antigens
(56, 57). Neoepitopes are very important because they could be
an alternative antigenic target for T1D tolerogenic vaccines.

The role of gut microbiome is critical for the immune
regulation, education, and maturation of the immune system in
infants. Several cohorts have been studied in order to investigate
the relationship between early microbiome or its perturbations
with the development of islets autoantibodies. Studies are
underway in order to clarify the role of intestinal bacterial
diversity in inducing the risk of T1D development in children. In
the TEDDY study, modest alterations of microbial composition
have been found in patients with islet autoantibodies or T1D
not revealing clear taxonomic differences (58, 59). However, a
relevant point is that the microbiomes of progressors to islet
autoimmunity or T1D contained notably higher numbers of
genes involved in fermentation pathways and production of
Short Chain Fatty Acids (SCFA) by-products. This is relevant
because some SCFA products, like butyrate, are involved in the
mechanisms of gut epithelial integrity maintenance, promoting
anti-inflammatory responses, and regulating the activity of
regulatory T cells (58, 59). Investigating the role of the
microbiome may provide insights into developing safe strategies
to modulate immune regulation in infants and children.

Secondary Prevention
Strategies for secondary prevention apply to individuals with
multiple autoantibodies (at least two), with or without evidence
of beta cell dysfunction. Islet autoantibodies currently represent a
relevant approach in the prediction of clinical T1D. The number
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of autoantibodies, the age of onset, and the combination of these
could be highly predictive of the progression to clinical T1D.

Recent evidence remarks how post translational modifications
(PTM) of self-antigens as oxidation (60, 61), glycosylation (60),
citrullination (62, 63), and deamination (64) supply neoepitopes
that are able to breach immune tolerance in T1D. Strollo et al.
demonstrated a new autoantibody in most of T1D individuals
(61) or prediabetic children (65). They also demonstrated that
the best sensitivity and specificity of the humoral biomarkers
are defined by the positivity of oxPTM-INS-Ab and IA-2A, in
contrast to GADA and IAA that show a lower sensitivity and
specificity. In detail, the sensitivity of oxPTM-INS-Ab, IA-2A,
GADA, and IAA was about 74, 71, 65, and 50%, respectively,
while the specificity was 91, 91, 66, and 68%, respectively (66).
They found that in GADA+ individuals, the further positivity of
IA-2A and oxPTM-INS-Ab was the better and the more accurate
combination when compared to IA-2A+/IAA+ or oxPTM-INS-
Ab+/IAA+. In children oxPTM-INS-Ab+,GADA+, and IA-2A+

had twice the risk of progression to clinical diabetes within 5 years
when compared with children with IAA+, GADA+, IA-2A+. At
10 years of follow-up, diabetes risk increased to 100% in the first
group, compared to 84.37% in the second group (66). Although
this study demonstrates the greater accuracy of oxPTM-INS-Ab
in identifying progressors to T1D compared to IAA, additional
studies are necessary to confirm the predictive value of oxPTM-
INS-Ab in T1D.

In addition, metabolic markers have been proposed for
secondary prevention. Continuous glucose monitoring (CGM)
seems to have a role in predicting T1D onset in at-risk persons.
Steck et al. enrolled 23 participants with positive autoantibodies
who wore a CGM; they demonstrated that those children
reporting a 18% or greater CGM time spent at >140 mg/dL are
at increased risk to progress to clinical diabetes (67). However,
to date, larger studies are needed to confirm the predictive value
of CGM. Also, mild fasting or after glucose load dysglycemia
increase the risk of T1D. Metabolic markers derived from oral
glucose tolerance test (OGTT) accurately predict the progression
to T1D in high-risk individuals (68, 69). OGTT examines the
response to an artificial sugar load, CGM does not—this is the
relevant advantage of this method.

Several immune interventions have been reported to delay the
decline in beta-cell function (70). A promising drug is teplizumab
an Fc receptor-non-binding anti-CD3 monoclonal antibody. In
a phase-2 trial, Herold et al. have demonstrated that teplizumab
significantly delays (by 2 years) the clinical onset of T1D in
high-risk, non-diabetic relatives of diabetic patients and with at
least two autoantibodies and abnormal OGTT at trial entry (71).
The presence of HLA-DR4 and the absence of HLA-DR3 and of
anti-ZnT8 antibodies identified the persons most likely to have
a response (71). Preclinical studies suggested that an anti-CD3
monoclonal antibody needs an active autoimmune response;
thus, the administration of these drugs during stage 1 of diabetes
could be ineffective (72, 73).

Tertiary Prevention
Strategies to preserve beta cell mass and/or to prolong the
remission phase after T1D onset are of relevant importance,

because beta cell mass rapidly declines during the first 1–2 years
or following the onset of T1D; these strategies could also allow us
to avoid or delay the complications of T1D (74, 75). In order to
understand the immune mechanisms underlying the destruction
of beta cell mass, it is key to try to halt autoimmunity and to
preserve beta cell mass with the hope of eventually curing T1D.
Previous pilot, randomized, placebo-controlled, single-masked
clinical trial was performed with the aim to characterize the
tertiary prevention strategies. Results from this study have shown
that anti-thymocyte globulin ATG given at low dose (2.5 mg/kg)
combined with the administration of 6mg subcutaneously every
2 weeks for six doses of pegylated granulocyte colony-stimulating
factor GCSF in individuals with T1D (duration 4–24 months)
is able to preserve C-peptide (76, 77), contrary to higher doses
of ATG (6.5 mg/kg) in monotherapy (78, 79). Flow cytometry
analysis showed that the combination of low-dose ATG/GCSF
increased the proportion of Tregs to conventional CD4+ T cells,
while higher-dose ATG decreased Tregs proportionally (77–79).
The National Institute of Health Type 1 Diabetes TrialNet Study
Group (TrialNet) performed a three-arm randomized, double-
masked, placebo-controlled trial (low-dose ATG/GCSF, low-dose
ATG, and placebo) to compare the power of low-dose ATG/GCSF
and low-dose ATG alone in preserving beta cell mass (80). This
study showed that the addition of GCSFmay decrease the benefits
of low-dose ATG alone in the reduction of HbA1c, preservation
of beta cell function, and favorable changes in immune cells
subsets (80).

Many other immunotherapeutic approaches are being studied
and proposed to prevent T1D. Jacobsen et al. reviewed and
summarized recent interventional approaches (81), defining
their proposed mechanism. Treatments include cyclosporine
plus methotrexate (82), rituximab (anti-CD20) (83, 84),
teplizumab (anti-CD3) (85, 86), otelixizumab (chimeric anti-
CD-3) (87–89), ATG (78, 79), ATG+G-CSF (76, 77, 90),
abatacept (CTLA-4/Fc fusion protein) (91, 92), ex-vivo-expanded
autologous CD4+CD127lo/−CD25+polyTregs (93), autologous
hematopoietic stem cell transplant (AHSCT) (94), alefacept
(LFA-3/Fc fusion protein) (95), alpha-1-antitrypsin (acute
phase reactant) (96, 97), canakinumab (anti-IL-1 mAb) and
anakinra (IL-1-R antagonist) (98, 99), proleukin (IL2) (100, 101),
etanercept (anti-TNF-α) (102), sitagliptin+lansoprazole (DPP-4
inhibitor + PPI) (103), and verapamil (104). Results of these
studies are relevant in possibly offering new and promising
approaches for the cure of the disease in the near future.

Vitamin D supplementation is another strategy proposed to
slow the progression of the disease. In this regard, it is an ongoing
randomized, placebo-controlled clinical trial to check vitamin
D effectiveness in prolonging the duration of partial clinical
remission (PCR), or “honeymoon phase,” increasing residual beta
cell function. It began on October 19, 2017 and will conclude on
July 31, 2020 (105).

In the field of tertiary prevention, it is crucial to note that
about 50% of T1D patients fail to undergo partial clinical
remission (106). These children, also called “non-remitters”
have a prognostic disadvantage for the short- and long-
term complications of T1D (107–110). A predictive model
evaluating of bicarbonate <15 mg/dL, age <5 years, female
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sex, and >3 diabetes-associated autoantibodies has a 73%
predictive power in identifying non-remission in children
and adolescents with new-onset T1D (111). It is a challenge
for scientists to identify this group of patients at high
risk in order to properly treat them with other strategies
to have a better glycemic control and to avoid or delay
vascular complications.

CONCLUSIONS

T1D is a T cell-mediated autoimmune disease characterized by
selective destruction of pancreatic beta cells. The pathogenesis
of T1D is very complex, and the network of factors involved
needs to be better described. To date, the genetic factors are
surely relevant to estimate the risk of developing T1D. In fact,
the familial aggregation of T1D certainly remarks an inheritable
genetic predisposition for the development of this chronic
disease. Risk of T1D progression is conferred by specific HLA
DR/DQ alleles (i.e., DR3/DQ2 or DR4/DQ8), but it is important
to note there are also alleles that would seem to be protective
factors for the development of T1D (i.e., DQB1∗0602).

In addition, non-HLA genes are also involved in the polygenic
inheritance of T1D.

Although, the genetic factors certainly have an important
role in the risk of T1D, the concordance rate not equal to
100% between monozygotic twins underlines the importance
of possible environmental factors and the crucial aim to define
them to truly predict and prevent T1D. Among the potential
factors related to the risk of progression to T1D, the positivity of
multiple autoantibodies is demonstrated to be a major risk factor
of developing insulin-requiring diabetes. The role of infections,
diet, and other still unknown factors potentially involved in the
pathogenesis of T1D have to be better investigated to accurately
predict the risk of T1D. These studies will pave the way to studies
for primary and secondary prevention of the disease, with the
final aim of avoiding or limiting insulin-dependence. Finally,
strategies of tertiary prevention are necessary to delay or prevent
diabetes-related complications.
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