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Abstract
Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple
points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior
elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is
effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study,
we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while
effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked
least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares
smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated
with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied
and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the
MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately
3.5 dB gain), being at the same time very effective at removing interference components.
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1 Introduction

Scanning-EMG is an electrophysiological technique that
records the electrical activity of the motor unit (MU) in
multiple spatial locations along a linear corridor [30]. A
concentric needle, the scanning electrode, passes through
the MU territory in small steps and records the motor unit
potential (MUP) at each recording site. The technique uses
a second needle that is placed a few centimeters away
from the scanning electrode in the direction of the muscle
fibers. This second needle, the trigger electrode, records the
activity of the MU under analysis, and thereby makes it
possible to synchronize a recording of the MUPs with the
firing of the MU. The scanning-EMG signal can thus be
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viewed as a bi-dimensional MUP varying both in time and
in space [20] (Fig. 1a).

Analysis of scanning-EMG signals has proved useful
not only in the study of neuromuscular pathologies [3, 7,
8, 10, 12, 13, 33] but also, and specially, in the detailed
characterization of the anatomical properties of the MU [3,
10, 17, 30, 32, 35]. Scanning-EMG signal analysis results
in extraction from the signal of several useful descriptive
parameters, such as the length of the MU territory [10], the
number of MU fractions [31], the temporal delay between
fractions [17], and the number of silent zones [31]. More
recently, the motor unit profile has been proposed as another
way to represent the scanning-EMG signal [2].

Reliable information, however, cannot be extracted from
a raw scanning-EMG signal because such a signal is con-
taminated with noise and interference (Fig. 1a). There are
three different types of noise in scanning-EMG recordings.
First, there is baseline noise caused by needle or muscle
movements [10, 11, 20]; second, there is high frequency
noise due to the electronics of the acquisition system; and
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Fig. 1 A three dimensional representation of a scanning-EMG signal
for the different steps of the traditional signal processing proce-
dure. a Raw scanning-EMG signal. b Scanning-EMG signal after

applying a temporal band-pass filter. c Scanning-EMG signal after
applying a 7-point spatial median filter, which is the output of the
processing

third, and most troublesome, there is the presence of arti-
facts deriving from the activation of nearby motor units
during MUP recording at each position [10, 11, 20]. The
level of interference from these other MUs depends on the
level of voluntary contraction exerted by the subject or
patient while the recording is being made [21].

Noise characteristics in biomedical signals, which will
vary depending on the kind of signal and acquisition system
employed, largely determine the suitable signal processing
technique to be used [29]. For instance wavelet-based
methods can be used when dealing with baseline noise [23]
or speckle noise [27, 28], and median filter can be used to
remove impulsive noise.

Noise and interference elimination has typically two
steps in scanning-EMG recordings [10, 11, 20]. The first
step is to apply a temporal band-pass filter to each of the
scanning traces [10, 11, 20] (Fig. 1b). This filter removes the
baseline noise in the low frequency range of the spectrum
and some of the high-frequency noise from the acquisition
system. The second step is to apply a median filter (usually
of 3, 5, or 7 points) in the spatial dimension in order to
eliminate the artifacts (Fig. 1c). Artifact interference falls
within the frequency range of the physiological scanning-
EMG signal in the temporal dimension, but it does not
in the spatial dimension. This is because artifacts are not
synchronized with the firing of the MU being tracked, and
therefore, they are not consistently repeated in different
traces, i.e., in the spatial dimension, they are effectively
impulsive noise. This is the reason why the median filter
applied in the spatial dimension is so effective at cleaning
up scanning-EMG signals [11].

The median filter, however, has an important drawback: it
considerably distorts the shape of the scanning-EMG signal.
Peaks of the signal tend to be clipped significantly when
the median filter is applied [10, 11, 20]. Peak clipping can
be reduced by using a median filter with fewer points, but
the fewer the points, the less effectively the artifacts are
eliminated [10, 11]. Signal waveform distortion caused by

the median filter can induce errors in subsequent analysis of
the scanning-EMG signal.

In view of the above limitations inherent to the median
filter, we suggest an alternative approach should be used
for processing scanning-EMG signals. We propose a new
processing algorithm—we will refer to it as masked
least-squares smoothing (MLSS)—which recalculates and
replaces each sample value of the scanning signal using
a spatial least-squares smoothing procedure, taking into
account information from only those samples that are not
contaminated with artifacts. The algorithm is designed in
such a way that it achieves a smooth waveform in the
spatial dimension, exploiting the fact that in absence of
noise and artifacts, the scanning-EMG signal is not expected
to present abrupt variations, since the dependence between
the recording position and the amplitude of the MUP is
smooth [15]. In the present work, the MLSS algorithm is
described, and its performance with both simulated and real
scanning-EMG signals is analyzed and compared with that
of the median algorithm.

2Materials andmethods

2.1 Algorithm description

As is the case with median filtering in traditional procedure,
the MLSS algorithm is used after applying a band-pass
filter in the temporal dimension to reduce baseline and
high-frequency noise. The MLSS algorithm has two steps:
artifact detection and least-squares filtering (Fig. 2).

2.1.1 Artifact detection

The first step of the MLSS algorithm is to detect the
samples in which the scanning-EMG signal is contaminated
by artifacts (Fig. 2). Such interference is estimated by
obtaining the difference between the N ×K scanning-EMG
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Fig. 2 Block diagram describing the main steps of the MLSS
algorithm. The input of the MLSS is the filtered signal F , which is
the result of applying the temporal filter to the raw signal. The filtered
signal is used to generate the output signal Y by means of a local least-
squares smoothing procedure in the spatial dimension. This procedure
uses only the samples of the scanning-EMG signal that are considered
clean, that is, to be free of artifacts as determined by a validity mask V .
To calculate V , the algorithm prepares a signal G by twice applying,
to the filtered signal F , a median filter in the spatial dimension. Signal
G is then subtracted from signal F , and this difference, on the basis of
a threshold, gives the validity mask V

signal before, F = {fn,k}, and after L-point spatial median
filtering, G = {gn,k}, where n and k denote the temporal and
spatial location of the sample, and N and K are the number
of temporal and spatial samples of the recording.

This median filtering is applied twice consecutively in
order to achieve more thorough artifact removal, that is

g′
n,k = median(fn,k−(L−1)/2, . . . , fn,k+(L−1)/2) (1)

gn,k = median(g′
n,k−(L−1)/2, . . . , g

′
n,k+(L−1)/2) (2)

The artifact estimation is then thresholded to obtain the
N × K validity mask V = {vn,k}, which is set to 1 when an
artifact has not been detected, and 0 otherwise

vn,k =
{

1, |fn,k − gn,k| < U · (max(G) − min(G))

0, |fn,k − gn,k| ≥ U · (max(G) − min(G))
(3)

where U is the normalized artifact detection threshold.

2.1.2 Spatial least-squares smoothing

The second step of the algorithm is to obtain the smoothed
version of the scanning signal using only information from
contamination-free samples (Fig. 2). For each sample at
(n, k), a polynomial of order Q is fitted to the amplitude
values of samples contained in a spatial window of length
2M + 1 centered at the spatial position under consideration.
The value of the polynomial in the center of the window
is taken as the filtered output at (n, k). Mathematically, the
polynomial values within the window are

pm = β0 +
Q∑

q=1

βqmq, −M ≤ m ≤ M (4)

where Q is the polynomial order, M is the window semi-
length, and β = [β0, . . . , βQ]T are the coefficients of the
polynomial.

When fitting the polynomial, therefore, the goal is to
find the set of coefficients β that maximizes the fit of the
polynomial to the values of the samples in the window. A
weighted linear least-squares procedure [34] is used for this
purpose. Samples marked as artifact contaminated are given
weight 0, and contamination-free samples (marked as valid)
are given weight 1. Thus, the mathematical expression to be
minimized is [34]

arg min
β

||W 1/2(f − Sβ)|| (5)

where f = [fn,k−M, . . . , fn,k, . . . , fn,k+M ]T are the win-
dow sample values, and the matrix S is defined as

S = {sq,m}, sq,m =
{

mq q �= 0
1 q = 0

(6)

with 0 ≤ q ≤ Q and −M ≤ m ≤ M . The weight matrix W

is a diagonal matrix built from the validity mask values for
samples within the window

W = diag{vn,k−M, . . . , vn,k, . . . , vn,k+M} (7)

Polynomial coefficients β satisfying (5) can be calcu-
lated as [34]

β = (ST WS)−1ST Wf (8)

The overall N × K output signal Y = {yn,k} comprises
the series of values of the polynomials at the center of the
windows (i.e., in m = 0). Therefore, using (4) we obtain

yn,k = p0 = β0 (9)

For spatial positions where there are not M traces on
each side, and therefore it is not possible to set the sample
window symmetrically, output signal values are taken from
the polynomial obtained for the nearest entire window
which includes the bordering spatial position. Thus, for
1 ≤ k ≤ M , the output values are

yn,k = pk−M−1 (10)

where the polynomial values are obtained from the sample
window centered at the position (n, M +1). Similarly, for
K−M+1 ≤ k ≤ K , the output values are

yn,k = pk−K+M+1 (11)

where the polynomial values are obtained from the sample
window centered at the position (n, K−M).

Another consideration in least-squares fitting is that, in
order to obtain a unique solution, the chosen polynomial
order must be smaller than the number of samples used
[34]. In the algorithm proposed here, a more restrictive
condition is imposed so as both to ensure the uniqueness
of the solution, and to avoid incorrect polynomial solutions
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that can result from the use of a polynomial order that is high
relative to the number of samples. The condition applied is

Q <
1

2

M∑
m=−M

vn,k+m (12)

For space-time positions in which this condition is not
satisfied, the highest polynomial order Q that satisfies the
condition is chosen.

2.2 Algorithm evaluation

2.2.1 Model of scanning-EMG signals

Simulated scanning-EMG signals were used to evaluate the
performance of the MLSS algorithm. In this section, the
simulation model of scanning-EMG signals is described.

Muscle and motor unit modeling Each muscle was created
with a circular muscle cross section of 10 mm diameter and
was composed of 120 MUs. The cross-sectional areas of
MU territories were modeled fitting an exponential function
[6] between the area of the smallest MU, 1.96 mm2, and
the area of the largest MU, 22.48 mm2. MU territories
were circular in shape except when constrained by the
muscle boundary, in which case the MU territory was cut
to fit within the muscle limits, and the radius was regrown
so as to keep the territory area unchanged [14, 18, 19].
MU territories were placed within the muscle in such a
way that the spatial variance of the overlapping between
MU territories within the muscle was minimized [19, 26].
For each MU, muscle fibers were modeled according to

a uniform distribution inside the MU territory [5], with a
fiber density of 10 fibers/mm2. The length of muscle fibers
was 140 mm. The conduction velocity of muscle fibers
within the ith MU were given by a Gaussian distribution,
with a mean conduction velocity modeled by an exponential
function [6] between the MU conduction velocity of the
smallest MU, 3.25 m/s, and the MU conduction velocity of
the largest MU, 6.25 m/s, and with a coefficient of variation
0.03.

The cross section of each muscle was divided into regions
called fractions (Fig. 3). Given a specific motor unit, each
fraction located within the MU territory represents the set
of muscle fibers innervated by a common axonal branch [3,
17, 31]. A set of 90 points were created within the muscle
cross section at random positions following a uniform
distribution. From these points, Voronoi tessellation of
the MU territories was performed [22], each Voronoi cell
corresponding to a different fraction (Fig. 3a). Muscle fibers
were assigned to fractions on the basis of position. The
innervation zone center of the muscle was located in the
middle, lengthwise, of the muscle fibers. Innervation zone
centers for the different fractions within each MU were
positioned according to a uniform distribution scattered
10 mm around the muscle innervation zone center (Fig. 3b).
Innervation positions for muscle fibers followed a uniform
distribution of 1 mm around the innervation zone center of
the fraction of the MU in which the muscle fiber was located
(Fig. 3b).

Recruitment and firing pattern modeling The recruitment
and firing pattern of each motor unit were modeled
according to [5, 6]. The recruitment threshold of the ith MU

(a) (b)

Fig. 3 a Schematic representation of a simulated MU cross section.
The MU is divided in different Vornoi cells (dotted lines), which cor-
respond to the different fractions of the MU. The fibers of the MU
are represented with filled black circles. b Schematic representation of
the innervation zone of a MU of the simulated muscle. The horizontal

black lines represent the different fibers of the MU. The innervation
position of the fibers (represented by squares) follow a uniform distri-
bution within the limits of each fraction zone (vertical solid lines). The
different MU fraction zones follow a uniform distribution within the
muscle innervation zone (vertical dashed lines)
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during constant isometric contraction was modeled by an
exponential function [5, 6], with a percentage of voluntary
contraction (MVC) of full recruitment of 70% [6]. The
minimum firing rate was 8 pps (pulses per second), and
the firing rate increased linearly with increased strength
of voluntary contraction: at a rate of 7 pps for each
10% increase in MVC [5]. The maximum firing rate was
35 pps [5]. The firing train of each MU was modeled as a
renewal point process where the interval between discharges
followed a Gaussian distribution with a mean that was the
inverse of the firing rate, and with a coefficient of variation
of 0.15.

Scanning-EMG signal modeling Single-fiber action poten-
tials (SFAPs) were simulated using a line source model
[24], and MUPs were generated by the summation of the
individual SFAPs [16]. In order to simulate the effect of con-
centric needle recording [16], MUPs were calculated and
averaged for a grid of points over the uptake area [16]. The
cannula effect of the concentric needle was also taken into
account by simulating and averaging the MUP in the can-
nula section; the resulting signal was subtracted from the
core MUP [16].

The physiological scanning-EMG signal was simulated
as the sequence of MUPs obtained at each position of the
scanning corridor. The scanning-EMG signal was simulated
from the smallest MU whose territory was traversed by
the corridor. The modeled scanning electrode was inserted
30 mm away from the innervation zone. The scanning
corridor was located across the plane of muscle cross
section, from the bone to the skin, recording a signal every
0.05 mm [30].

In order obtain modeled scanning-EMG signals that
were realistically noisy, the entire recording procedure was
modeled. For each recording position, the EMG signal was
calculated as the convolution of the MUPs of all recruited
MUs and their corresponding firing trains. Each recording
trace was a 30-ms duration segment of the complete EMG
signal around the corresponding MU firing time. After each
trace, a waiting time of 60 ms was emulated in order to
model the time a scanning electrode takes to advance to the
next recording position.

Baseline noise was modeled as an ARMA process
[23] obtained by filtering white Gaussian noise of zero-
mean. The filter used was a 5th-order Butterworth low-pass
filter with a 3 dB cut-off frequency of 20 Hz. Electronic
acquisition noise was simulated as a zero-mean, additive,
white Gaussian noise process.

2.2.2 Influence of the algorithm parameters

The parameters of the MLSS algorithm are the artifact
detection threshold, U , the median filter order, L, the

polynomial order, Q, and the window semi-length, M .
The first goal of the study was to find a set of optimal-
performance parameters by using a genetic algorithm [9].
The cost function to be minimized was the error power
within the physiological activity recording region, Pin, after
processing with the MLSS algorithm, averaged for 100
simulated scanning-EMG signals, where

Pin = 10 log10

∑K
k=1

∑N
n=1zn,k|en,k|2∑K

k=1
∑N

n=1zn,k

(13)

where en,k is the error between the processed scanning-
EMG signal and the physiological (noise-free) scanning-
EMG signal. The mask zn,k discriminates between what
is inside and what is outside the region of physiological
activity. For positions considered inside the physiological
activity region, the mask is set to 1; otherwise, the mask is
set to 0. For each trace at each spatial position, the region
of physiological activity is defined as the interval between
the first and last sample for which the signal exceeds 9% of
the maximum amplitude value of the entire scanning-EMG
signal:

zn,k =
{

1 nak
≤ n ≤ nbk

0 otherwise
(14)

where nak
and nbk

are for each k, the first and last
samples that satisfy |xn,k| > 0.09 max(X). The percentage
of MVC used in this experiment was 2.3%. The genetic
algorithm was used with the following settings: the number
of generations was 100, the population size was 50; the
number of individuals belonging to the elite was 2; and the
crossover probability was 0.8. The parameter search ranges
can be found in Table 1 (Min. and Max. values).

In order to analyze the effect of the parameters in
the algorithm performance, Sobol sensitivity analysis was
performed [25]. Using Sobol analysis, the total variance of
the average Pin of 100 scanning signals was decomposed
in terms which can be attributed to each of the algorithm
parameters or to combinations of them [25]. All order
indices, including the total-effect indices, were calculated
[1]. A total of 4000 samples of the parameter space were
used to compute the indices. In this way, uniform random
sampling of the parameter space was used, within the ranges
of the algorithm parameters given in Table 1 (Min. and Max.
values).

Table 1 Ranges and values for the MLSS algorithm parameters

Parameter Symbol Min. Max. Optimal

Median filter order L 3 11 5

Artifact detection threshold U 8·10−3 5.23·10−2 2.23·10−3

Polynomial order Q 2 12 8

Window semi-length M 7 18 13
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2.2.3 Influence of level of muscle contraction

In this section of the study, we compared the performance
of median and MLSS algorithms over a range of levels
of muscle contraction, the higher the muscle contraction,
the higher the level of artifact contamination. In 100 inde-
pendent realizations of the muscle model, a physiological
scanning-EMG signal and a noisy scanning-EMG signal
were simulated for a series of different percentages of MVC
(from 1.4 to 4.2% in steps of 0.2%). The noisy signals
were processed by the median and the MLSS algorithms.
The median algorithm was used with three different median
filter-orders (3, 5, and 7). The MLSS was used with the
optimal parameters (Table 1) obtained from the experiment
described in Section 2.2.2. Once the scanning-EMG sig-
nals had been processed, the following merit figures were
calculated, in addition to Pin:

– Error power outside the recording region where the
physiological activity is located

Pout = 10 log10

∑K
k=1

∑N
n=1(1 − zn,k)|en,k|2∑K

k=1
∑N

n=1(1 − zn,k)
(15)

– The difference between the 3-, 5-, and 7-point median
algorithms and the MLSS algorithm in terms of the error
power outside the physiological activity region, Gout .

– The difference between the 3-, 5-, and 7-point median
algorithms and the MLSS algorithm in terms of the error
power within the physiological activity region, Gin.

2.2.4 Error distribution in the recording region

The aim of this experiment was to analyze whether the
error associated with an algorithm is uniformly distributed
throughout the recording or whether such an error tends
to be concentrated in certain regions. To this end, for both
median and MLSS algorithms, we studied the statistical
behavior of the remaining error after the processing at
each sample. Only one simulated MU was used, but the
scanning recording procedure with that MU was simulated
in 1000 independent runs. The percentage of MVC was
2.3% and was not varied. The noisy scanning-EMG signal
obtained in each run was processed by both algorithms
and the error at the output of the algorithms en,k was
calculated. To statistically characterize the error distribution
in the recording region, we calculated the bias μ̂n,k and the
standard deviation (SD) σ̂n,k of the 1000 runs.

2.2.5 Application with real scanning-EMG signals

The applicability of the algorithm was tested using real
scanning-EMG recordings. Note that, when dealing with
real scanning-EMG signals it is not possible to objectively

quantify the algorithm performance, as the physiological
noise-free version of the recorded scanning-EMG signal
is not available. This issue has already been discussed in
other EMG studies [4]. It is possible, instead, to analyze
the effects of the processing algorithms by comparing the
waveform of the resultant scanning-EMG signals. To this
end, four real cases are presented in this paper, in which a
real scanning-EMG signal was processed by both the MLSS
and the 7-point median algorithms. The MLSS algorithm
was used with the optimal parameters shown in Table 1.

The real scanning-EMG signals used were selected from
a set of 20 recordings performed in the biceps brachii of
five normal subjects (3 male and 2 female) aged between
24 and 54 years. Informed consent was obtained from
all subjects, and the study was approved by the ethics
committee of Public University of Navarra. The scanning-
EMG recordings were obtained following the recording
protocol described in [30], with sampling frequency of 20
kHz and scanning steps of 50 μm. A concentric needle was
used as scanning electrode and a facial concentric needle
was used as trigger electrode. The scanning electrode was
inserted 30 mm away from the trigger electrode along the
longitudinal axis of the muscle.

3 Results

3.1 Influence of the algorithm parameters

The optimal parameters obtained by means the genetic
algorithm are: L = 5, U = 2.23 · 10−2, Q = 8 and
W = 13. In Fig. 4, the results of the Sobol sensitivity
analysis about the first-order and total-effect indices of the
parameters are depicted. The polynomial order Q has the
highest sensitivity with the first-order index being 49% and
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Fig. 4 Results of the Sobol indices obtained in the sensitivity analysis.
The first-order indices of all parameters are represented in dark gray,
and the total-effect indices of the parameters are represented in light
gray. The parameters of the MLSS algorithm evaluated are the artifact
detection threshold, U , the median filter order, L, the polynomial
order, Q, and the window semi-length, M
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the total-effect index 80.5% of the total variance. The effect
of the window semi-length M and the median filter order L

are also significant, with the total-effect indices being 33.1
and 18.9% respectively. The least-sensitive parameter is the
artifact detection threshold U , whose total-effect index is
2.1%. With regard to higher order indices, only two of them
are higher than 2% of the total variance: the interaction
between L and Q, whose second-order index is 4.9%, and
the interaction between M and Q, whose second-order
index is 27.8%.

3.2 Influence of level of muscle contraction

The results for error power outside (Pout ) and inside
(Pin) the physiologically active region at different levels
of muscle contraction are represented in Fig. 5a, b. Note
that the higher the percentage of the MVC level, the
higher the error power for both algorithms. Regarding the
median algorithm, the higher the median filter order, the
lower the error power outside the physiologically active

region. For the MLSS algorithm, the error power outside
the physiologically active region was lower than that of
the 3- and 5-point median algorithm and higher, although
very close, to that of the 7-point median one. Within the
physiologically active region, in contrast, the error power
was lower than that of the median algorithm at all levels of
contraction studied and for all orders of the median filter
used in the median algorithm.

The results of Gout and Gin at different levels of muscle
contraction are depicted in Fig. 5c, d. The lower the order
of the median algorithm, the higher the Gout , which was
positive in the vast majority of runs with the 3- or 5-
point median algorithm. The Gout median was ranged
between 3.4 and 5.68 dB for the 3-point median algorithm,
and between 0.27 and 1.74 dB for the 5-point median
algorithm. With the 7-point median algorithm, Gout was
negative for all MVC values but low in magnitude, ranging
between − 1.44 and − 0.39 dB. Regarding Gin, in the vast
majority of the simulation runs, it was positive at all of
the contraction levels investigated, and for any order of the
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Fig. 5 Boxplot representation of the merit figures obtained for differ-
ent percentages of the MVC level. In the upper sub-figures the error
powers Pout (a), and Pin (b) are represented for the median and the

MLSS algorithms. In the lower sub-figures the differences Gout (a)
and Gin (b) of the MLSS algorithm respect to the median one is
represented
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median algorithm. The Gin median ranged between 2.55
and 4.11 dB with the 3-point median algorithm, between
2.48 and 3.26 dB with the 5-point median algorithm,
and between 2.63 and 4.97 dB with the 7-point median
algorithm.

3.3 Error distribution in the recording region

The results of the spatio-temporal distribution of the bias
and SD error for the experiment described in Section 2.2.4
(a single fixed MU) are shown in Fig. 6. The error
bias (Fig. 6a, b) of both algorithms only differed
significantly from zero in recording regions where there was
physiological activity (Fig. 6c). The position of the most
negative value of the error bias for the median algorithm
coincides with the position of the highest peak of the
scanning-EMG signal, which is located at n = 85, k = 35
(Fig. 6c). This means that the highest peak of the signal was
systematically clipped by the median algorithm.

Regarding error SD (Fig. 6d, e), outside the region of
physiological activity, this SD was approximately constant
for both algorithms (between about 0.8 and 1.3%). Within
the physiologically active region, however, the SD with the
median algorithm (which reached 3.6%) was greater than
outside this region (Fig. 6d). In fact, the distribution of the
error SD for the median algorithm was strongly correlated
with the first difference of the scanning-EMG signal in
the spatial dimension (Fig. 6f), which means that regions
of higher slope in the spatial dimension present a higher
SD error. With regard the MLSS algorithm, on the other
hand, the error SD within the physiological region barely
increases respect to that of the non-physiological recording
region (Fig. 6e).

3.4 Application with real scanning-EMG signals

The output from the 7-point median algorithm and the
MLSS algorithm after processing four real scanning-EMG
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Fig. 6 Results of the spatio-temporal distribution of the algorithm
error for the scanning-EMG signal of the experiment described in
Section 2.2.4 (a single fixed MU). a Error bias for the median algo-
rithm in absolute value. b Error bias for the MLSS algorithm in
absolute value. c Noise-free scanning-EMG signal in absolute value.
d Error SD for the median algorithm. e Error SD for the MLSS

algorithm. f First difference of noise-free scanning-EMG signal over
the length of the spatial dimension, in absolute value. Note the relation
between the statistical behavior of the error at the different spatio-
temporal positions and the location of physiological activity in the
recording region (c). Note that the error bias and the error SD are
expressed in % of the amplitude of the scanning-EMG signal
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signals is depicted in Fig. 7, where amplitude profiles are
presented together with details of the profiles. In all cases
the MLSS algorithm provides a smoother waveform than
the median algorithm does. In fact, the median-filtered
output is spiky and rather stepped in the spatial dimension
(Fig. 7b, e, f, h). Peak clipping produced by the median
algorithm is evident in Fig. 7b, f–h. In Fig. 8, a simulated
scanning-EMG signal processed by both algorithms is
shown, as an example. The simulated signal also presents a
steeped amplitude profile in the spatial dimension when it is
processed with the median algorithm.

4 Discussion

4.1 Algorithm performance

Potentials from nearby motor units are the principal source
of contamination in scanning-EMG recordings [20], and a
signal processing technique that effectively removes such
contamination with low distortion is therefore required [10,
11, 20] so that subsequent analysis of the scanning-EMG
signal is reliable and accurate. To this end, the current study
presents and evaluates the MLSS algorithm compared to the
median algorithm. Test results indicate that the algorithm
removes artifacts from nearby motor units effectively and
does so with low distortion of the scanning signal waveform,
which is a major advantage over the median processing
algorithm.

With regard to removal of artifact contamination, when
dealing with the parts of a signal recorded outside the region

of physiological activity, the error power of the MLSS is
lower than that of the 3- or 5-point median algorithm. The
error power of the MLSS is higher only when compared
to the 7-point median algorithm, which we found to be the
most effective of the median algorithms at contamination
removal (Fig. 5a and c), these differences are however small
(median Gin between − 1.44 and − 0.39 dB) (Fig. 5a, c).

Within the region of physiological activity, the error
power of the MLSS algorithm is lower than that of the
median algorithm for any order of the median filter in
median algorithm (Fig. 5b, d); the median of Gin can be up
to 4.9 dB when comparing to the 7-point median algorithm
(Fig. 5d). This suggests that the MLSS algorithm distorts
the physiological waveform less than the median algorithm
does. With regard to distortion, the MLSS algorithm
performed better than the median algorithm over a wide set
of scanning signals and at increasing amounts of artifact
contamination resulting from higher levels of simulated
muscle contraction (Fig. 5b, d).

It is well known that the distortion produced by the
median filter tends to clip the peaks of a scanning-EMG
signal [10, 11, 20]. In the trials with real scanning-EMG
signals, peak clipping was observed for the median algo-
rithm but not for the MLSS algorithm (Fig. 7). In the tests
with simulated signals (Section 3.3), the error distribution
of the median algorithm had negative bias in regions where
there were scanning-EMG signals peaks (Fig. 6a, c in
n = 85, k = 35), which implies that peak clipping
was systematically occurring in these zones throughout the
multiple runs of the simulation experiment. In the case
of the MLSS algorithm (Fig. 6b), the corresponding bias
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Fig. 7 The amplitude profile in the spatial dimension of 4 real
scanning-EMG recordings is represented for both the 7-point median
(gray lines) and the MLSS algorithm (black lines). The upper sub-
figures show the amplitude profile of the scanning-EMG signals and

the lower ones the corresponding detail of the profile within the dotted
lines rectangles. The amplitude profile of each signal is corresponded
with the spatial traces in the time instants of maximum and minimum
amplitude, respectively
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Time

Space

(a) (b)

(c) (d)
Fig. 8 Simulated scanning-EMG signal processed using both algo-
rithms: a raw signal; b after applying the 7-point median processing
algorithm. Pin = −52.3 dBm; c after applying the MLSS processing

algorithm, Pin = −55.4 dBm; d ideal noise-free scanning-EMG sig-
nal. Note that the lines of the graphs link spatial samples and not
temporal samples, and thus they cannot be interpreted as MUPs

values were lower than those of the median algorithm (bias
between − 12% and 5.95% of maximum amplitude for the
median, and between − 4.83% and 3.9% for the MLSS),
indicating that distortion was less severe (Fig. 6a).

Another kind of distortion in scanning-EMG signals
processed with the median algorithm was stepping in the
amplitude profile of the scanning signal in the spatial
dimension. To the best of our knowledge, this effect has not
been described before in published studies; we observed the
effect in both simulated (Fig. 8b) and real scanning signals
(Fig. 7b, e, f, h). Stepping was associated with an increase in
error SD in the recording area where physiological activity
was located, especially in regions of the scanning signal
with a pronounced slope in the spatial dimension (Fig. 6d,
f). This is consistent with the fact that the 7-point median
algorithm presents a significantly higher error power within
the physiologically active region than outside of it (Fig. 5a
and b). With regard to the MLSS algorithm, the processed
signals presented a smooth waveform (Fig. 7) which, in the
case of simulated signals (Fig. 8c), was similar to that of
the noise-free ideal scanning-EMG signal (Fig. 8d, Pin =
−55.4 dBm). Accordingly, inside the physiologically active
region, error SD with the MLSS algorithm was low, in fact,
the difference between the error SD inside and outside the
physiologically active region is small as can be observed in
Fig. 6e.

4.2 Parameter settings

With regard to selecting a suitable set of parameters, the
sensitivity study indicates that the algorithm performance

is very influenced by the polynomial order Q (being its
first-order index 49% of the total variance), and also by
the interaction between the window semi-length M and Q

(27.8%). The tradeoff between Q and M determines the
ability of the polynomial to track variations of the scanning-
EMG signal in the spatial dimension. The higher the Q,
or the lower the M , the greater the ability to track fast
variations, which implies less waveform distortion when
dealing with sharp scanning signals, but also less ability
to remove artifact contamination. The median filter order,
L has significant influence in the algorithm performance
(first-order index 12.3%), but the artifact detection threshold
U it is not, at least in the range of parameters studied.
These two parameters are related with the artifact detection
effectiveness. A high L value involves a better artifact
elimination, but it may also cause waveform distortion in
sharply scanning signals, due to false artifact detections in
the signal peaks.

Thus, the suitable parameter configuration will depend
on the recording conditions of the scanning-EMG signal.
For instance, when dealing with scanning signals presenting
sharp peaks in the spatial dimension, parameter settings
that imply low distortion should be selected. On the other
hand, if the recorded signal has a very high level of artifact
contamination, it may be desirable to select a parameter
configuration that prioritizes the noise elimination instead.
Despite that, the optimal algorithm parameters obtained
in our study (see Table 1) can in the first instance be a
good configuration to be routinely used, as using these
parameters, the algorithm was able to work properly in
scenarios with different levels of artifact contamination
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(different levels of voluntary contraction) and with a large
set of scanning-EMG signals.

5 Conclusion

An algorithm based on masked least-squares smoothing
has been proposed for and evaluated in the processing
of scanning-EMG signals. Simulation experiments show
that the new algorithm overcomes limitations of the
median algorithm: stepping in the amplitude profile and
peak clipping. Furthermore, the tests indicate that, over
the studied range of muscle contraction levels, the new
algorithm performed with noticeably less distortion of
the signal waveform than the median algorithm, while
effectively removing noise and artifacts from nearby MUs.
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