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Tuberculosis: Challenges and  
Unprecedented Opportunities

Introduction
Tuberculosis (TB) remains a heavy burden on 
global society and economy.1 Alarmingly, 
although TB is usually curable with medication, 
there were still 1.2 million TB deaths among 
human immunodeficiency virus (HIV)-negative 
people and an additional 208,000 deaths among 
HIV-positive people globally in 2019.1 With 
regard to TB medication regimens, current treat-
ment periods are long. A 2-month intensive phase 

followed by a 4-month continuation phase is 
commonly recommended for drug-susceptible 
TB treatment, and, for multidrug-resistant TB 
(MDR-TB), a longer period of time is usually 
required.1,2 It has been recognized that poor 
adherence to treatment can lead to increased risk 
of transmission, drug resistance, and death.3 TB 
treatment default has been a substantial barrier to 
global TB control.3 Therefore, in order to 
decrease the occurrence of treatment default, it is 
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critical to identify patients with poor adherence 
and then strengthen management and treatment 
supervision for these patients.

Several risk factors for TB treatment default have 
been proposed, including being male, alcohol 
abuse, illegal drug use, underweight, multidrug-
resistant TB, previous treatment default, drug 
side effects, unemployment, and uncompleted 
secondary education.3–7 The potential causes of 
TB treatment default may be multifaceted.8 
There are many models for predicting TB treat-
ment outcomes; however, few of them were built 
adhere to the transparent reporting of a multivari-
able prediction model for individual prognosis or 
diagnosis (TRIPOD) statement.9–13 Since adher-
ence is crucial in the treatment of diseases, such 
as TB, that require long-term medication, a 
method that can estimate patient treatment 
adherence would be very helpful.

In the current study, based on a completed pro-
spective cohort study, demographic, social, and 
medical information of TB patients were analyzed 
retrospectively to develop a nomogram for pre-
dicting TB treatment default.

Research methods and design

Study population and ethics
In this study, a total of 1185 adult patients with 
first episode of smear-positive TB were enrolled 
between 2010 and 2011 in a semi-urban district of 
northeastern Lima, Peru,3 which is classified by 
the World Health Organization (WHO) as a high 
TB burden country.1 The majority of these 
patients were managed at public health facilities 
(33 community clinics and one hospital).3 All the 
patients had a definitive treatment outcome (treat-
ment completion or treatment default).3 This 
study was a secondary analysis and it was approved 
by the Ethics Committee of Jinhua Municipal 
Central Hospital (No. 2019-133-001). The Ethics 
Committee waived the need for informed consent 
because all participant information was anony-
mous in this secondary analysis.

Variables collection
For this study, the following characteristics of the 
participants were collected: gender, age (year) 
(⩽21, 22–26, 27–37, and ⩾38), marital status 
(married, divorced, single, or widowed), poverty 

status (yes/no),14 completed secondary education 
(yes/no), prison history (yes/no), smoking (never, 
former, or current), alcohol use (at least weekly or 
not), illegal drug use (yes/no), rehabilitation his-
tory (yes/no), MDR-TB (yes/no), body mass 
index (BMI) (normal: 18.5–24.9; underweight: 
<18.5, and overweight: ⩾25.0), HIV infection 
status (negative, positive, or test not done), coex-
isting diabetes (yes/no), and other chronic disease 
status (yes/no).3 All the patients were treated (free 
of cost) through facility-based directly observed 
therapy short-course (DOTS) strategy and the 
treatment outcome (according to standard WHO 
definitions) was followed up.3,15 Treatment 
default in this study was defined as continuously 
missed doses ⩾2 months.1

Statistical analysis
A multiple imputation method was applied to 
account for missing data. The baseline character-
istics of the patients were summarized. The least 
absolute shrinkage and selection operator 
(LASSO) regression method was used for predic-
tor selection.16 Multivariable logistic regression 
analysis with a stepwise strategy was used to 
develop a predictive model and a nomogram.  
The discriminatory capacity of the nomogram 
was determined by calculating the area under  
the curve (AUC). Bootstrapping (resampling 
times = 500) was performed for the internal vali-
dation of the model.17 Additionally, calibration of 
the nomogram was evaluated together with the 
unreliability test. Clinical utility of the nomogram 
was evaluated using decision curve analysis 
(DCA).18 All statistical analyses were conducted 
with R software (version 3.5.3), and p < 0.05 was 
considered statistically significant.

Results
Among the 1185 participants, 138 [11.6%, 95% 
confidence interval (CI), 9.8–13.5%] defaulted 
from treatment, whereas 1047 (88.4%) patients 
completed treatment. The median (25–75% 
interquartile) time for the treatment default was 
134 (78–205) days. The characteristics of partici-
pants are shown in Table 1. Missing value 
accounts for 0.27% of the total data.

In LASSO regression analysis (Figure 1), 7 vari-
ables with potential predictive value were selected 
from 15 variables according to non-zero coeffi-
cients [the selection criteria of 1 standard error 
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Table 1. Baseline characteristics of the study participants.

Variables TB treatment default p value

 No (n = 1047) Yes (n = 138)

Gender, n (%)

 Female 441 (42.1) 29 (21.0) <0.001

 Male 606 (57.9) 109 (79.0)

Age (years), n (%)

 ⩽21 270 (25.8) 39 (28.3) 0.004

 22–26 281 (26.8) 40 (29.0)

 27–37 238 (22.7) 43 (31.2)

 ⩾38 258 (24.6) 16 (11.6)

Smoking, n (%)

 Never 654 (62.5) 51 (37.0) <0.001

 Current 42 (4.0) 8 (5.8)

 Former 351 (33.5) 79 (57.2)

Marital status, n (%)

 Married 399 (38.1) 45 (32.6) 0.424

 Divorced 73 (7.0) 10 (7.2)

 Single 546 (52.1) 81 (58.7)

 Widowed 29 (2.8) 2 (1.4)

Poverty status, n (%)

 No 876 (83.7) 104 (75.4) 0.015

 Yes 171 (16.3) 34 (24.6)

Prison history, n (%)

 No 1010 (96.5) 119 (86.2) <0.001

 Yes 37 (3.5) 19 (13.8)

Completed secondary 
education, n (%)

 No 408 (39.0) 83 (60.1) <0.001

 Yes 639 (61.0) 55 (39.9)

Alcohol use at least weekly, 
n (%)

 No 882 (84.2) 77 (55.8) <0.001

 Yes 165 (15.8) 61 (44.2)

(SE)]. These variables were secondary education 
status, alcohol use, illegal drug use, rehabilitation 
history, MDR-TB, BMI, and HIV status.

To construct a nomogram, the aforementioned 
seven variables were entered into multivariable 
logistic regression analysis and a stepwise selec-
tion was applied based on the likelihood ratio test 
with Akaike’s information criterion. Eventually, 
six predictors (all the variables described above, 
except for rehabilitation history) were incorpo-
rated into the nomogram with a statistical model 
as shown below: Y = −2.98386–0.49145 × (sec-
ondary education status = 1) + 0.83455 × (alco-
hol use = 1) + 1.60056 × (illegal drug use = 1) + 1.
39013 × (MDR−TB = 1) + 0.85935 × (BMI = 1)
−0.22707 × (BMI = 2) + 0.74679 × (HIV status = 1) 
 + 0.91240 × (HIV status = 2).

The discriminatory capacity of the nomogram 
was determined by calculating the AUC. The 
AUC for the nomogram was 0.797 (95% CI, 
0.755–0.839) (Figure 2a), whereas for the inter-
nal validation using the bootstrapping method 
(resampling times = 500) the AUC was 0.805 
(95% CI, 0.759–0.844) (Figure 2b).

A nomogram that incorporates the six predictors 
is shown in Figure 3. The probability of TB treat-
ment default can be predicted quantitatively and 
individually by using this nomogram by calculat-
ing the total points of the corresponding point for 
each predictor.

The proposed nomogram showed good calibra-
tion (Figure 4). The unreliability test yielded a 
p value of 0.964 with an Emax of 0.059 and Eavg of 
0.007, suggesting that there was no departure 
from a perfect fit between the predicted probabil-
ity and the actual outcome.

DCA (Figure 5) revealed that, when the risk 
threshold of treatment default for TB patients 
was between 3% and 70% based on the predictive 
model, application of this nomogram to predict 
the risk of TB treatment default would add more 
benefit than either the treat-all or the treat-none 
strategy.

Discussion
In the present study, a nomogram for predicting 
the probability of TB treatment default among (Continued)
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treatment default.7 Default rates reportedly ranged 
from 0.5% to 56.6% based on 75 studies con-
ducted in different countries, with a pooled pro-
portion of 14.8%.19 Therefore, taking measures to 
improve adherence to treatment is very important 
in global TB control.6,7,20 Fortunately, with the 
adjustment of treatment strategies in recent years, 
there are declining trends in loss to follow up 
(LTFU) and increasing trends in the success rate 
of TB treatment.21,22 Kibuule et al. reported that 
since the expansion of facility-based DOTS  
programme to community-based DOTS pro-
gramme in Namibia in 2005,23 the mean annual 
treatment success rate increased by approximately 
20% when comparing the pre-intervention 
(1996–2005) and the post-intervention (2005–
2015) periods.

Several factors affecting TB treatment default, 
such as alcohol use, illegal drug use, male gender, 
educational level, and prison or rehabilitation his-
tory, have been described in previous articles.3,5,24 
As expected, patients with MDR-TB are more 
likely to default from treatment than those with 
drug-susceptible TB on the standard treatment 
regimens.3 Several models for predicting TB treat-
ment default have been reported. Rodrigo et al. 
developed a predictive scoring tool for LTFU 
based on five characteristics (immigration, living 
alone or in an institution, previous anti-TB treat-
ment, poor patient understanding, and intrave-
nous drugs use status), yielding an AUC of 0.73 
and 0.67 for the derivation and validation groups, 
respectively.9 Using the Portuguese TB surveil-
lance database from 2000 to 2012 (TB 
cases ⩾ 15 years), Costa-Veiga et al. constructed  
a predictive model (AUC: 0.76) including predic-
tors of TB/HIV co-infection, age ⩾ 64 years,  
intravenous drugs abuse, other diseases (exclud-
ing HIV and diabetes), and retreatment.10 
Additionally, in a case-control study (n = 277) in 
urban Morocco, Cherkaoui et al. built a scoring 
system that achieved 82.4% sensitive and 87.6% 
specific for TB treatment default.11 However, the 
application of these models in clinical settings is 
significantly restricted because of the lack of clini-
cal utility analysis (e.g., DCA), or calibration test, 
or validation adhere to the TRIPOD statement.13 
Therefore, it is still difficult to effectively estimate 
the risk of treatment default among TB patients. 
Since these defaulters have been a substantial bar-
rier to TB control, identifying subjects who are at 
a high probability of treatment default would be of 
great value in TB management and treatment.25

Variables TB treatment default p value

 No (n = 1047) Yes (n = 138)

Illegal drug use, n (%)

 No 923 (88.2) 65 (47.1) <0.001

 Yes 124 (11.8) 73 (52.9)

Rehabilitation history, n (%)

 No 993 (94.8) 104 (75.4) <0.001

 Yes 54 (5.2) 34 (24.6)

MDR-TB, n (%)

 No 1003 (95.8) 121 (87.7) <0.001

 Yes 44 (4.2) 17 (12.3)

BMI (kg/m2), n (%)

 Normal (18.5–24.9) 784 (74.9) 100 (72.5) 0.003

 Underweight (⩽18.5) 112 (10.7) 27 (19.6)

 Overweight (⩾25.0) 151 (14.4) 11 (8.0)

HIV status, n (%)

 Negative 814 (77.7) 78 (56.5) <0.001

 Positive 12 (1.1) 5 (3.6)

 Test not done 221 (21.1) 55 (39.9)

Diabetes, n (%)

 No 1000 (95.5) 138 (100.0) 0.004

 Yes 47 (4.5) 0 (0.0)

Other chronic disease, n (%)

 No 1016 (97.0) 136 (98.6) 0.417

 Yes 31 (3.0) 2 (1.4)

BMI, body mass index; HIV, human immunodeficiency virus; MDR-TB, multidrug-
resistant tuberculosis; TB, tuberculosis.

Table 1. (Continued)

TB patients was developed. This nomogram 
incorporates six predictors: secondary education 
status, alcohol use, illegal drug use, MDR-TB, 
BMI, and HIV status.

The long duration required for drug treatment is 
one of the main reasons for the high rate of TB 
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Figure 1. Potential predictors screening through the LASSO regression analysis. (a) Tuning parameter 
(lambda) selection of binomial deviance based on the 1-SE criteria. (b) The coefficients of variables were 
produced against the log (lambda) sequence. The dotted vertical line was drawn according to the 1-SE criteria, 
where seven nonzero coefficients were selected.
LASSO, least absolute shrinkage and selection operator; SE, standard error.

Figure 2. The ROC curve and AUC of the model (a) and the internal validation cohort (bootstrap resampling 
times = 500) (b). The vertical lines represent 95% CI.
AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic.

The proposed nomogram in the present study 
was constructed based on a prospective study of 
TB patients,3 and their demographics, socioeco-
nomic, and medical information were included 
for analysis. Six potential predictors were 
selected by LASSO regression analysis and even-
tually included in the nomogram. All these six 
predictors could be easily available clinically. 
The nomogram showed good discriminatory 

ability (AUC: 0.797) and internal verification 
results. Moreover, the nomogram showed excel-
lent calibration. More importantly, this nomo-
gram was revealed to have good clinical utility in 
DCA evaluation. Specifically, DCA demon-
strated that when the risk threshold is between 
3–70%, application of this nomogram would 
add net benefit than either the treat-all or the 
treat-none strategy.
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Figure 3. Nomogram for predicting the probability of TB treatment default. First of all, find the point for each 
variable of a patient on the uppermost rule; then add all points together and find the total points; finally, the 
corresponding predicted probability of TB treatment default could be calculated on the lowest rule.
BMI, body mass index; HIV, human immunodeficiency virus; MDR-TB, multidrug-resistant tuberculosis; TB, tuberculosis.

Figure 4. Calibration curve of the nomogram showing the degree of consistency between the predicted 
probability and the actual outcome. The shaded line represents a perfect prediction by an ideal model, and the 
dotted line represents the performance of the proposed nomogram. The unreliability test yielded a p value of 
0.946, suggesting good calibration between predicted and actual outcomes.

https://journals.sagepub.com/home/tai


S Wang

journals.sagepub.com/home/tai 7

Limitations
Some limitations of this study are worth noting. 
Firstly, only smear-positive TB patients were 
included in this study, so the nomogram is suita-
ble only for patients with smear-positive TB. 
Secondly, there are regional differences in TB 
epidemiology and socioeconomic status, and dif-
ferences in TB treatment strategies at different 
times. This nomogram was constructed based on 
a study population collected 10 years ago from a 
TB high-incidence neighborhood of Lima, Peru.3 
Therefore, whether this nomogram can be applied 
to other regions and the current TB strategies 
require further verification. Thirdly, the study 
was also limited by the self-reporting of several 
variables, and some other potentially affecting 
factors (e.g., household support, healthcare-
related infrastructure, quality of care, availability 
or change of healthcare practitioners, and treat-
ment regimen change) were not included in the 
analysis because they were not available in the 

original data.27 Despite these limitations, this 
study developed a nomogram, which provides a 
good reference for other studies predicting TB 
treatment default.

Conclusions
A nomogram for predicting TB treatment default 
was developed, which incorporates six character-
istics of TB patients. The proposed nomogram 
showed good discriminatory ability and calibra-
tion, as well as good clinical utility. It may be of 
great value to help adherence management in TB 
treatment.
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