
ARTICLE

Received 27 Dec 2012 | Accepted 26 Mar 2013 | Published 30 Apr 2013

Tomonaga–Luttinger physics in electronic quantum
circuits
S. Jezouin1, M. Albert2, F.D. Parmentier1, A. Anthore1, U. Gennser1, A. Cavanna1, I. Safi2 & F. Pierre1

In one-dimensional conductors, interactions result in correlated electronic systems. At low

energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal

conductance curve predicted in presence of an impurity. A seemingly different topic is the

quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In

particular, the conductances are suppressed at low energy, a phenomenon called dynamical

Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted

by a short single-channel quantum conductor in series with a resistance, and demonstrate a

proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a

recently derived phenomenological expression for the conductance using a wide range of

circuits, including carbon nanotube data obtained elsewhere. By confronting both con-

ductance data and phenomenological expression with the universal Tomonaga–Luttinger

conductance curve, we demonstrate experimentally the predicted mapping between dyna-

mical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an

impurity.
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D
espite a very large number of strongly interacting
electrons, the low-lying electronic excitations in conven-
tional bulk metals can be described as weakly interacting

Fermi quasiparticles, as attested by the remarkable success of
Landau’s Fermi liquid theory1. This picture breaks down in one-
dimensional (1D) conductors, where interactions result in
cooperative behaviours2. According to the Tomonaga-Luttinger
liquid (TLL) theory2–6, the low-energy elementary excitations in 1D
are collective plasmon modes, markedly different from their
constitutive individual electrons. This gives rise to intriguing
phenomena, such as the separation of spin and charge degrees of
freedom into distinct elementary excitations propagating at
different velocities2; or the charge fractionalization of an injected
electron7. Experimentally, indications of TLL physics were observed
in such 1D systems as nanotubes8,9, quantum wires10,11 and chains
of spins12,13 or atoms14. In addition, this physics is applicable to
other many-body phenomena, including the fractional quantum
Hall effect15–17, the quantum noise in 1D Bose condensates18 and
the dynamical Coulomb blockade (DCB)19.

In the present work, we investigate experimentally the DCB
conductance suppression across a quantum coherent conductor
inserted in a dissipative circuit. This quantum electrodynamics
phenomenon, also called zero-bias anomaly, is remarkably similar
to a hallmark signature of the collective TLL physics, namely the
low-energy conductance suppression in the presence of an
impurity (see Fisher and Glazman20 for a review of TLL more
focused on quantum transport). In both situations, the
conductance suppression originates from the granularity of
charge transfers across the quantum conductor (DCB) or the
impurity (TLL). Owing to Coulomb interactions, this granularity
results in the possible excitation of collective electrical degrees of
freedom, which impedes the charge transfers at low energy and
therefore reduces the conductance. These collective degrees of
freedom are the electromagnetic modes of the surrounding
electrical circuit for the DCB, and the plasmon modes for a TLL.
In fact, it was shown19 that the transport across a short single-
channel quantum conductor in series with a pure resistance R can
be mapped rigorously onto the transport across a TLL with an
impurity. Such circuits therefore provide powerful test beds for the
transport across TLL systems, with many adjustable parameters
including the crucial Luttinger interaction coefficient2, given by
K¼ 1/(1þRe2/h). Inversely, as detailed below, the mapping
towards a TLL extends the theoretical understanding of DCB.

To understand the quantum laws governing electrical transport
in mesoscopic circuits composed of distinct quantum compo-
nents, it is imperative to address the general case of the DCB for
arbitrary quantum conductors. This problem remains poorly
understood except in the important limit of low-transmission
coherent conductors realized by tunnel junctions, which can be
handled in the theory as a small perturbation to the circuit. For
this class of coherent conductors embedded in a linear circuit,
extensive experimental and theoretical studies have led to
a good understanding21–30 (see Ingold and Nazarov 31 for a
pedagogical review of the theory). The tunnel limit was
first overcome for relatively small conductance suppressions
and low impedance environments compared with the resistance
quantum Rq¼ h=e2 ’ 25:8kO. The striking prediction32,33 and
observation34 are that the conductance suppression is directly
proportional to the amplitude of quantum shot noise. There has
also been important progress in the understanding of the regime
of relatively strong conductance suppression, where the deviation
to classical impedance composition laws are large (for example,
Safi and Saleur19, Matveev et al.35, Flensberg36, Nazarov37,
Kindermann and Nazarov38, Golubev et al.39, Zamoum et al.40).
In particular, the mapping of DCB to a TLL19 opens access to the
strong DCB regime for an arbitrary short single-channel quantum

conductor in series with a pure resistance of arbitrary value
(also see Le Hur and Li41 and Florens et al.42 beyond the short
conductor limit). Experimentally, the strong DCB regime was
recently explored for circuit impedances comparable to Rq

(R¼ 13 kO and 26 kO) (ref. 43); and a generalized pheno-
menological expression for the transmission of an arbitrary short
single-channel quantum conductor embedded in a linear circuit
was derived from the data (equation 1 in Parmentier et al.43, see
also equation 1 in the present article).

Does this phenomenological expression have a deeper
significance? Here we show that the answer is affirmative. First,
we recast equation 1 in Parmentier et al.43 as a powerful
phenomenological scaling law (equation 2) and demonstrate
experimentally that it applies to a very wide range of surrounding
circuits and single-channel quantum conductors. It is shown to
capture the DCB data obtained for series resistances ranging from
R¼ 6–80 kO, and for different realizations of R (using both on-
chip chromium resistance or fully transmitted quantum
channels). It is also shown to apply to a very different
realization of the single-channel quantum conductor from the
quantum point contacts (QPCs) in a Ga(Al)As two-dimensional
electron gas measured here and in Parmentier et al.43 We
demonstrate that this phenomenological expression reproduces
quantitatively, essentially without fit parameters, the
measurements of Finkelstein and coworkers44,45 on a carbon
nanotube resonant level embedded in a dissipative circuit.
Second, the origin of the phenomenological expression can be
traced back to the TLL collective physics. We establish this link by
confronting the full universal conductance scaling curve predicted
for a TLL in presence of an impurity46,47 to the corresponding
phenomenological scaling law for a pure series resistance R.
The agreement is exact at R¼Rq, RooRq and, for arbitrary values
of R, in the limit of a small single-channel transmission GRqoo1.
At intermediate values, R a Rq, although relatively small
deviations emerge, the proposed phenomenological scaling law
is found to provide a good approximate expression for the
conductance.

Remarkably, the predicted mapping DCB-TLL, here extended
theoretically to realistic situations in the presence of a high-
frequency (for example, capacitive) cutoff, is further established
by a direct comparison with the DCB conductance data. We
demonstrate, with R¼Rq/4, a strikingly close agreement, over a
broad range of conductances, with the corresponding TLL
universal scaling curve computed from the exact thermodynamic
Bethe ansatz solution46,47.

Results
Experimental principle. The studied quantum circuits realize a
tunable single-channel quantum conductor in series with an
adjustable resistance. The suppression of the quantum con-
ductor’s conductance due to DCB is extracted either by increasing
the temperature or voltage (exploiting the asymptotic vanishing
of DCB), or by short circuiting the series resistance in situ using
an on-chip field-effect switch. A QPC of adjustable width is used
as a test-bed to emulate any short single-channel quantum
conductor.

Experimental implementation. The nano-circuits are tailored in
a Ga(Al)As 2D electron gas and their conductance G(V,T)¼
qI(V,T)/qV is measured at low temperatures, in a dilution
refrigerator, using standard low-frequency lock-in techniques.
The samples are constituted of three basic elements (Fig. 1) as
described below.

First, a single-channel quantum coherent conductor char-
acterized by its transmission probability fully adjustable between
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0 and 1. It is realized by a QPC formed by field effect in the 2D
electron gas using a capacitively coupled metal split gate (at the
bottom right in Fig. 1b, colourized in yellow) biased at a negative
voltage. The presence of well-defined plateaus at integer multiples
of 1/Rq in the QPC conductance G versus split gate voltage
ascertains that only one electronic quantum channel is partially
open at time, with a transmission probability t¼RqG� n where
n corresponds to the number of fully open quantum channels.
Note that to obtain a single partially open channel, spin degen-
eracy was broken with a large magnetic field perpendicular to the
2D electron gas that corresponds to the integer quantum Hall
effect. Consequently, the electrical current propagates along sev-
eral chiral edge channels, shown as lines in Fig. 1b with arrows
indicating the propagation direction. In most cases, only the outer
edge channel is partially reflected/transmitted at the studied QPC.

Second, a dissipative environment characterized by a linear
impedance Z(o). It is realized by a resistance R, made either from
a thin chromium wire deposited at the sample surface (R¼ 6.3
and 80 kO, Fig. 1c) or from a second QPC (Fig. 1b) set to the
centre of a resistance plateau Rq/n (in this case the QPC emulates
a linear resistance unaffected by DCB36,39). This resistance is in
parallel with a small geometrical capacitance CE2 fF. The studied
QPC is connected to the series resistance through a small ohmic
contact (OC in Fig. 1). The ohmic contact is necessary to establish
a connection between the surface chromium wires and the 2D

electron gas buried 94 nm below the surface. In the presence of a
series QPC, it also has the crucial role of an electron reservoir that
separates the studied QPC and the series QPC into two distinct
quantum conductors.

Third, an on-chip switch to turn off DCB. The studied QPC
can be isolated from the dissipative environment by diverting
towards grounded electrodes the chiral edge channels that are
returning from the small ohmic contact. This turns off the DCB
suppression of the QPC’s conductance. In practice, it is realized
using additional metal gates close to the studied QPC (for
example, in Fig. 1b, the gate SW1 is used to short circuit
the dissipative environment of QPC1). In the schematic
representation shown in Fig. 1a, the switch is in parallel with
the series resistance: when DCB is turned off, the studied QPC is
directly voltage biased. Note that these extra gates allow us to
characterize separately the different circuit elements, including
the small ohmic contact.

Test of experimental procedure in tunnel regime. The experi-
mental procedure to investigate DCB is tested by confronting the
extracted conductance suppression of the QPC, set to a low-
transmission probability, with the known theoretical predictions
for tunnel junctions (see Ingold and Nazarov31).

Figure 2 shows as symbols the measured QPC conductance
versus DC voltage V for four different dissipative environments:
two ‘macroscopic’ on-chip chromium wires (R¼ 6.3 kO and
80 kO) and two ‘mesoscopic’ series QPCs set to a resistance
plateau (R¼Rq/2 and R¼Rq/3). The conductance calculated
using the DCB theory for tunnel junctions31 is shown as
continuous black lines. The dissipative environment in the
calculation is modelled by the schematic R//C circuit shown in
Fig. 1a. Note that the only adjustable parameter here is the QPC’s
‘intrinsic’ conductance GN in absence of DCB, which is
approximately given by the measured conductance at the
highest applied voltages. The resistance R injected in the
calculation is measured directly on-chip, the capacitance C
corresponds to finite elements numerical simulations and the
temperature T is set to that of the dilution fridge mixing chamber.

The good agreement in the tunnel regime between data and
theory validates our experimental approach. It also shows that a
QPC set to a well-defined resistance plateau R¼Rq/n mimics a
‘macroscopic’ linear resistance36,39.

Single quantum channel conductance suppression. Figure 3
shows as symbols the relative suppression of the single-channel
QPC conductance measured at zero DC voltage bias and low
temperature for the same four environments tested in the tunnel
regime. The quantum channel is characterized by its ‘intrinsic’
conductance GN, which is extracted by two methods: we either
assign GN to the conductance measured with the dissipative
environment short circuited using the switch, or to the con-
ductance measured at a large voltage bias where DCB corrections
are small (see Supplementary Note 1 for further details). The
same data are plotted in the left panel of Fig. 3 versus GN, and in
the right panel versus the suppressed conductance G(V¼ 0,T).
The non-linear dependence exhibited in the left panel shows that
the prediction derived in the weak DCB framework, of a relative
conductance suppression proportional to (1–RqGN) for a single
channel32,33, does not hold in the strong DCB regime. Instead, we
observe that the relative conductance suppression is proportional
to (1–RqG(V¼ 0,T)) at our experimental accuracy, as seen from
the linear dependence exhibited in the right panel of Fig. 3. This
result is a remarkable corroboration of the recent experimental
finding in Parmentier et al.43, extending it to over more than one
order of magnitude of the series resistance.

QPC

OC

VDS V

SW2

QPC2

QPC1

SW1

B

OC

SW

C R

Figure 1 | Single electronic channel in a resistive environment.

(a) Schematic circuit for the measured samples. The QPC emulates any

single-channel short quantum conductor, R is the on-chip series resistance

and C is the geometrical shunt capacitance. Note that V and VDS are,

respectively, the DC voltages across the QPC and the whole circuit.

(b) Colourized SEM micrograph of the sample with a series resistance Rq/n

realized by a second QPC fully transmitting n channels. The 2D electron gas

(blue) is separated in two zones by the micron-sized ohmic contact (OC).

Each zone comprises a QPC (yellow split gates) and a short-circuit

switch (blue gate) that allows to divert to ground the quantum Hall edge

channels (red lines, here at filling factor 2) returning from the central ohmic

contact. The black horizontal scale bar is 1 mm long. (c) Colourized SEM

micrograph of the sample with a series resistance R¼6.3 kO realized by

two parallel thin chromium wires visible at the right of the ohmic contact

(a similar implementation was used for R¼ 80 kO). The black horizontal

scale bar is 2 mm long.
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Phenomenological expression and scaling law. The experi-
mental observation of a relative conductance suppression
approximately proportional to (1–RqG) is highly non-trivial and
has strong implications.

As shown in Parmentier et al.43 (Supplementary Note 2), this
finding implies a phenomenological expression for the
conductance G of a single channel embedded in a linear
environment characterized by the impedance Z(o):

GðG1;Z;VDS;TÞ¼G1
1þEBðZ;VDS;TÞ

1þRqG1EBðZ;VDS;TÞ ; ð1Þ

where EB � limG1!0
G�G1

G1
is the relative conductance

suppression in the tunnel regime, that can be calculated within
the well-known DCB tunnel framework31. Note that equation 1

applies to short channels for which the energy h/tdwell, associated
with the electronic dwell time tdwell, is larger than the other
relevant energy scales (for example, eVDS, kBT, e2/2C). Indeed,
even in absence of DCB, the conductance can change with the
voltage and the temperature on the typical energy scale h/tdwell

(for example, owing to quantum interferences within the
conductor). Moreover, a finite dwell time could result in a
high-energy cutoff for the excited electromagnetic modes of the
circuit, thereby reducing the overall conductance suppression due
to DCB48.

The above phenomenological expression for G requires the
knowledge of the ‘intrinsic’ conductance GN, which is
inconvenient when this quantity is not available. This is the
case for the TLL predictions, due to the presence of a high-energy
cutoff in the theory, or in experimental situations such as in
ref. 44 where the conductor’s conductance changes significantly at
high energy even in absence of DCB. It is therefore useful to
remark that the above experimental finding can be recast as a
scaling law relating the transmissions t¼RqG at two different
energies without involving GN (Supplementary Note 3):

t1=ð1� t1Þ
t2=ð1� t2Þ

¼ 1þ EBðZ;VDS1;T1Þ
1þ EBðZ;VDS2;T2Þ

; ð2Þ

where t1,2�G1,2Rq are the conductances, in units of conductance
quantum, of the same single-channel quantum conductor in
presence of DCB at the generator bias voltages VDS1 and VDS2,
and at the temperatures T1 and T2.

A direct test of the scaling is displayed Fig. 4a, where the data
obtained at T¼ 17 mK for a wide range of GN, from near tunnel
to near full transmission, are recast following the above scaling
law with a fixed reference voltage VDS2¼ 9kBT. We observe that
all the data corresponding to a given series resistance RA{Rq/
2, Rq/3, Rq/4} fall on top of each other, following the same black
continuous line calculated with equation 2 without fit parameters.
Note that we display only the data points on voltage ranges for
which the separately measured energy dependency of the
conductance in the absence of DCB is small (see Methods and
Supplementary Note 4). Note also that for these series resistances,
heating effects due to the voltage bias are negligible
(Supplementary Note 5).

In Fig. 4b, we make use of the scaling law for the R¼ 6.3 kO
series resistance’s sample by taking as a reference point the QPC
conductance at T¼ 80 mK (dashed vertical line), which is high
with respect to mismatches between electronic and mixing
chamber temperatures, and low regarding temperature
dependencies of the ‘intrinsic’ transmission. We find that the
measured conductances (symbols) plotted versus temperature
obey the scaling law prediction of equation 2 (continuous lines)
without any fit parameters and for a wide range of QPC tunings.
Note that the discrepancies below 40 mK are possibly due to a
higher electronic temperature for this set of data.

Comparison with carbon nanotube resonant level. The con-
ductance suppression for a single-channel quantum conductor
inserted into a dissipative environment was recently measured on
a markedly different physical system than in the present work,
namely a resonant level within a carbon nanotube in series with
on-chip resistances44,45. The fact that the resonant peaks are
wide, much more than the temperature broadening44, implies
that the energy associated with the dwell time across the nanotube
is large with respect to temperature. According to the scattering
approach49–51, such a resonant level realizes at low temperatures
a short single-channel quantum conductor whose apparent
complexity can be encapsulated in its ‘intrinsic’ transmission
probability. In Mebrahtu et al.44, the single-channel quantum
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Figure 3 | Conductance suppression of an arbitrary quantum channel.
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dashed lines are guides for the eye.
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conductor was tuned in situ by adjusting the position of the
resonant level with respect to the Fermi energy and by changing
the symmetry of its coupling to the two connected leads. As in the
present work and in Parmentier et al.43, Mebrahtu et al.44,45

found that the conductance through the resonant level is strongly
reduced at low temperatures only when it is tuned away from full
transmission (the unitary limit) G ’ e2=h.

Here, we first compare the full temperature dependent
conductance measured in Mebrahtu et al.44 (symbols in Fig. 5a
correspond to the data of Fig. 4a in Mebrahtu et al.44) with the
prediction of the phenomenological scaling law (equation 2)
calculated essentially without fit parameters (continuous lines).
The calculations are performed using the series resistance
R¼ 0.75Rq given in Mebrahtu et al.44, assuming a small parallel
capacitance C¼ 0.07 fF (there is little effect for realistic values
Ct0.1 fF), and using T2¼ 80 mK as the reference temperature.
We find a reasonable agreement between data and
phenomenological scaling law (equation 2) at low enough
temperatures such that the symmetric resonant level aligned
with the Fermi energy (�) is perfectly transmitted. At higher
temperatures, the conductance reduction in the symmetric case at
the Fermi energy signals a transition towards either the sequential
tunnelling regime44 or the long dwell-time regime with energy-
dependent transmissions45, where the phenomenological
expression equation 2 for short quantum conductors does not
hold. Comparisons between the phenomenological scaling law
equation 2 and the other data in Mebrahtu et al.44, as well as those
in the new preprint45, are available in Supplementary Note 6.

To expand further on the link with the present work, we plot in
Fig. 5b the relative conductance reduction at T¼ 50 mK with
respect to the maximum conductance Gmax measured at the same
gate voltage (extracted from Fig. 2b of Mebrahtu et al.44). The
similarity with Fig. 3 is striking: whereas the relative conductance
suppression plotted versus Gmax is markedly convex, it is close to a

straight line when plotted as a function of G(T¼ 50 mK). Note
that the discrepancy with a perfect linear behaviour could
be attributed to difference between Gmax and the ‘intrinsic’
conductance GN.

Generalized mapping to Tomonaga–Luttinger. The problem of
a single-channel quantum conductor in a purely dissipative linear
circuit, characterized by the series resistance R, can be mapped to
that of a TLL of Luttinger interaction coefficient 1/(1þR/Rq) (ref.
19). Remarkably, it can be shown that a frequency-dependent
circuit impedance corresponds to the more general problem of a
1D conductor with finite-range electron-electron interactions
(Supplementary Note 7). In the low-energy limit, this more
general model is known to reduce to a conventional TLL model
with short-range interactions6. Similarly, we establish here that
realistic circuits with a high-frequency cutoff, for example,
capacitive as in Fig. 1a, can be mapped to a TLL.

More specifically, we consider the impact of the next orders in
the Taylor series for the real part of a frequency-dependent series
impedance Re½ZðoÞ� ¼Rþ

P1
n¼ 1 Rn o=oZð Þn, where oZ is the

radius of convergence of the Taylor series expansion. As detailed
in Supplementary Note 7, the electromagnetic environment
shows up in the effective bosonic action, describing the
electrical transport across the quantum conductor, as an
additional quadratic term proportional to Re½ZðoÞ� j Q̂ðoÞ j 2,
where Q̂ðtÞ is a bosonic field identifiable as the transferred charge.
Then, by power-counting arguments, we find that the leading
term R j Q̂ðoÞ j 2 is most relevant at low-energy scales.
Consequently, this problem is described by the same action as
for an impurity in a TLL. Note that the mapping applies provided
the energy scales kBT and eVDS remain small compared with
min[:oZ, :oF]. Here, :oF is a TLL cutoff that delimits both the
validity of the short single-channel conductor approximation
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(limited by the finite dwell time across the conductor and the
energy barrier separating additional electronic channels) and of
the linearization of the energy spectrum in the leads.

Theoretical derivation of phenomenological scaling law. First,
for purely dissipative circuits characterized by a small series
resistance Z(o)¼RooRq but beyond the limit of weak con-
ductance suppression, it was predicted both using a renormali-
zation group approach38 and exploiting the mapping to TLL19,35

that the energy-dependent single-channel conductance G¼ t/Rq

obeys the out-of-equilibrium flow equation (kBTooeVDS):

dtðVDSÞ
d log VDS

¼ 2R
Rq

tðVDSÞ½1� tðVDSÞ�: ð3Þ

This equation can be integrated between the applied generator
voltages VDS1 and VDS2, which results in the same expression as
the proposed phenomenological scaling law equation 2 for the
corresponding limit of a purely dissipative circuit at T¼ 0 (in
which case21–25,52 ð1þEBÞ � limG1!0G=G1 / V

2R=Rq

DS ):

tðVDS1Þ=½1� tðVDS1Þ�
tðVDS2Þ=½1� tðVDS2Þ�

¼ VDS1

VDS2

� �2R=Rq

: ð4Þ

Remarkably, we find here, using the thermodynamic Bethe
ansatz solution of the impurity problem in a TLL at kBTooeVDS

(ref. 47), that the same flow equation 3 and, consequently, the
phenomenological scaling law equation 2 are obeyed beyond the
limit RooRq: as detailed in Supplementary Note 8, we obtain the
flow equation 3 exactly at R¼Rq within the full generalized
validity domain of the mapping (eVDS below min[:oZ, :oF]).
Note that for R¼Rq, corresponding to a Luttinger interaction
coefficient K¼ 1/2, the same conclusions can be reached by an
alternative theoretical approach referred to as the refermioniza-
tion procedure53–55. We also obtain equation 3 for arbitrary
values of R in the low VDS limit corresponding to small values
of the suppressed transmission t(VDS)oo1 (even if the
corresponding tN is close to unity).

Comparison TLL-phenomenological scaling law. Now that the
validity of the proposed phenomenological scaling law
(equation 2) is theoretically established in the three different
limits t(VDS)oo1, RooRq and R¼Rq, we confront its predic-
tions at intermediate values of R with numerical evaluations of
the exact TLL universal conductance curve.

In Fig. 6, we display such a comparison for the intermediate
series resistance R¼Rq/4 on the full range of single-channel
conductances. The out-of-equilibrium (kBTooeVDS) TLL pre-
diction for the conductance in the presence of an impurity follows
a universal scaling curve GTLL(VDS/VB), with VB a scaling voltage
encapsulating the impurity potential. As detailed in
Supplementary Note 8, this conductance can be numerically
computed using the exact thermodynamic Bethe ansatz solu-
tion46,47 (red dashed line in Fig. 6). Although the conductance
curve depends on the TLL interaction coefficient K¼ 1/(1þR/
Rq), it is universal in the sense that the same curve applies for an
arbitrary local impurity. Note that there is no universal relation
between VB and the ‘intrinsic’ transmission probability tN of the
corresponding DCB problem. For instance, such a relation would
depend on the specific high-frequency behaviour of Z(o).
The conductance predicted by the phenomenological scaling
law equation 2 is shown as a continuous black line in Fig. 6. In the
corresponding limit of a pure series resistance Z(o)¼Rq/4 at
kBTooeVDS, it takes the simple analytical form given by

equation 4. The single reference point used in the phenomeno-
logical scaling law is the TLL conductance prediction at a very low
voltage bias VDSref/VB¼ 0.0005, where it is theoretically
established that both predictions match. Note that there is no
need to fix the scaling voltage VB here, as only the voltage ratio
with respect to VDSref is needed in equation 4.

We find a good quantitative agreement between TLL and
phenomenological scaling law predictions on the full range of bias
voltages and conductances, with relatively small deviations
appearing at large bias voltages (t5%, see inset of Fig. 6). This
good agreement corroborates the predicted mapping DCB-TLL. It
is noteworthy that the phenomenological scaling law equation 2
encompasses arbitrary linear circuit impedances Z(o), beyond the
limit of a series resistance ZðoÞ ’ R, suggesting a possible
generalization of the TLL predictions.

Experimental test of predicted mapping TLL-DCB. The most
straightforward experimental test consists in the direct compar-
ison of the conductance data with the universal conductance
scaling curve GTLL(VDS/VB). Figure 6 displays such a comparison
for the series resistance R¼Rq/4. Four data sets of the con-
ductance measured at T¼ 17 mK, each corresponding to a dif-
ferent tuning of the QPC embedded in the same R¼Rq/4
environment, are shown as symbols. For each data set, the value
of VB is fixed by matching the measured conductance at a single
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Figure 6 | Comparison TLL universal conductance curve-

phenomenological scaling law-data for R¼Rq/4, beyond the

theoretically established validity of the phenomenological scaling law.

Red dashed line: universal conductance scaling curve GTLL(VDS/VB)

computed from the TLL thermodynamic Bethe ansatz solution at T¼0

(refs 46,47) (Supplementary Note 8). Black straight line: conductance GPE

predicted by the phenomenological scaling law given by equation 4 for a

pure series resistance at T¼0. The full conductance curve GPE(VDS/VB)

was calculated using the single reference point GPE¼GTLL at VDSref/

VB¼0.0005. Symbols: four data sets measured at T¼ 17 mK in the

presence of a series resistance R¼ Rq/4. The corresponding scaling

voltages VB¼ 330 mV (open squares), 40mV (open circles), 8mV (open

upright triangles) and 0.6mV (open downward triangles) are obtained by

matching GTLL(VDSref/VB) with the conductance measured at the reference

point VDSref¼ 9kBTC13mV (note that a better agreement data–

phenomenological scaling law would have been obtained using instead

GPE(VDSref/VB)). Inset: relative deviations of the conductance calculated

using the phenomenological expression equation 2 with respect to the

universal conductance scaling curve (GPE�GTLL)/GTLL.
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arbitrary reference voltage VDSref¼ 9kBTC13mV with the TLL
prediction for the conductance GTLL(VDSref/VB). This gives
VB¼ 330 mV, 40 mV, 8mV and 0.6 mV. Note first that the lowest
voltage in each data set corresponds to B3kBT/e, thereby mini-
mizing the effect of the finite experimental temperature. Note also
that the highest voltage in each data set VDSE65mV is smaller
than h/eRCE300 mV, which limits the contribution of the
experimental short-circuit capacitance CC2 pF to the series
impedance ZðoÞ ’ Rq=4.

We observe that the conductance data closely obey the TLL
predictions over the full range of single-channel conductances
and over four order of magnitudes of VDS/VB. This observation
constitutes a direct experimental demonstration that the trans-
port across a single-channel quantum conductor embedded in a
dissipative environment can be mapped onto collective
Tomonaga–Luttinger liquid behaviours.

Discussion
The present work is at the crossroad of two seemingly distinct
phenomena namely, on the one hand, the Tomonaga–Luttinger
physics of interacting 1D conductors and, on the other hand, the
different set of quantum laws of electricity when distinct quantum
coherent conductors are assembled into a circuit. By advancing
and confronting both the experimental and theoretical aspects, we
have established the predicted link between these two phenomena
for the basic class of mesoscopic circuits constituted by a short
single-channel quantum conductor in series with a linear
resistance. This opens the path to using electronic circuits as
test beds for Luttinger physics, and also advances our under-
standing of the quantum laws of electricity through the powerful
TLL theoretical framework. In particular, important insight may
be obtained in the investigation of the direct link between
suppressed conductance and quantum shot noise, that is expected
to hold even in the regime of strong conductance suppression19,38

(see also Supplementary Note 9). An important outcome of the
present work is that we strongly consolidate, delimit the validity,
and grasp the significance of the generalized phenomenological
expression equation 1 for the conductance of an arbitrary short
quantum channel in a linear environment. From an experimental
standpoint, its validity is demonstrated for a wide range of circuit
impedances, and is found in good agreement with the data of
Mebrahtu et al.44,45 obtained on a different physical system, a
carbon nanotube resonant level. From a theoretical standpoint,
the equivalent scaling law equation 2 is derived for the suppressed
conductance in various limits, in particular for a series resistance
R¼Rq. We also find that relatively small deviations exist in
intermediate regimes. These results are not only of fundamental
importance; the knowledge of the different quantum laws of
electricity with coherent conductors has also direct implications
for the quantum engineering of future nanoelectronic devices.

Methods
Measured samples. The samples are nanostructured by standard e-beam litho-
graphy in a 94-nm-deep GaAs/Ga(Al)As 2D electron gas of density 2.5� 1015 m� 2

and mobility 55 m2V� 1s� 1.

Experimental setup. The measurements were performed in a dilution refrigerator
with a base temperature of T¼ 16 mK. All measurement lines were filtered by
commercial p-filters at the top of the cryostat. At low temperature, the lines were
carefully filtered and thermalized by arranging them as 1 m-long resistive twisted
pairs (300Om� 1) inserted inside 260mm inner diameter CuNi tubes, which were
tightly wrapped around a copper plate screwed to the mixing chamber.
The samples were further protected from spurious high-energy photons by two
shields, both at the mixing chamber temperature.

Measurement techniques. The differential conductance measurements were
performed using standard lock-in techniques at frequencies below 100 Hz. To avoid

sample heating, the AC excitation voltages across the sample were smaller than
kBT/e. The sample was current biased by a voltage source in series with a 10 MO or
100 MO polarization resistance. The bias current applied to the drain was con-
verted on-chip into a fixed VDS, independent of the QPC conductance, by taking
advantage of the well-defined quantum Hall resistance to ground of the drain
electrode (Rq/n at filling factor n¼ n). Similarly, the current across each component
(QPCs, switches) is obtained by converting the voltage measured with the ampli-
fiers represented as triangles in Fig. 1 using the Rq/n quantum Hall resistance. The
conductances of the QPC, switch and series chromium wires or series QPC were
obtained separately by three point measurements. For all the samples, we used cold
grounds directly connected to the mixing chamber of the dilution refrigerator.

Test of the small ohmic contacts. The electrical connection between the small
ohmic contact (labelled OC in Fig. 1b) and the buried 2D electron gas was tested
with both the QPCs and the switches set in the middle of the very large and robust
conductance plateau G¼ 2/Rq. Assuming that the two outer edge channels are fully
transmitted across QPCs and switches, and that the inner channels are fully
reflected, we find for all samples that the reflection of each of the two outer edge
channels on the small ohmic contact is smaller than 0.01.

Energy dependences of ‘intrinsic’ conductance. A coherent conductor may
present energy dependences in its ‘intrinsic’ conductance GN associated with, for
example, a finite dwell time. In the case of QPCs, these often result from nearby
defects. These energy dependences add up with the DCB energy dependence, which
makes the extraction of the DCB signal as a function of voltage and temperature
more difficult. In Supplementary Note 4, we illustrate the energy behaviour of the
QPCs with the electromagnetic environment short circuited and explain how we
deal with the energy dependences of GN in the present work.
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