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ABSTRACT

Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of
species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to
the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity
and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were
used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome
were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with
biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary
and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates
of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships
changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The
bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing
irradiance over a diel cycle.
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INTRODUCTION

Benthic aquatic habitats support one of the most widespread
ecosystems on earth (Stal 1994; Snelgrove 1999). They play
critical roles in global biogeochemical cycling, and those

operating in the euphotic zone are major sources of pri-
mary productivity (MacIntyre, Geider and Miller 1996; Fenchel
and Glud 2000). Photosynthetic microbial mats have had
a profound influence in shaping our modern aquatic and
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terrestrial ecosystems through atmospheric oxygenation (Can-
field and Teske 1996; Sessions et al. 2009). They inhabit a wide
range of environments that include freshwater, marine and
hypersaline ecosystems. Mats at the far end of the salinity
spectrum harbor especially complex microbiomes with high
species and functional diversity (Ley et al. 2006; Allen et al.
2009; Bernstein et al. 2016; Mobberley et al. 2017). While in-
vestigations of these unique microbial ecosystems have re-
vealed new aspects of microbial life to the scientific community
for many years, knowledge gaps still remain in our under-
standing of the relationships betweenmicrobiome diversity and
productivity.

Here, we ask two scientific questions. How does species di-
versity relate to the rates of primary and heterotrophic produc-
tivity? Also, how do diel variations in light-energy inputs influ-
ence productivity and microbiome diversity? The relationships
between species richness and productivity have been central
and often controversial to the field of ecology (Mittelbach et al.
2001). It is clear, however, that the rate of carbon and energy
conversion into biomass can strongly influence the number of
species in a given habitat (Waide et al. 1999). In addition, pos-
itive relationships between energy inputs and species richness
have been widely observed across ecosystems, giving rise to the
‘Species Energy’ theory (May 1975; Hurlbert and Stegen 2014).We
present the results from a study designed to ask if species rich-
ness and evenness increased or decreasedwith either increasing
productivity or increasing solar energy available for photosyn-
thesis.

To perform this investigation, we developed microcosms de-
rived from the Hot Lake microbial mat. Hot Lake is a magne-
sium sulfate (0.2–2 M) hypersaline lake in north-central Wash-
ington State (USA) that maintains a vibrant microbial mat in
the euphotic zone. The inhabiting microbial mats grow in wa-
ter with high concentrations (up to 240 mM-C and 220 mM-C) of
dissolved inorganic and organic carbon, respectively (Anderson
1958; Zachara et al. 2016). It harbors a complex microbiome with
representatives from over 50 different bacterial phyla (Bernstein
et al. 2016). The Hot Lake mat has only been characterized with
respect to prokarya and, until now, investigations have neglected
to assay for eukaryotic diversity.

Here, we expanded our view of the microbiome structure to
include multiple kingdoms via amplicon-based sequencing of
16S and 18S rRNA genes. This provided estimates for the num-
ber and relatedness of both bacterial and eukaryotic taxa and
enabled us to compare species diversity over time points corre-
sponding to maximum and minimum solar energy inputs over
two consecutive diel cycles. These measurements were corre-
lated and contextualized with direct measurements of biomass
productivity. We tracked productivity by measuring the net
rates of 13C incorporation into biomass. Substrate-specific sta-
ble isotope tracers—bicarbonate, acetate and glucose—were em-
ployed to assay autotrophic and heterotrophic productivity, re-
spectively. Autotrophic biomass productivity is defined here as
net primary productivity and is equivalent to the rate of au-
totrophic carbon assimilation minus the rates of respiration
and autotrophically derived organic carbon lost from the sys-
tem. This study presents unique results obtained from the Hot
Lake, multikingdom microbiome and shows that there are con-
trasting types of relationships depending on the source of car-
bon being traced into biomass and multikingdom microbial
diversity. These relationships between bacterial and eukary-
otic diversity and biomass productivity are also at least par-
tially controlled by dynamic solar energy inputs associated with
diel cycles.

MATERIALS AND METHODS
Sampling and field-based microcosms

Microbialmat sectionswere excised from the native benthicmat
Hot Lake, in north-central Washington State (USA); 48.973062◦N,
119.476876◦W (Anderson 1958; Moran et al. 2014; Zachara et al.
2016). Each mat sample was ∼1 cm thick and taken from a wa-
ter depth of 20–30 cm on 17 September 2014. The mat sam-
ples were cut and carefully removed from the underlying sed-
iment. The mat overlays gypsum-dominated sediment which
was also independently sampled. Immediately after sampling,
microcosms were constructed to mimic the native benthic ori-
entation with no or very little mixing of the overlaying bulk wa-
ter. Each microcosm consisted of the excised mat incubated ex
vivo on a 2-cm layer of homogenized sediment submerged un-
der 8 cm native Hot Lake water column. The treatments were
performed by amending the Hot Lake water with 13C-enriched
substrates; bicarbonate (2.25 mmoles; 50% 13C from Cambridge
Isotope Laboratories, Tewksbury, MA, USA), glucose (5 mmoles;
100% 1-6 13C from Cambridge Isotope Laboratory) or acetate (5
mmoles,1,2 99% 13C from ICON Isotopes, Dexter, MI, USA). One
microcosm incubation was constructed for each treatment. The
incubations were performed in 740 mL glass containers (17 cm
diameter) exposed at the surface to ambient air and light for
48 h and placed in a temperature controlled water bath held
at 22◦C corresponding to the lake’s water temperature at the
sampling position. Sections of the mat (∼3 × 3 cm) were ex-
cised from each incubation every 6 h. Subsamples were rinsed
in incubation medium devoid of added substrate for 30 min to
remove unincorporated substrate, and then placed on dry ice.
Later, the frozen subsamples were lyophilized and then homog-
enized before being aliquoted into three biological replicates per
sample type (amplicon and isotope analyses described below).
Given the proximity of the experiment to the vernal equinox,
we were able to time these samples such that the 6-h intervals
correlated to solar noon, dusk, solar midnight and dawn for two
sequential days. Weather conditions were recorded from a re-
mote, automated station ∼1.5 km from Hot Lake. These data
were provided by the US Bureau of Land Management & Boise
Interagency Fire Center and hosted byMesoWest, a project of the
Department of Atmospheric Sciences at the University of Utah
(http://mesowest.utah.edu).

Stable isotopes and productivity measurements

Mat samples were lyophilized then homogenized using amortar
and pestle. The δ13C content was measured using a Costech An-
alytical (Valencia, CA) Elemental Analyzer (EA, ECS 4010 CHNSO
Analyzer) coupled to a Thermo Scientific (Bremen, Germany)
Delta V Plus isotope ratio mass spectrometer. A combustion
oven (loaded with cobaltic oxide and chromium oxide catalyst)
was maintained at a temperature of 1020◦C along with a reduc-
tion oven (loaded with copper catalyst) held at 650◦C. In-house
glutamic acid isotope standards were calibrated against USGS
40 and USGS 41 (δ13C of –26.39 � and +37.63 � respectively)
as a basis for a two-point data correction (Coplen et al. 2006).
The high δ13C content of some samples caused isotopic mem-
ory, which we erased using a series of up to five runs of our in-
house standard following a set of labeled samples. Net primary
and heterotrophic productivity was defined as the rate of 13C in-
corporation into biomass over time (�δ13C/�t) with respect to
labeled carbon derived from inorganic or organic substrates,
respectively. Productivity was calculated from the isotope en-
richment profiles using finite differences to estimate the first

http://mesowest.utah.edu
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derivative (Eberly 2008). A centered difference approximation
(Equation 1) was used on all points except the initial and end
time points thatwere approximated using Euler’smethod (Equa-
tion 2) noting that the initial time point utilized the non-treated
labeled, nativemat for its corresponding δ13C(t-h) value (h equals
one 6 h time step).

�
(
∂13C

)

�t
= ∂13C (t + h) − ∂13C (t − h)

2h
(1)

�
(
∂13C

)

�t
= ∂13C (t) − ∂13C (t − h)

h
(2)

Amplicon sequencing

GenomicDNAwas extracted using theMoBio PowerSoil DNA iso-
lation kit (Qiagen, Carlsbad, CA) in accordance with the Earth
Microbiome Project protocols (Gilbert et al. 2010). Sequencing
was performed on an Illumina MiSeq instrument (Illumina, San
Diego, CA). Three separate 16S and 18S rRNA amplification reac-
tions were performed for each extraction. The 16S primers tar-
geted the V4 hypervariable region of the 16S SSU rRNA using the
V4 forward primer (515F) and V4 reverse primer (806R) with 0–3
random bases and the Illumina sequencing primer binding site
(Caporaso et al. 2010). The 18S primers targeted the V9 hyper-
variable region of the 18S SSU rRNA (Amaral-Zettler et al. 2009).

Amplicon analysis

Illumina reads were processed with QIIME 1.9.1 and VSEARCH
1.9.10, an open-source implementation of USEARCH (Caporaso
et al. 2010; Edgar 2010; Rognes et al. 2016). Using VSEARCH,
overlapping 16S reads were paired, filtered to a maximum
expected error of 1 bp per read and labeled. Reads were
pooled, de-replicated and chimera-checked with the VSEARCH
implementation of UCHIME de novo (Edgar et al. 2011) followed
by UCHIME-ref using the RDP Gold database (Wang et al. 2007).
After discarding chimeras and singletons, reads were clustered
into OTUs at 97% similarity and an OTU table was constructed
by mapping all labeled reads to these clusters. Taxonomy was
assigned to each OTU centroid using the May 2013 version of
the Greengenes database and a last common ancestor approach
as implemented in QIIME 1.9.1 (McDonald et al. 2012). The same
pipeline was used to process 18S genes, with a few changes;
reads were filtered to a maximum expected error of 0.1 bp per
read and no reference-based chimera checking was used and
the 18S component of the SILVA database v123 (22-08-2016) was
used for taxonomy assignment, respectively (Quast et al. 2013).

Diversity analysis

Downstream analysis was completed in R (Team 2000), using the
phyloseq (McMurdie and Holmes 2013) and vegan packages (Ok-
sanen et al. 2013). Samples were rarified to an even depth of
22 000 reads per sample, and 16S amplicons not classified as
Bacteria were removed. Bray-Curtis dissimilarities were used
to characterize beta diversity via canonical analysis of princi-
ple components, while counts of unique OTUs and Simpson’s E
(evenness) were used to characterize alpha diversity (Hamady,
Lozupone and Knight 2010).

Statistics

This study employed a nested design, with two kingdoms (mea-
sured by 16S and 18S amplicons) and three substrate treatments

(13C-labeled bicarbonate, glucose, acetate). Time course mea-
surements (eight time points) pertaining to each of these blocks
were collected via non-matched, destructive sampling methods
over two full diurnal cycles. A one-way ANOVA was used as an
initial test if alpha diversity was the same in all time points in
each block (Table S1, Supporting Information). Linear relation-
ships between alpha diversity with irradiance and productiv-
ity were quantified by fitting a linear model within each block
to obtain a positive or negative slope and P-value. This P-value
is the probability of observing any value equal or larger than
the calculated t-statistic, which is a measure for the number of
standard deviations that the estimated slope coefficient is from
zero. We assigned P-values ≤ 0.05 as significant evidence that
enables the null hypothesis to be rejected and conclude that
there is a relationship between irradiance/productivity and rich-
ness/evenness.

Data repository and reproducible analyses

Genetic sequencing data is available on Zenodo for both 16S
amplicons and 18S amplicons as records 803376 and 803476.
Feature abundance tables of amplicon along with environmen-
tal measurements and scripts used for analysis and graph-
ing are available on GitHub: https://github.com/pnnl/bernstein-
2017-productivity-and-diversity-2/.

RESULTS
The system and its components

Both net primary productivity (NPP) and net heterotrophic pro-
ductivity (NHP) changedwith time over the course of two diel cy-
cles (Fig. 1A and B). As expected, NPP showed local maxima and
minima correspondingwith solar noon (13:00) andnight, respec-
tively. The temporal pattern and magnitude of NHP varied with
the substrate type. NHP as measured with 13C-labeled glucose
showed strong positive correlation (r = 0.869; P < 0.001) with so-
lar irradiance as compared to a weaker, negative correlation ob-
served from the labeled acetate treatment (r = –0.394; P = 0.057)
(Fig. S1, Supporting Information). These results show that so-
lar irradiance not only affects photoautotrophic productivity but
also the rate of organic carbon assimilation into biomass. Inter-
estingly, the degree to which NHP shares a relationship with the
light energy input to the system depends on the substrate from
which organic carbon is derived.

The Hot Lake microbial mat harbors very high bacterial di-
versity (Bernstein et al. 2016). In this current study, we identified
over 3000 16S OTUs representing more than 30 phyla. The bac-
terial component of the microbiome is dominated by cyanobac-
teria of the class Synechococcophycideae, which contains the most
abundant 16S OTUs identified as Pseudanabaenaceae at the fam-
ily level (Fig. 1C).Oscillatoriophycideae represented another preva-
lent class of cyanobacteria with themost common class of OTUs
identified as Phormidiaceae. These highly abundant cyanobacte-
ria have been characterized and enriched from the Hot Lake
ecosystem in previous studies (Cole et al. 2014; Bernstein et al.
2016) and are known to be filamentous and commonly asso-
ciated with Alphaproteobacteria and other heterotrophic phyla
identified from this current set of experiments. The system is
also abundant in anoxygenic phototrophs described by the class
Anaerolineae, which contains abundant OTUswith family assign-
ments as Anerolineaceae that have been associated with anaero-
bic photoheterotrophic species (Yamada et al. 2006; Narihiro and
Kamagata 2013).

https://github.com/pnnl/bernstein-2017-productivity-and-diversity-2/
https://github.com/pnnl/bernstein-2017-productivity-and-diversity-2/
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(A)

(B)

(D)

(C)

Figure 1. Light energy input, productivity output and themicrobiome structure. (A)The solar irradiance (Wm−2) incident to the systemover two diel cycles. The different

solarmaxima correspond to variable weather patterns and cloud cover. (B) Primary and heterotrophic productivitymeasured as the change in 13C enrichment over time
with respect to labeled bicarbonate (DIC), acetate or glucose treatments; each data point represents themean of three biological replicates with error bars spanning ± 1
standard error. (C) Relative abundance of common bacterial taxa—at the class level—separated by time and treatment. (D) Relative abundance of common eukaryotic

taxa separated by time and treatment.

The Hot Lake microbial mat also harbors high eukaryotic
diversity. Representatives were identified across 12 phyla from
over 2000 18S OTUs. The most abundant eukaryotic taxon was
Chloroplastidia, a group which contains green algae and plants
(Fig. 1D). Within this group, we identified OTUs specifically
belonging to Alismatales, an order that contains hypersaline-
adapted seagrasses (Asem et al. 2014). Stramenopiles were also
highly abundant. Within this group, the most prevalent OTUs
belonged to golden algae (Chrysophyceae), protists (Blastocyctis
and Thraustochytriaceae) and diatoms (Bacillariophyceae). Another
abundant taxon was Holozoa, a group of single celled animals
that includes the well-known Choanoflagelletes (Codonosigidae
sp.). Although less abundant, OTUs belonging to the taxonomic
group Alveolata were identified, which includes photosynthetic
Dinoflagellates and parasitic organisms such as Apicomplexa.

Diel influence on multikingdom diversity

The alpha diversity of both prokaryotes and eukaryotes changed
within the two diel cycle frame of observation. Species richness
and evenness showed significant change (P< 0.05; Table S1, Sup-
porting Information) for all substrate treatmentswith the excep-
tion of the bacterial evenness (P = 0.516) and eukaryotic rich-
ness (P = 0.079) corresponding to the glucose treatments (Fig. 2).
Non-linear trend lines, established via locally weighted scatter-
plot smoothing functions (Cleveland and Devlin 1988), showed

local maxima for bacterial richness were observed under all
treatments at solar noon (13:00) corresponding to 24 h of incuba-
tion (Fig. 2A). This resultwasmost pronounced under the labeled
acetate and glucose treatments as compared to dissolved inor-
ganic carbon (DIC). With the exception of the acetate treatment,
the eukaryote species richness and evenness did not share the
consistent localized maxima at the 24-h (solar noon) sampling
time. In general, a periodic time profile could be observed indi-
cating that organismal diversity in this ecosystem changes on
the time scale of a single diel cycle.

Further evidence for the control of diel light cycling over
alpha diversity was evinced by evaluating changes in species
richness and evenness with respect to solar incident irradi-
ances (Fig. 3). We employed linear models to perform a simple
test designed to ask if alpha diversity increased or decreased
with increasing solar irradiance. The slopes describing these
relationships showed that alpha diversity changed with solar
energy input to the system (Fig. 3). Significant, negative rela-
tionships (P ≤ 0.013) were observed between bacterial and eu-
karyotic species richness and irradiance under DIC treatments.
In contrast, a significant, positive relationship (P = 0.032) be-
tween bacterial species richness and irradiance was observed
under the acetate treatment highlighting that substrate type
and availability also influenced the species diversity of the sys-
tem. Light energy input was found to increase the level of simi-
larity between abundances of organisms in this ecosystem. Only
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(A)

(B)

Figure 2. Alpha diversity trends over the 48 h, outdoor incubation. The data sets are parsed by each substrate treatment: bicarbonate (DIC), acetate and glucose. (A)
Changes in bacterial species richness and evenness. (B) Changes in microeukaryotic species richness and evenness. Each data set is fit to a locally weighted scatterplot
smoothing (loess) function and shaded regions represent the 95% confidence bounds.

positive correlations were found to be statistically significant
(P ≤ 0.05) between evenness and solar irradiance. Specifically,
bacterial evenness increased with increasing irradiance under
the glucose treatment and eukaryotic evenness increased under
the DIC and acetate treatments. The collection of these results
in combination with the dynamic alpha diversity profiles (Fig. 2)
is evidence that species diversity, of this ecosystem, is controlled
in part by solar irradiance.

Diversity–productivity relationships

We also employed linear models to test if biomass produc-
tivity increased or decreased with species richness and even-

ness across both kingdoms. This test showed that NHP, as
measured by conversation of 13C-labeled glucose and acetate in
into biomass, changed with diversity but not NPP (Fig. 4). The
slopes describing the relationships between alpha diversity and
NPP were not significant (P > 0.05), indicating that we cannot re-
ject the null hypothesis that changes in NPP are constant with
changes in species richness and evenness. This observation held
true for both bacterial and eukaryotic components of the mi-
crobiome. Measurements of NHP, as assayed by incorporation of
acetate-derived 13C, decreased with increasing bacterial and eu-
karyotic species richness and evenness (P ≤ 0.012). In contrast,
NHP—as assayed by uptake of 13C labeled glucose—showed a
positive and statistically significant relationship (P = 0.041) with
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(B)

(A)

Figure 3. Alpha diversity trends with light energy input to the system. The data sets are parsed by each substrate treatment: bicarbonate (DIC), acetate and glucose. (A)
Changes in bacterial species richness and evenness corresponding to solar irradiance. (B) Changes in microeukaryotic species richness and evenness corresponding to
solar irradiance. Broad assignments of increasing or decreasing richness and evenness correspond to positive or negative slopes, respectively. Shaded regions represent
the 95% confidence bounds of the linear model.

bacterial species richness (Fig. 4A). Linear regression between
eukaryotic alpha diversity and heterotrophic productivity, as as-
sayed by bioconversion of 13C-labeled glucose, did not result in
statistically significant slopes. These analyses collectively show
that biomass productivity is influenced by both the number and
relatedness of species but that there are contrasting types of re-
lationships depending on the source of carbon being traced into
biomass.

The key biological and environmental properties associated
with beta diversity were assessed by a canonical analysis of
principle coordinates considering Bray-Curtis dissimilarities be-
tween rarified samples (Fig. 5). Dissimilarity between the 10

most common taxa (from both kingdoms) were assessed by
ordination with respect to NPP, NHP, time and incident solar
irradiance over the course of the two consecutive diel cycles.
Interestingly, the abundances of cyanobacteria (Pseudanabae-
naceae and Phormidiaceae) ordinated in closer alignment with
each measure of NHP as compared to NPP (Fig. 5A). Of the
most common eukaryotic taxa, those belonging to Chloroplas-
tida showed the closest alignment with each measure of net
biomass productivity (Fig. 5B). Specifically, Alismatales, an or-
der that contains hypersaline-adapted seagrasses (Asem et al.
2014), showed the closest alignment with NPP. These results in-
dicate that while bacterial and eukaryotic alpha diversity did not
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Figure 4. Alpha diversity trends withmicrobial biomass productivity. The data sets are parsed by primary productivity (13C-labeled bicarbonate; DIC) and heterotrophic
productivity (13C-labeled acetate and glucose). (A) Changes in bacterial species richness and evennesswith system-wide biomass productivity. (B) Changes in eukaryote
species richness and evenness with system-wide biomass productivity. Broad assignments of increasing or decreasing richness and evenness correspond to positive

or negative slopes, respectively. Shaded regions represent the 95% confidence bounds of the linear model.

correlate significantly with NPP (Fig. 4), the abundances of OTUs
associated with photoautotrophic taxa still covaried with mea-
sures of productivity.

DISCUSSION

The goal of this studywas to interrogate two scientific questions:
(i) How does species diversity relate to the rates of primary and
heterotrophic productivity? (ii) How do light energy inputs over
diel cycles influence productivity and microbiome diversity?
The results showed relationships between both bacterial and
eukaryotic species richness and evenness with heterotrophic

biomass productivity. This result is supported by statistically sig-
nificant correlations between OTU richness and evenness to the
rates of 13C labeled carbon incorporated into biomass from ei-
ther acetate or glucose. These substrates were chosen to rep-
resent substrates corresponding to reducing sugars that can be
fermented and organic acids that must be oxidized using ex-
ternal terminal electron acceptors. Significant Pearson’s corre-
lations were not observed between either alpha diversity metric
to the rates of bicarbonate incorporation. Interestingly, mea-
sures of these relationships changed from positive and neg-
ative correlations depending on carbon derived from glucose
and acetate, respectively. Likely, these contrasting relationships
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(A) (B)

Figure 5. Beta diversity of bacteria and eukaryotes. Canonical analysis of principle coordinates of Bray-Curtis dissimilarities between rarified samples. Each vector has
amagnitude (length) and a sign (direction) corresponding to its contributions to the principle components. Red vectors are assigned to the independent variables, time
and irradiance. Green vectors are assigned to net biomass productivity: net primary productivity (NPP), net heterotrophic productivity measured with acetate (NHPa)
and heterotrophic productivity measured with glucose (NHPg). Blue vectors are assigned to the 10 most common taxa. (A) An ordination of bacterial samples captures

more than 40% of the variance observed. (B) An ordination of the eukaryote samples captures more than 33% of the variance observed. Each data point represents the
microbiome structure observed for different treatments that are shown by symbol shapes.

observed between glucose and acetate treatments stem from the
different metabolic strategies that microbes have available to
harvest both carbon and energy for growth. This study also con-
firmed that relationships exist between the rate of light-energy
input to the system and species diversity. Bacterial and eukary-
otic diversity of this ecosystem is partially controlled by solar
irradiance and therefore varies over the diel. Evidence of diel
and/or light energy control over taxa associated with photoau-
totrophic and heterotrophic ecosystem processes was apparent
by observing statistically significant correlations between solar
incident irradiance and heterotrophic productivity.

Energy and carbon-substrate availability constrain the pro-
ductivities and biological carrying capacities of all ecosys-
tems. In shallow water benthic ecosystems, such as the Hot
Lake mat, the relationships between photosynthetically driven
primary producers and heterotrophic members underpin the
microbial food web. Many studies have been performed to de-
lineate the food web dynamics and carbon flow between bac-
teria, protists, meiofauna and macrofauna (Miller, Geider and
MacIntyre 1996; Sundbäck et al. 1996; Al-Zaidan et al. 2006). How-
ever, major knowledge gaps still remain in our understanding of
the ecological driving forces that control amicrobial ecosystem’s
capacity for primary and heterotrophic productivity. For in-
stance, this current study discovered that different solar energy–
productivity relationships (positive verse negative) can be ob-
served depending on the source of carbon (Fig. S1). While differ-
ences exist between autotrophic (inorganic) and heterotrophic
substrates, shifts in the relationships also occurred when the
source of organic carbon changed between acetate and glucose.
Again, these observed differences likely arise from themetabolic
strategies and energy requirements for using respective glucose
or acetate substrates tomake biomass. A striking result obtained
from this study was that heterotrophic productivity (regardless
of the substrate source) is at least partially controlled by light
energy inputs to the system and the diel cycle.

Extensive investigations in the field ofmicrobial ecology have
concluded that there is not a canonical relationship or ubiqui-
tous ‘curve shape’ for microbial diversity–productivity relation-
ships (Smith 2007). This current study found that there were
statistically significant, linear relationships between NHP and
species richness. Our analysis also showed the lack of a sta-
tistically significant correlation between NPP and species rich-
ness and evenness, regardless of kingdom. However, other pat-
terns could be inferred from this data such as themonomodal or
‘hump-shaped’ curve that is a frequently observed response be-
tween diversity and productivity (Rosenzweig 1995). While fur-
ther interpretation of these relationships is certainly an option,
the adoption of more complex models to describe productivity–
diversity relationships is beyond the scope of this study. The
goal of this study was to simply determine if the rates of carbon
and energy conversion into biomass increased or decreased the
number and relatedness between bacteria and eukaryotic taxa.

Of the few studies that have investigated microbial
productivity–diversity relationships, fewer still have explicitly
considered the distinct contributions from primary producers
and heterotrophic consumers. One example of note, however,
investigated relationships in chemolithoautotrophic karst
ecosystems by comparing 16S sequence-based analyses with
the incorporation of carbon derived from 13C-labeled sub-
strates: bicarbonate, acetate and leucine (Porter et al. 2009).
They found positive relationships between prokaryotic richness
and chemoautotrophic productivity, and no detectable relation-
ships (random patterns) for heterotrophic productivity and a
primary energy input to the system in the form of sulfide. These
are essentially the exact opposite findings as those that we
report in this current study highlighting again that canonical
relationships between productivity and microbial diversity
are unlikely to exist. The relationships that underpin each
microbial ecosystem have a specific context, and seemingly
similar ecosystems can have very different responses.
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General conclusions

Microbial productivity is influenced by both the number and re-
latedness of species existing within the ecosystem. However,
within a multikingdom microbiome, such as the Hot Lake mat
studied here, there are contrasting types of relationships de-
pending on the source of carbon being traced into biomass.
These relationships between species diversity and biomass pro-
ductivity are also at least partially controlled by dynamic envi-
ronmental factors. Specifically, solar energy inputs across diel
cycles.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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