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Abstract: Cognitive flexibility is essential to modify our behavior in a non-stationary environment
and is often explored by reversal learning tasks. The basal ganglia (BG) dopaminergic system, under
a top-down control of the pre-frontal cortex, is known to be involved in flexible action selection
through reinforcement learning. However, how adaptive dopamine changes regulate this process
and learning mechanisms for training the striatal synapses remain open questions. The current study
uses a neurocomputational model of the BG, based on dopamine-dependent direct (Go) and indirect
(NoGo) pathways, to investigate reinforcement learning in a probabilistic environment through a task
that associates different stimuli to different actions. Here, we investigated: the efficacy of several
versions of the Hebb rule, based on covariance between pre- and post-synaptic neurons, as well
as the required control in phasic dopamine changes crucial to achieving a proper reversal learning.
Furthermore, an original mechanism for modulating the phasic dopamine changes is proposed,
assuming that the expected reward probability is coded by the activity of the winner Go neuron
before a reward/punishment takes place. Simulations show that this original formulation for an au-
tomatic phasic dopamine control allows the achievement of a good flexible reversal even in difficult
conditions. The current outcomes may contribute to understanding the mechanisms for active control
of dopamine changes during flexible behavior. In perspective, it may be applied in neuropsychiatric
or neurological disorders, such as Parkinson’s or schizophrenia, in which reinforcement learning
is impaired.

Keywords: neurocomputational model; basal ganglia; orbitofrontal cortex; probabilistic reinforcement
learning; reversal learning; synapse Hebbian training; behavioral flexibility; dopamine phasic changes

1. Introduction

Human beings have the capacity to adapt their choices in a very flexible way in
different conditions, depending on the particular scenario in which an action occurs and
on previous history of rewards and punishments; a situation described in the literature as
reinforcement learning. In particular, in a non-stationary environment, individuals must be
able to modify their behavior so that an action previously rewarded can be seen in another
scenario as inappropriate and replaced with another choice. In recent years, a large number
of studies employed reversal learning paradigms to assess individual variability in reward
based tasks. Some of these studies were also aiming to achieve a deeper understanding of
cognitive alterations in neurological and neuropsychiatric disorders, such as Parkinson’s
disease, schizophrenia, depression, compulsive disorders, or substance abuse.
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There is a large consensus in the literature that reversal learning involves at least
two main brain structures, the basal ganglia (BG) and the prefrontal cortex, PFC (although
amygdala and hippocampus are also involved in several tasks, see [1]). In particular, cortico-
striatal synapses, which represent the initial projections of the BG processing stream linking
the cortical structures to the striatum, experiment Hebbian plasticity in response to reward
and punishments, a phenomenon mediated by dopamine phasic changes [2,3]. Neuroimag-
ing studies illustrate the involvement of the dorsal [4] and ventral [5] regions of the striatum
during reversal learning. Moreover, reversal learning is impaired in subjects with focal
BG lesions [6] and in parkinsonian subjects [7,8]; it is affected by levodopa administration,
a dopamine precursor [9] and by drug manipulation of D1 and D2 receptors [10–12].

On the other hand, several studies suggest that the BG is under the control of the PFC
(especially the orbito-frontal cortex, OFC) and this influence is essential to correctly perform
reversal learning. Neuroimaging studies show increased activity in the OFC in human
subjects performing reversal learning [5,13,14], while deficits in reversal learning have been
seen after lesions of the OFC [15,16]. Moreover, insufficient OFC functioning can determine
impaired learning in various psychiatric disorders, such as schizophrenia [17] and obsessive
compulsive disorders [18]. Furthermore, direct current stimulation over the ventrolateral
PFC causes a greater number of perseverative errors, thus impairing reversal learning [19].
It is generally assumed that the PFC areas exert top-down control on the BG [20] and this
control is especially important to suppress previously learned responses [14].

A fundamental role in this process is played by dopamine (DA) changes. A traditional
point of view is that dopamine neurons, projecting to the striatum, code for reward pre-
diction errors through phasic release, thus mediating information processing in the PFC
and the BG [21–23]. On the other hand, recent studies [24–28] have found the presence
of a sustained (tonic) DA response directed towards future rewards, arguing that it may
represent a motivational signal. Various recent studies underline the fundamental link
existing between flexible learning and dopamine [29,30]. Cools et al. [31] observed that the
basal dopamine level, tonic, in the striatum is correlated with the way reversal learning is
performed: subjects with high baseline dopamine exhibit relatively better reversal learning
from unexpected rewards than from unexpected punishments, whereas subjects with low
baseline dopamine showed the opposite behavior.

However, as declared by several authors even in very recent studies [32], “the precise
relationship between dopamine and flexible decision making remains unclear”. Westbroock
et al. [33] suggest that dopamine signaling in distinct cortico-striatal subregions represents
a balance between costs and benefits, emphasizing the rich spatiotemporal dynamics of
dopamine release in striatal subregions.

The neural mechanisms behind reversal learning in the PFC-BG circuitry and the
role of dopamine can be better understood by the use of neurocomputational models,
inspired by the biology. Indeed, many such models, based on the classic BG division in Go–
NoGo pathways, have been presented in recent years, with important gain of knowledge.
Frank developed a model for the BG-dopamine system to provide insights into the BG
adaptive choices and the impairments in Parkinson disease (PD) subjects [34]. In order to
overcome previous limitations, a more recent expanded version of their model [20] includes
a module, simulating the OFC, which represents contextual information from previous
experiences. With this model, the authors explored conditions when more complex decision-
making tasks (including reversal learning) require a top-down control and demonstrate
the role of the OFC in these conditions. Berthet et al. [35] implemented Hebbian Go
and NoGo connectivity in a Bayesian network (in which units represent probabilities of
stochastic events) and tested the model in several learning paradigms, including reversal
learning. An important result of this study is that a flexible strategy for action choices is
needed to solve different tasks, hence emphasizing the necessity for an external control.
To simulate reversal learning, Moustafa et al. [36] extended a previous model of the BG,
including the role of working memory in the PFC, thus implementing an actor-critic schema.
Synapses were trained with Hebbian mechanisms, under the control of the critic by the PFC
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module, which calculates a temporal difference error signal to affect synapses. The models
by Morita et al. [12,37,38] based on a state transition approach, try to understand how
dopamine changes are controlled by upstream circuitry and suggest that synapse forgetting
and an increase of the reward after dopamine depletion are an essential mechanism to
explain the results of many effort-related tasks. Using a mechanistic model of the BG,
Mulcahy et al. [39] observed that after learning, a system becomes biased to the previously
rewarded choice; hence, establishing the new choice required a greater number of trials.
Moreover, with this model, the authors were able to simulate conditions occurring in PD
and Huntington’s diseases.

Although the previous experiments and modeling studies depict a clear basic scenario,
some aspects deserve further analysis. In our opinion, most experiments in the literature
concerning reversal learning, and most matching neurocomputational simulation results,
are based on a quite unnatural paradigm. In the classic probabilistic reversal learning
paradigm, it is assumed that one action is more frequently rewarded while another action is
more frequently punished. The role of the two actions is then reverted, by exchanging the
relative probabilities. However, in our daily life, the significance of actions is more complex
than in this previous basic schema. Assuming that many actions can have a function in
our life, rewards or punishments generally depend on the context in which an action is
performed. An action which is more often rewarded in a given context (that is, in response
to a given stimulus), can be rewarded less frequently and should be avoided in a different
context (that is, when the input stimulus changes). Humans must establish a kind of
hetero-associative relationship between actions and stimuli, and these associations can
change in a non-stationary environment. In other terms, it is not possible to assign a value
to an action without considering the particular input conditions (stimulus or context) on
which an action must be performed. This poses more stringent constraints on the learning
rules adopted, and makes the training and reversal learning more complex than in most
previous basic experiments.

The aim of the present work is to reconsider the overall problem of probabilistic
reversal learning, by investigating a multi-action task, using a biologically inspired model
of the human BG we developed in previous years (see Supplementary Materials SI for
a detailed description of the model) [40,41]. In this study, we assume that all the selected
actions are correct at least in one context, hence, should be selected by the agent when
the correct stimulus is present. The task is not to choose only one correct action and
refuse all the other actions, but to associate each stimulus to a different action in a random
probabilistic environment. Examples are given first in the case of a two-action choice and
then for a four-action choice.

As in previous models, we assume that synapses in the striatum are plastic and their
changes are governed by Hebbian mechanisms. Moreover, we assume that rewards and
punishments (which are now stimulus-dependent) are mimicked via phasic peaks and
phasic drops of striatal dopamine.

Two important aspects that, to our best knowledge, were not discussed in previous
works are assessed here. First, not all versions of the Hebb rule behave in the same
way, assuming that the network starts from a completely naïve condition and must learn
different stimulus-action associations. In particular, we show that a Hebb rule which
changes synapses only with reference to the post-synaptic winner neuron outperforms the
other ones. Second, reverse learning requires that the previous learned action is forgotten,
to avoid excessive competition between alternative choices. This requires additional top-
down mechanisms allowing a flexible use of dopamine, especially producing a stronger
dopamine dip in case of unexpected punishments. The latter aspect is discussed, on the
basis of a potential top-down flexible control.

These results are important to achieve a deeper understanding of possible learning
rules in the BG and, above all, to develop new concepts on how dopamine could be flexibly
modified by an action-critics mechanism, hence providing ideas on a possible role of the
PFC. Finally, the present algorithm can find potential application in biologically inspired
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AI algorithms, devoted to learn flexible stimulus-action associations in a non-stationary
probabilistic environment.

2. Results
2.1. Two-Action Choice

This section illustrates the results obtained during a test phase, after a phase of training.
In the following, the term “agent” will be used to denote any of the 10 independent
learning procedures, reported in detail in the Section 4. Simulation results are described
for ten agents performing a two choices probabilistic task. All simulations are performed
with a normal tonic dopaminergic input (D = 1.0), corresponding to healthy levels. During
the training phase, the synapses are modified based on a previous history of rewards and
punishments, whereas the test is implemented without phasic change in dopamine (neither
rewards nor punishments). Phasic dopamine changes following rewards and punishments,
affect the Go and NoGo activity, resulting in a variation of the synapses. In basal training,
phasic peak during reward is twice the basal value, whereas the dopamine drop during
punishment is half the tonic dopamine value. As it will be explained further on, reversal
training conditions will require enhanced punishments.

All synapses subject to training are modified according to five different learning rules,
as described in the Section 4. For each rule, we compute the number of correct responses
for the first choice (with high probability of reward during training) and for the second
choice (with small probability of reward during training). Each agent performs the test
100 times (50 actions per each rewarded action), see Figure 1. We first look at the differences
among the five rules that have been used:

1. post-post synaptic rule: after 100 epochs of training, the agents choose the correct
response for the first choice in about 77% of trials and exhibit a good performance,
with a small standard deviation among agents.

2. post-pre synaptic rule: this rule brings about quite a similar result as the previous one.
3. pre-pre synaptic rule: in spite of the duration (100 epochs), we have poor training. This

condition prevents the agents from choosing the correct response for the first choice,
with an increase in the number of responses for the second choice. Moreover, variabil-
ity among agents is large.

4. ex-or covariance rule: the results shown are similar to those obtained with the pre-pre rule.
5. Oja rule: by using the Oja learning rule, the performance is quite similar to that of

pre-pre and ex-or rules. However, we notice a smaller variability among agents.

For the last three rules, the total number of responses for the first choices is significantly
below 100. This signifies that in many trials no cortical neuron won the competition and
the network did not select any response.

Starting from a naïve condition, in which each stimulus has about 50% of probability
to be chosen, the agents progressively learn to discriminate between the two choices. In
particular, if poor synapses are used to perform the test, the agents are unable to distinguish
the best choice (at the beginning, the probabilities are close to 50% per each choice). After
100 epochs we can see a quite good performance. After 200 epochs of training, a further
performance improvement occurs, displaying an increase in the number of more correct
responses (first choice) and a decrease in the number of second choices. The standard
deviation remains quite small during the whole history of the test. By using the post-pre
rule (right panel), a quite similar outcome is achieved.

On the ground of these results, no significant differences can be observed between
post-post and post-pre rules. However, when performing the same test with 4-actions (the
results will be presented later), the post-post rule outperforms the post-pre one. For this
reason, we choose to present the subsequent simulations with the post-post rule.



Int. J. Mol. Sci. 2022, 23, 3452 5 of 29

Figure 1. Test trials after 100 epochs of training. Number of correct responses for the first choice
(i.e., the choice with probability reward as high as 0.8) and for the second choice (probability of reward
as low as 0.3) obtained by performing 100 different test trials after 100 epochs of training, performed
with the different training rules. The mean values and standard deviations refer to 10 different
independent learning procedures (trained with different noise realizations). It is worth noting that
the term “first choice” refers to two different possible actions, depending on the input stimulus used
(the action 1 is more frequently rewarded for the stimulus S1, and the action 2 for the stimulus S2).
Each stimulus was used 50 times during the 100 test trials.

The entire history of the test carried out after training with the two best rules in
different configurations of synapses, is presented in Figure 2.

Figure 2. This figure shows the capacity to perform the task correctly (i.e., to select the more correct
response, that is the first choice), as a function of the duration of the previous training. The meaning
is the same as in Figure 1. (the bars represent mean values and standard deviation on 10 independent
learning procedures), but the 100 test trials were performed using the synapse values obtained
after different epochs of training. The left panel refers to the post-post rule, the right panel to the
post-pre rule.

To better illustrate the training procedure, the effect of basal training on synapses
coming from the sensory cortex (S) to the Go neurons, is given in Figure 3. We have
chosen these synapses since they illustrate the relationship between the external context
(S) and the chosen activity (Go). The first row of Figure 3 shows the temporal pattern of
the synapses entering into the first channel; the second row represents synapses entering
into the second channel. The columns represent the corresponding inputs. Since we more
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frequently rewarded the first action with the stimulus S1 = [1 0.3] given as input, and the
second action with the stimulus S2 = [0.3 1], the network should be able to associate the
first element of S with the first action, and the second element of S with the second action.
Accordingly, the synapses on the main diagonal strengthen, whereas those out of the main
diagonal weaken. This means that the agent can progressively discriminate between the
two choices selecting the correct association (stimulus linked to the chosen action). The
effect of saturation concerning the synapses on the main diagonal can be seen starting from
epoch 170 and epoch 130, respectively. We must point out that synapses can’t overcome
a saturation value of 0.8.

Figure 3. Effect of training on the sensory synapses. The figure shows the temporal pattern of the
synapses, which connect the external stimulus S to the Go neurons, as a function of the training epoch
(rule post-post). Since we used two action channels, and a 2 × 1 stimulus vector, the synapse array
has the dimensions 2 × 2. The first line represents the two synapses entering into the Go neuron in
the first channel from the two input stimuli. The second row represents the two synapses entering
into the Go neuron of the second channel, from the same input stimuli. By increasing synapses in
the principal diagonal, and decreasing those in the secondary diagonal, the network recognizes that
a high value of the first stimulus is especially associated with a first-action reward, whereas a high
value of the second stimulus more often rewards the second action.

As described in the Section 4, after the training, we performed a reversal learning (by
inverting the probability of reward for the two actions with each stimulus), starting from
different epochs of previous training. In particular, we tested the case of a reversal learning
performed after 50 epochs of basal training (moderate learning) and after 75 epochs of basal
training (good learning). However, as shown in Figure 4, simulations demonstrated that,
in order to reverse the choices, the punishment dopaminergic drop (Ddrop in Equation (6),
in the Section 4) during reversal learning must be significantly stronger than the value used
during the previous basal training. Figure 4 illustrates the results, where the dopamine
drop used during the reversal learning (that is, the strength of punishment) is plotted on
the x-axis, while the number of correct choices after 200 epochs of reversal learning are
plotted on the y-axis.
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Figure 4. Effect of the dopamine phasic drop used during the reversal learning. The figure illustrates
the number of correct responses achieved during the test trials after 200 epochs of reversal learning,
as a function of the dopamine drop (i.e., the strength of punishment) used in the reversal training.
Two cases are illustrated, when reversal learning starts after 50 epochs of previous basal training
(a moderate previous learning) and after 75 epochs (a good previous learning). A dopamine drop as
high as 1.0 allows a good reversal learning after 50 previous epochs. However, the reversal learning
remains difficult after 75 previous training epochs, even if the dopamine drop is as high as 1.5.

During basal training, the synapse strengths are modified (see Figure 3), reaching,
thus, different performances. In particular, when reversal starts after 50 epochs, the agents
have, on average, 65% of correct responses; after 75 epochs they reach an almost successful
performance (75% of correct responses), see left panel of Figure 2. As a consequence,
starting reversal after a longer training (after 75 instead of 50 epochs), requires an increase
in the punishment to forget the previous synapses. In particular, after 50 epochs, the lowest
phasic drop in dopamine (Ddrop = 0.5) is not enough to perform the task correctly (only
20% of correct responses are achieved after reversal training). If the phasic dopamine drop
during punishments is increased (Ddrop = 1.0), a good performance is reached (61% of correct
responses). With a further increase in dopamine drop (Ddrop = 1.5), the agents only slightly
improve their performance (66% of correct responses). If the reversal starts after 75 epochs
of training, when actions are already well-differentiated, the agents are not able to perform
the reversal task properly, neither with the lowest value of Ddrop (0.5) nor with Ddrop = 1.0.
A further increase in punishment is required (Ddrop = 1.5) to carry out a more adequate task
(35% of correct responses); the performance, however, still remains significantly below that
obtained after the basic training. Hence, this preliminary analysis leads us to conclude that
a punishment reinforcement is required to improve the reversal training.

In order to understand the previous results, Figure 5 displays the effect of punishment
on the activity of the Go neurons in a naïve condition (i.e., before any training) with
Ddrop = 0.5 (left panel), the effect of a punishment when the reversal starts after 50 epochs
with Ddrop = 1.0 (central panel), and a punishment when a reversal learning starts after
75 epochs with Ddrop = 1.5 (right panel). The red line refers to the winner Go neuron
(i.e., the one in the selected action channels) and the blue line to Go neuron in the loser
action channel. The dashed black line represents the threshold for the Hebb rule in the
post-synaptic neuron, set at 0.5.
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Figure 5. Temporal pattern of the activities of the two Go neurons, in response to a punishment.
The red line represents the winner Go neuron (i.e., the one belonging to the selected action) while
the blue line represents the activity of the Go neuron in the losing channel. The black horizontal
thick line is the threshold for the post-synaptic neuron in the Hebb rule (equal to 0.5). The left
panel represents the response in the naïve network (before any training) when the activity of the
winner Go neuron settles close to the threshold. Hence, a small punishment is sufficient to achieve
a synapse depotentiation. The other panels refer to the network at the beginning of the reversal
phase, after 50 epochs of previous training (middle) and after 75 epochs of previous training (right),
when an action previously reinforced is now punished. The winner Go neuron, as a consequence of
previous learning, settles at a higher value: hence, a stronger punishment is required to move the
activity well below the threshold, to allow the depotentiation of a previously learned habit. Finally,
the asterisks represent the activity of the winner Go neuron immediately before the punishment, used
to compute a value for the expected reward (see Equation (1) below).

In the naïve condition, the activity of the Go neuron in the winner action channel
settles at a value close to the threshold (indeed, parameters in the naïve network were given
to reach this steady state level); hence, even a moderate phasic punishment can lead the Go
activity well below the threshold, leading to a depotentiation of the synapse. Conversely,
after training, as a consequence of the increased synapse values, the activity of the winner
Go neuron, in an action channel previously reinforced, reaches higher levels. This is evident
both in the central and right panels of Figure 5. Hence, a stronger punishment is required
to move the level below the threshold, to have a significant synapse depotentiation. In
fact, if the phasic dopamine change does not produce evident variations on the Go activity,
and if the Go activity is too far from the threshold, the synapses exhibit only a minor
depotentiation or can even be paradoxically reinforced. In conclusion, the further the Go
activity is from the Hebb rule threshold, the more the punishment should be strong to
produce a reduction in the synapse.

A summary of the entire history of the test performed after reversal training is given
in Figure 6. It is worth recalling that the number of responses at epoch 1 after 50 and
after 75 epochs (Figure 6) corresponds to that of Figure 2 at epoch 50 and at epoch 75,
respectively, as that is when the reversal starts.
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Figure 6. Temporal pattern of the responses in the test trials when the reversal learning is performed
after 50 epochs of previous basal training (left panel) and after 75 epochs (right panel). All results
refer to the post-post rule. The dashed dotted lines with open squares represent the results of the
previous basal training (the same results as in the left panel of Figure 2). The continuous lines with
filled squares represent the results of the reversal learning phase. All points are the results of 100 test
trials, performed by using the synapses obtained at the given instant. The phasic dopaminergic drop
was 0.5 in the basal training, 1.0 in the reversal training performed after 50 epochs, and 1.5 in the
reversal training performed after 100 epochs. It is worth noting that the term “first choice” refers to
the actions more often rewarded during the basal training with a given stimulus, which becomes
more often punished during the reversal.

During reversal, the previous correct response (first choice basal) becomes the more
often punished (first choice reversal), whereas the previous more often punished response
(second choice basal) is the more often rewarded (second choice reversal). Looking at the left
panel (reversal after 50 epochs) we can see that, at first, the number of first choices reversal
is higher than the number of second choices reversal. Starting from epoch 125, after training
the agents are able to perform a switch between actions, inverting them. Correct responses
(second choices reversal) gradually become higher, whereas a reduction in the number
of more often punished responses (first choices reversal) is evident. The performance
continues to improve until a sort of saturation is reached at epoch 350 after training. It is
worth noticing that the standard deviation increases during training, in particular as regards
the second choice reversal. This means that some agents find difficulties in reversing the
choices, while other agents perform much better than in the mean behavior. After 75 epochs
(right panel in Figure 6) the reversal requires a longer time to be achieved. The number
of first choices reversal progressively decreases during epochs, and the number of correct
actions (second choice reversal) exceeds the number of responses for first choices reversal at
epoch 375. Again, the standard deviation increases during training. It is worth noting that,
especially if reversal starts after 75 epochs, the final number of responses is well below 100
(in fact, we have 38.7% of correct responses (second choice reversal) and 25.1% of wrong
responses (first choice reversal), see the right panel in Figure 6). This signifies that, after
a prolonged reversal, the network does not provide any response in about 36% of trials.
This is the consequence of an excessive conflict between the old and the new choices.

The pattern of the synapses coming from the sensory cortex (S) to the Go neurons
during reversal learning is shown in Figure 7. The reversal learning starts after 50 epochs
of training for a total of 400 epochs. In the present case, we use inverted stimuli as inputs.
Since the agent now must associate the second stimulus to the first action and the first
stimulus to the second action, the synapses out of diagonal increase their strength, reaching
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the maximum saturation level at around 200 epochs. The synapses on the main diagonal,
which were potentiated during the basic training representing the previous first choice,
progressively weaken, after an initial plateau phase. Set against Figure 3, we may notice
the switch between actions.

Figure 7. Effect of reversal learning on the sensory synapses. The figure shows the temporal pattern
of the synapses which connect the external stimulus S to the Go neurons, as a function of the reversal
training epoch (rule post-post) performed after a previous 50 epochs basic training. The meaning is
the same as in Figure 3, but now the first channel responds to the second stimulus and the second
channel to the first one. Hence, the synapse strength increases in the secondary diagonal of the
synapse array, and decreases on the principal diagonal, by inverting the initial levels.

2.2. Four-Action Choice

In the following section, we describe the results of some simulations performed on
10 independent learning procedures, during a four choices probabilistic task. The whole
history of the test performed after training with the two best rules identified for two chan-
nels, is presented in Figure 8. The training consists of 300 epochs. Each agent performs
200 trials (50 actions per channel). In the case of the post-post rule (left panel), again starting
from a naïve condition represented by the test performed at epoch 1, the agents increase
their performance in the simulations run in the subsequent epochs. In fact, we can notice
that the number of first choices continues to grow, whereas the number of second choices
is reduced.

The right panel shows the results obtained by using the post-pre rule. During the
test phase, the performance worsens compared to that obtained with the post-post rule,
with reference to first choices. In addition, we can see an increase in the standard deviation
values. The number of second choices still remains quite the same.

A possible explanation of the differences between the rules is presented in the
Supplementary Materials SII.

Since with four channels, the post-post rule is the best option, we decide to show
the simulations regarding reversal training using that rule. In the following simulations
(Figure 9), each panel represents the reversal training performed after 100 (left panel) and
150 (right panel) epochs of training. In this case also, the first reversal was performed with
a phasic drop in dopamine as large as 1.0, and the second with a phasic drop as large as 1.5.
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Figure 8. This figure shows the capacity to perform the task correctly in the case of a four-action task
(i.e., to select the more correct response, that is the first choice, and the second more correct response,
second choice) as a function of the duration of the previous training. Each test consists of 300 trials,
in which the stimulus associated with each action is given 50 times. The bars represent mean values
and standard deviation on 10 independent learning procedures. The left panel refers to the post-post
rule, the right panel to the post-pre rule.

Figure 9. Temporal pattern of the responses in the test trials with reference to a four-action choice,
when the reversal learning is performed after 100 epochs of previous basal training (left panel) and
after 150 epochs (right panel). All results refer to the post-post rule. The dashed dotted lines with
open squares represent the results of the previous basal training (the same results as in the left panel
of Figure 8). The continuous lines with filled squares represent results in the reversal learning phase.
All points are the result of 200 test trials, performed by using the synapses obtained at the given
instant. The phasic dopaminergic drop was 0.5 in the basal training, 1.0 in the reversal training
performed after 100 epochs, and 1.5 in the reversal training performed after 150 epochs It is worth
noting that the term “first choice” refers to the actions more often rewarded during the basal training
with a given stimulus (probability of reward 0.8), which become the second choice during the reversal
(probability of reward 0.3). The second choice refers to actions with reward probability as low as
0.3 during training, and 0.8 during reversal learning.

Recalling that both in the left and the right panel (Figure 9) the results at epoch 1 are
the same as those at epoch 100 and epoch 150 (Figure 8 left panel), respectively, we can now
explain the effect of the reversal learning technique with four channels.
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Looking at the left panel, the agents succeed in selecting the correct choices, starting
from epoch 200 of the reversal phase. The performance is further enhanced as the synapse
training progresses, with the mean value of the number of second choices increasingly up
to 103/200 with a significant reduction of first choices (36/200). The comparison of the
two panels points out that if the reversal starts too late, the agents are not able to perform
a proper switch of the choices, even using Ddrop = 1.5. Indeed, the number of first choices
is slightly decreasing (47.7/200), but the number of second choices does not increase too
much (59.1/200).

It is worth noting that, in both panels of Figure 9, the total number of responses is well
below 200 (even by considering the residual responses of actions three and four, not shown
to avoid cumbersomeness). This signifies that, in many cases, due to excessive conflict,
the network does not select any single response during the test.

2.3. Sensitivity Analysis on the Tonic Dopaminergic Input

Since dopamine plays a pivotal role in our learning procedure, and several studies
show that learning is affected by the dopamine level (for instance learning impairment is
evident in patients affected by Parkinson’s disease), in the following we show the effect of
a change in the tonic dopamine on training in the two-actions task. Figure 10 displays the
responses obtained with the post-post rule during a test trial performed after 100 epochs of
training (i.e., the same as in Figure 1) as a function of the tonic dopamine level. However,
it is worth noting that, since we assumed that the phasic dopamine peak during reward is
twice the basic tonic level, and that the phasic dopamine drop during punishment is half
the tonic level, a change in tonic dopamine also affects rewards and punishments.

Figure 10. The capacity to perform the task correctly (i.e., to select the more correct response, that is
the first choice), in a two-action task as a function of the basic dopaminergic input (post-post rule).
Each test consists of 100 trials, in which the stimulus associated with each action is given 50 times.
The bars represent mean values and standard deviation on 10 independent learning procedures.
The left panel displays the case in which a reduced dopaminergic input is used during training,
but a normal dopaminergic input is restored during the test (medication). In the right panel, a reduced
dopaminergic input was used both during training and testing.

In the left panel, it is assumed that the tonic dopamine level is decreased during
training, but a normal dopamine level is used during the test phase. This represents the
case of a Parkinsonian subject, with a depletion in dopamine during training, who performs
a test under levodopa medication (thus restoring the normal tonic dopaminergic level).
It is evident that, if the tonic dopaminergic input is significantly decreased only during
training (from 1.0 to 0.6), the agent responds in almost 100% of trials, but he/she is not able
to discriminate between the first and second choices (first choice 54.4/100, second choice
42.5/100 when D = 0.6).

The right panel represents the case when a subject exhibits a small dopamine level
both during training and test trials. In this condition, not only is the agent unable to
discriminate between the two choices (impaired training), but also exhibits a great number
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of no-responses during the trials (first choice 24.0/100, second choice 26.2/100 when
D = 0.6). The high number of no-responses is due to the low activity level in the Go
channels, induced by a depleted dopaminergic input.

2.4. Automatic Adjustment of the Phasic Dopaminergic Input

The previous results clearly demonstrate that the more difficult the task is (in particular
during reversal learning), the stronger the dopaminergic drop required during punish-
ments to forget a portion of the previous synapse values is. Indeed, if the dopaminergic
punishment is not strong enough, both the synapses representing the first choice and the
second choice remain too high; causing a conflict between the two choices with many
no-response cases (see Figure 2 and the right panel in Figure 9). To avoid this problem,
in the previous simulations we manually adjusted the dopaminergic drop, assuming that
these changes reflect a top-down control (i.e., a kind of actor-critics instantiation).

Many results in the literature (see [42,43]) suggest that the dopamine phasic response
during reinforcement learning not merely reflects the amount of reward and punishment,
but above all the expectancy of a reward. Looking at Figure 5, which displays some
examples of punishments in Go neurons during different trials (naïve network, reversal
after 50 epochs, reversal after 75 epochs), we can suggest an automatic strategy to adjust
the phasic dopamine:

1. We can assume that the activity of the Go neuron immediately before the punish-
ment or reward (the level which is shown with an asterisk in Figure 5) represents
an expectancy of the reward (or the probability of a reward, in fact, in our model the neu-
ron activity is normalized between 0 and 1). If the winner Go neuron at the moment
of the reward/punishment is close to 0.5 (which also represents the threshold for our
Hebb rule), as in the left panel of Figure 5, the expectancy of reward is about 50%.
A high value of the Go activity (as in the middle and left panels in Figure 5) signifies
a high expectancy of a reward. This should be associated with a smaller dopamine
peak in case of reward, but with a higher dopamine drop in case of punishment.
Conversely, a low level of the Go activity in the winner channel represents a low
expectancy of a reward, which should be associated with a higher dopamine peak
or a smaller dopamine drop. goj(t) represents the activity of the Go neuron in the
jth channel (j = 1,2 in case of a two-choice task, j = 1, 2, 3, 4 in case of a four-choice
task). Hence, we can assume a reward expectancy (i.e., the estimated probability of
a reward, say rexpected) as follows:

rexpected = gow
(
tresponse

)
(1)

where w represents the winner channel, and tresponse the instant at which a reward/
punishment is given (some examples are shown in Figure 5).

2. In case of a reward, the phasic dopamine peak is a non-linear function of the difference
between rexpected and 0.5. The higher this difference, the smaller the dopamine peak
and vice versa. We can write:

∆Dreward =
[
2 ∗
(

1− rexpected

)]m
·Dtonic (2)

where m represents a parameter, greater than 1, chosen empirically, and Dtonic is the
tonic dopaminergic input. The higher m, the stronger the effect of an unexpected
vs. an expected reward. As it is clear from Equation (2), when the expected reward
probability (rexpected) is 0.5, the phasic dopamine peak is equal to 1, that is the same
value we used in all previous simulations. If rexpected is close to 1 (in case of a strongly
expected reward), the phasic dopamine peak decreases dramatically. If rexpected is
close to zero, we have a much stronger phasic dopamine peak.
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3. In case of a punishment, the higher the expected reward, the stronger the phasic
dopamine drop should be, to modify the choice. We can write:

∆Dpunishment = −0.5·
[
2× rexpected

]m
·Dtonic (3)

If the expected reward is 0.5, the phasic dopamine drop is half the tonic dopaminergic
input, i.e., the value used in the previous basal trials. If rexpected increases, the phasic
dopaminergic drop increases dramatically, thus automatically implementing the major
dopamine drop necessary in the reversal tasks.

In the following (Figure 11), we show the results obtained by performing the
two-action choices, and four-action choices in the basal and reversal training, by using
Equations (1)–(3) to implement an active top-down control of the phasic dopamine changes.
The values of m, the exponent in Equations (2) and (3) were empirically set at two. We also
performed simulations with the value of m set at one. If a value m = 1 is used, the reversal
learning becomes more difficult, as shown in Figure S5 in the Supplementary Materials SIV.

Figure 11. Results of the tests performed after basal training and a reversal learning, obtained by
using the Equations (1)–(3) to automatically compute the phasic changes in the dopaminergic input
as a function of the expected reward. The panels in the upper row refer to a two-choice task (100 trials
per each test) and should be compared with the curves in Figure 6. The panels in the bottom row refer
to a four-action task (200 trials per each test) and should be compared with the curves in Figure 9.

The results show that the model can perform the basal and reversal learning quite
well in case of a two-action task (upper panels). In case of a four-action task, the model
can perform the basal task and the reversal task after 100 epochs quite satisfactorily. The
reversal task after 150 epochs is still difficult, but significantly improved compared with
the one in the right panel of Figure 9.

The complete pattern of the synapses, both during the basal and the reversal phase,
is shown in the Supplementary Materials SIII.
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2.5. Effect of Different Probabilities

As specified in the Section 4, the previous simulations were repeated using different
probabilities for the two-action task. In particular, the network was trained and tested using
probabilities 0.9 and 0.2 (simpler task) and the probabilities 0.7 and 0.4 (more challenging
task). As expected, during the basal training phase, the network learns the correct behavior
more rapidly in the simpler task and more slowly in the more complex task. Differences
are especially evident after 100 epochs. However, after a longer number of epochs (for
instance, 200 epochs of training), these differences are reduced. More significant differences
are evident during the reversal learning. In the simpler task (with probability 0.9 and 0.2),
reversal learning is more efficient and robust. Conversely, reversal learning is weaker in the
difficult task (probabilities 0.7 and 0.4). It is characterized by a large number of no-responses
and a more significant standard deviation (hence, large variability among actors).

3. Discussion

General considerations: in the present work, we simulated probabilistic reinforcement
learning and reversal learning in a human BG model, in order to analyze two fundamental
problems, not completely solved in previous works:

1. which learning rule is more suitable in a task where the agent must associate different
stimuli S with different actions to maximize rewards;

2. which reinforcement signal (i.e., phasic dopaminergic change) is more appropriate
to perform a reversal learning procedure, when a subject should forget a part of the
previous synapses in favor of new synapses, to avoid a conflict between the previous
choice and the new choice.

A third problem, which we only partially analyze in the present paper, concerns
the effect that pathological modifications can have on learning capacity. Indeed, many
indications emerging from the present findings can be applied to the study of neurological
and neuropsychiatric disorders associated with alteration in the dopamine reward system.

It is important to stress that the strategy for training we used in the present study
differs from many tasks commonly adopted in probabilistic reversal learning paradigms.
In classical forced-choice tasks (see for instance [34,36,44,45]), one stimulus is designated as
the correct stimulus, associated with the higher probability of a reward, whereas the other
stimulus is associated with a smaller reward probability. The two reward probabilities are
then changed during the reversal phase. Hence, on each trial in one phase, the agent must
designate only one correct action. Even in studies using a larger number of stimuli (see for
instance Peterson et al. [8], who used four different images) subjects should designate only
one stimulus, that is the most likely to be rewarded. Our scenario is much more demanding,
since at any phase of the experiment, the model should be able to associate a different
stimulus with a different action. We think that our paradigm simulates several important
situations in real life, in which different actions can be chosen depending on the particular
context, and then flexibly modified as the environment changes.

Hebb rule: by simulating this task in a probabilistic environment, a first important
result emerged, i.e., that the Hebb rule performs in a largely different way, depending
on the choice of the post-synaptic or pre-synaptic terms. In particular, our simulations
demonstrate that a rule in which the synaptic changes occur only when the post-synaptic
Go neuron is active outperforms the other rules.

It is worth mentioning that, in our previous papers devoted to the analysis of bradyki-
nesia in Parkinson disease [40,41] we used a Hebb rule based on the pre-synaptic activity
(named pre-pre in the present work); this rule worked fairly well in a deterministic scenario,
as that used in our previous papers, but fails to work in a probabilistic scenario, as the one
simulated in the present study.

It is not easy to understand why a rule performs better than another in a probabilistic
task. Some examples are given in the Supplementary Materials SII, to illustrate the reasons
for some of the observed differences. Basically, if a network starts from a naïve condition,
(and so at the beginning, the number of errors are quite similar as the number of correct
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choices, in a two-choice task, or greater than the number of correct choices, in a four-choice
task), the use of a pre-synaptic positive part results in a more frequent weakening of useful
synapses (i.e., those synapses which instead should be reinforced) compared with the use of
a post-synaptic positive part. These differences between the Hebb rules are always evident
during the basal learning period in a two-choice task (see Figure 1) and become even more
evident if a four-choice task is performed (see Figure 8).

Dopamine changes and reversal learning: simulations concerning the reversal learning
show a different aspect. Flexibility requires that a subject partially forgets some of the
previous synapses, now associated with a wrong choice, in favor of new synapses, pointing
to a more rewarded choice. If previous synapses are not dramatically reduced, an excessive
conflict emerges between alternative possible actions, with the effect of either a frequent
wrong choice or a frequent no-choice. The importance of forgetting some synapses during
reinforcement learning has been stressed by Morita, Kato et al. in a series of modeling
papers [37,38], although they did not investigate reversal learning specifically. In order
to depotentiate previously learned synapses, our simulations point out the necessity for
a greater phasic dopaminergic fall during reversal learning, compared with the value
used during the initial training; moreover, when the reversal learning becomes more
difficult (i.e., in case of a longer previous training and stronger previous habits), a deeper
phasic dopaminergic drop is required. This empirical result provides the foundation
for the introduction of a top-down control of the dopaminergic input, which should be
automatically adjusted to meet the necessity of learning. Actually, as shown in Figure 7,
a decrease in previously learned synapses is the more relevant and more complex target of
reversal learning, which can jeopardize the overall process if not sufficiently accomplished.

Top-down dopamine regulation: the necessity of a top-down control of dopamine phasic
changes during reinforcement learning is a subject of active research today, a problem
which is not completely solved yet and is strictly related with the flexibility of our behavior
and with the management of uncertainty (see [46]). There is large consensus that the
striatum plays a pivotal role in this process under the top-down influence of the ventral
PFC (especially the OFC) [17,47,48]. Various results suggest a mechanism for an active
control of phasic punishment. Ghahremani et al. [14], through a neuroimaging study,
observed an increase in the activity of the OFC and of the dorsal anterior cingulate cortex
during reversal learning, and inferred that these regions support an inhibition of learned
associations during reversal. Albein-Urios et al. [19] found that inhibition of the ventro-
lateral PFC, achieved via transcranial direct current stimulation, was associated with
higher perseverative errors compared to sham conditions. Cools et al. [5], using functional
magnetic resonance imaging, observed signal changes in the right ventrolateral prefrontal
cortex on trials when subjects stopped responding to the previously relevant stimulus and
shifted responding to the newly relevant stimulus. Recording of single neurons activity in
the OFC show that neurons track alterations of reward contingency [49,50]. Several studies
demonstrated that lesions of the OFC impair reversal learning [15,16].

All previous considerations underline that reversal learning paradigms require a dy-
namic reward representation, including an expectation for the possibility of a change.
Soltani and Izquierdo [1] recently stressed that update of expected rewards necessitate
integration of signals among multiple brain areas and suggested that learning must be
scaled up when unexpected uncertainty is high. This dynamic representation, in turn,
should be converted into dynamic phasic changes in dopamine [51].

Indeed, many studies suggest that dopamine phasic changes represent the expectancy
of a reward, rather than a reward per se (see among the others [42,52,53]) In several
previous computational models, this dynamical reward expectancy is simulated using the
well-known Sutton and Barto Temporal Difference algorithm [21,54]. Moustafa et al. [36]
used this algorithm to implement a critic-actor schema in which the reward prediction is
realized through an additional critic node in the network. Conversely, Frank and Claus [20]
adopted a working memory layer to simulate the OFC. A working memory m odule is also
used in the model by Deco and Rolls [55].
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The new formulation for phasic dopamine changes: our preliminary simulations clearly
demonstrate the need for an ad hoc adjustment in the phasic dopamine signal, in order to
adapt this signal to the difficulty of the learning process. Accordingly, in the last part of this
work, we propose a new strategy to compute the expected reward, which is not shared by
other models (at least to our knowledge) and does not require any additional computational
node. Our suggestion is that information on the expected reward can be obtained directly
from the activity of the winner Go neuron, immediately before the reward/punishment
is given (see Equation (1) and Figure 5). At odd with other models, our rule provides
a context dependent reward expectancy. This information can then be directly manipulated
by a top-down control, implementing a critic-actor schema, which computes the phasic
dopamine changes (i.e., implementing Equations (2) and (3)) in a dynamical way. Of course,
our Equations (2) and (3) are empirical, since they simply compute the m-power of the
difference between the predicted reward and a naïve prediction (set at 0.5). An important
role in our model is given by the parameter m.

There are two possibilities, which can be tested in future work: either that a single
value of m provides adequate reversal learning both in simple and challenging conditions;
or that the value of m must be automatically adjusted by a critic. A value m = 2 seems
appropriate in a two-action task with probabilities 0.8 and 0.3 and also in the case of simpler
tasks (unpublished simulations). An increase in m may be required if the task becomes
excessively challenging. This will be the subject of future study.

Comparison with existing data: since, as specified above, our task is quite different from
the reversal learning tasks found in the literature (which involve one forced choice), we did
not make a direct comparison with existing data. However, some considerations can be
done, which may represent future testable predictions. Firstly, the reversal learning phase
generally requires more time compared with the analogous initial learning phase (see for
instance Figure 11). Moreover, the number of perseverative errors remains higher during
the initial period of the reversal. These results are qualitatively in accordance with those of
previous experimental tests [8,15] and of previous computational results [36,39] although,
in those works tests were performed in simpler conditions.

All of these results are quite understandable since, during reversal learning, the agent
must forget previous synapses and simultaneously reinforce the new ones. Indeed, looking
at the synapse patterns in Figure 7, one can see that about 150–200 epochs are required
before a significant decrease in the previously reinforced synapses.

Another important result that deserves attention is that, after a prolonged reversal
learning, the agent sometimes fails to provide any response, especially if reversal occurs
in the four-choice task after a long previous learning phase. That is due to an excessive
conflict between the previous and the new choice.

Pathological conditions: a notable future application of our model concerns the simulation
of learning impairment in neuropsychiatric and neurological diseases. Mukherjee et al. [56]
showed that depressed individuals make fewer optimal choices and adjust more slowly
to reversals. Schizophrenic patients perform similarly to control individuals on the initial
acquisition of a probabilistic task, but show substantial learning impairments when prob-
abilities are reversed, achieving significantly fewer reversals [17]. Probabilistic reversal
learning is impaired in youths with bipolar disorders compared to healthy control sub-
jects [57]. Bellebaum et al. [6] observed that patients with selective BG lesions need more
time than control subjects to perform a reversal task. Several of the previous results can be
qualitatively simulated with our model by reducing the parameter m (or more generally
by reducing the phasic dopamine drop); this possibility opens interesting perspectives
towards future model applications in clinical scenarios.

While the previous deficits seem especially concerned with a malfunctioning of the
ventral PFC, learning deficits in patients with Parkinson’s disease (PD) are likely to be
connected with a reduction of the baseline dopamine level. Accordingly, reinforcement
learning is impaired in PD subjects [8,58]. However, dopaminergic therapy improves some
cognitive functions and worsens others in patients with PD, an apparently paradoxical
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result [9]. In particular, several authors observed that medication worsens reversal learning
in PD subjects [7], although this effect seems to depend on the disease severity [9,44].

In the present study, we simulated the effect of a change in dopamine basal level
(Figure 10). Our model suggests two concomitant phenomena at the basis of a learning
failure in PD subjects, the first related with learning (i.e., a poor adjustment of synaptic
changes) and the other related with the strength of the mechanism during the test phase
(related to the tonic dopamine level during the test). If the dopamine level is reduced only
during the task, but is restored during the test trial, the subject exhibits impaired learning,
but with almost 100% of responses. Conversely, if dopamine levels are low both during the
training and the test phase, two concurrent phenomena become evident: the incapacity to
discriminate between the two choices and a frequent occurrence of no-responses (which
corresponds to a typical deficit of PD subjects to start actions, producing symptoms like
freezing or bradykinesia). This represents a testable prediction of the model, that may be
investigated in future studies, and is in line with the ‘integrative selective gain’ framework
proposed by Beeler ([59,60], but see also [41,61]).

Model limitations: in the present work, we assumed that the unique effect of the PFC
top-down control consists in dynamic phasic dopamine changes (especially during pun-
ishments). This is the only input to the BG module (besides the external stimulus S). It is
possible that other parameters of the model, not only D, are under active control from the
PFC (such as the learning rate or the threshold in the Hebb rule). Indeed, Metha et al. [62]
suggested the use of different learning rates for negative and positive prediction errors.
Harris et al. [63] assumed a higher learning rate during reversal learning. An adjustable
threshold in the Hebb rule, depending on neural average activity, is typical of the Bi-
enenstock, Cooper, and Munro learning rule, often used in neural network trainings [64].
However, our model may be seen as more parsimonious, assuming that the entire learning
variability depends on the dopaminergic input only. It may be of value to change the
learning rate and/or threshold in future works, if the comparison with experimental results
should require an improved learning capacity.

Furthermore, the Go pathway plays the more relevant role in our model, while the
NoGo synapses increase monotonically (although with a different rate for the different
choices, see Supplementary Materials SIII), signaling a large number of punishments. The
choice of a different learning rule for the NoGo portions of the striatum may further
improve learning, achieving a better balance between Go and NoGo.

Finally, in future work the model should be tested against human behaviors in the
same tasks to compare changes in human performance across training epochs with those
predicted by the proposed model. Simulation of experimental results, however, is likely
to require an ad hoc fitting of some parameters (for instance the value of the learning
rate and the parameter m) to adapt the general network to the particular behavior of
individual subjects.

In conclusion, we wish to stress that the present model does not only provide a new
step towards a better understanding of dopamine-based reinforcement learning in the
PFC-BG complex, but can also represent a tool for future Artificial Intelligence algorithms.
This means that it can be applied, in a flexible way, to all conditions where actions must be
associated with stimuli in a non-stationary environment.

4. Methods
4.1. Structure of the Network

The overall network is inspired by the human BG. Each neural unit in the model is de-
scribed using a first-order differential equation, which simulates the integrative properties
of the membrane, along with a sigmoidal relationship, which reproduces the presence of
lower threshold and upper saturation of neuron activity.

The specific structure of the network is depicted in Figure 12, where two channels are
implemented. A similar structure can be used with four channels, to simulate a four-action
choice. The model includes a sensory representation (S) and the corresponding motor
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representation in the cortex (C). The latter considers several actions in mutual competition,
each represented by a segregated channel. The model can be used to simulate several tasks
involving reinforcement learning, in which the agent learns to perform a task under the
pressure of an environment which rewards or punishes.

In the present study, we focus on probabilistic learning, in which a given action is
not always rewarded or punished, but rewards and punishments are delivered per each
action with a given probability. Moreover, as specified in the introduction, all actions can
be chosen depending on the particular stimulus from the sensory cortex and much focus is
given on reversal learning, to study how the network can flexibly change its behavior after
a change in the given probabilities.

Downstream the cortex, the model includes the striatum, functionally divided accord-
ing to dopamine receptor expression (D1: Go, or G, D2: NoGo, or N), the subthalamic
nucleus (STN), the globus pallidus pars externa (GPe, or E), the globus pallidus pars in-
terna (GPi, or I), and the thalamus (Th). Accordingly, the model includes the three main
neurotransmission pathways (direct, indirect, and hyperdirect) used by the BG. In absence
of sufficient stimuli, all actions are inhibited, since the GPi receives a strong basal input
and inhibits the thalamus. More particularly, in basal conditions, the cortex, the thalamus,
and the striatum are inhibited; conversely, the GPi and GPe exhibit a certain basal activity.
We assumed that the basal activity of the GPe is at about half the maximal activity; con-
versely, the basal activity of the GPi is higher, close to the upper saturation, in agreement
with physiological data [65]. This activity is necessary to maintain the thalamus inhibited,
until a significant disinhibition occurs in the GPi as a consequence of the activation of
one Go pathway [40].

Figure 12. Cont.
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Figure 12. (a) Schematic diagram of the BG computational model where two action channels are
used. Continuous blue lines represent excitatory synapses, while red dashed lines represent inhibitory
synapses. Single lines indicate that the synapse is represented by a scalar parameter, one per segregated
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channel. Thick arrows indicate that the synapses are represented by an array (2 × 2 in the present
example). A double arrow line signifies that the synapses are present in both directions, although not
necessarily with the same strength. D is the dopamine effect used as input for the model. (b) Effect
of an increase in dopamine—in the figure, we assumed that neuron 1 in the motor cortex won the
competition. This choice is rewarded through a dopamine peak, which excites the Go and inhibits
the NoGo. The thickness and filling of the circles represent the activity of the corresponding neuron
(large thickness with the filled interior is used for the maximally activated neurons), while the
thickness of the connections represents the amount of information transmitted from the upstream
to the downstream neurons. A reward potentiates the winning action. (c) Effect of a decrease in
dopamine—in the figure, we assumed that neuron 2 in the motor cortex won the competition. This
choice is punished through a dopamine dip, which inhibits the Go and excites the NoGo. In this
condition, the winning action, initially at a high value (coded by neuron 2 in the motor cortex),
is depressed and the alternative action (coded by neuron 1) may emerge, or even no response may
occur. This change is illustrated through arrows on the motor cortex neurons.

In the presence of a sufficient external stimulus, the cortex can select a response based
on a competition among cortical neurons. This competition is realized with a winner-takes-
all (WTA) process, implemented via lateral inhibition in the cortex. However, in order
to win the competition, a neuron in a WTA circuit must receive a strong self-excitation:
this is an essential mechanism to trigger the instability that is typical of WTA dynamics.
In the model, this self-excitation becomes operative only when the corresponding neuron
in the thalamus is activated: this thalamic neuron sends excitation to the cortex and
closes a self-excitatory loop (see Figure 12). Selection of an active neuron in the thalamus,
in turn, is a consequence of a prevalence of the Go pathway on the NoGo pathway for
a specific action channel. Hence, the final decision actually occurs in the BG, and this choice
becomes operative when the corresponding neuron in the thalamus overcomes a certain
excitation threshold.

In the model, the hyperdirect pathway (from the cortex to the STN and then to the
GPi) is used to excite the GPi (and so to inhibit the thalamus) in the presence of several
conflicting actions in the cortex. This is used to prevent many simultaneous cortical winners,
and let the cortex have more time to solve the conflict.

In the following we will use the symbol Wlk to represent the array of all synapses
entering into a downstream layer, l, from an upstream layer, k. Hence, the lower case
symbol, wlk

ij , is used to represent an individual synapse in the previous array, namely
the synapse from neuron at position j in the upstream layer k, to a neuron at position i
in the downstream layer l. These arrays have dimension Nc × Nc, where Nc represents
the number of channels used in the simulation, equal to the number of possible selected
actions (2 or 4). It is worth noting that all these arrays are diagonal, since all channels are
segregated (hence, wlk

ij = 0 if i 6= j), with the only exception of the arrays originating from

the sensory cortex (i.e., the array WGS from the sensory cortex to the Go neurons, and the
array WNS from the sensory cortex to the NoGo neurons), which are fully connected.

4.2. The Effect of Dopamine on the Go and NoGo Pathways

According to the literature, we assumed that dopamine exerts a different effect on
neurons in the Go pathway (which express D1 receptors) and neurons in the NoGo pathway
(D2 receptor expression). In particular, dopamine has an excitatory influence on active
neurons in the Go pathway, and an inhibitory effect on the inactive neurons, thus realizing
a kind of contrast enhancement mechanism [66], which favors the selection of the winner
action only. Conversely, dopamine has an inhibitory effect on all neurons in the NoGo
pathway. Furthermore, we assumed that the action of dopamine is potentiated by choliner-
gic influences, through a kind of push-pull mechanism: an increase in dopamine reduces
the cholinergic activity, thus introducing a disinhibition on the Go pathway and further
inhibition in the NoGo. In fact, cholinergic activity is inhibitory on the Go and excitatory
on the NoGo, while cholinergic changes are always specular to dopamine changes [67].
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The effects of dopamine changes in the model are represented through a quantity,
named dopaminergic input, D. The latter exhibits a constant (tonic) level (Dtonic) at rest,
a transient phasic (∆Dphasic ) increase (∆Dphasic = ∆Dreward) during rewards and a transient
phasic decrease (∆Dphasic = ∆Dpunishment) during punishments. As expressed in the
following Equations (4)–(6):

D = Dtonic + ∆Dphasic (4)

∆Dreward = Dtonic (5)

∆Dpunishment = −Ddrop ·Dtonic (6)

It is worth noting that, in some of the subsequent simulations, the value of the dopamin-
ergic input can become negative during a phasic dopaminergic drop. This is not a contra-
diction since, in the model, the quantity D does not represent dopamine concentration per
se, but rather an external input, which accounts for the effect that dopamine concentration
changes can have on the neurons in the striatum, mediated via D1 and D2 receptors.

According to Equation (5), following a reward, the dopaminergic input is increased to
a value twofold the basal one (Dtonic) and maintained for a time sufficient for the network
to reach a new steady state condition, characterized by a high value of the winner Go
neuron and a low value for the other Go and NoGo neurons. Similarly, after a punishment,
the dopaminergic input is decreased by a factor Ddrop, causing a fall in the activity of the
winner Go neuron and an increase in the activity of the NoGo neurons (especially in the
winning channel). Finally, in the steady state condition after a reward or a punishment,
the Hebb rule described below is applied.

In the last simulations, as described in the Section 2, Equations (5) and (6) are replaced
with new expressions (see Equations (2) and (3)), to account for expected reward changes.

4.3. Synapse Learning

We assumed that synapses entering into the striatum (i.e., from the sensory cortex into
the Go and NoGo layers, named WGS and WNS, and from the motor cortex to the Go and
NoGo layers, WGC and WNC, respectively) are plastic and can be trained using Hebbian
mechanisms. In order to implement these mechanisms, we assumed that the activity of
the post-synaptic neuron (say yA

i to denote the activity of neuron i in the layer A) and the
activity of the presynaptic neuron (say yB

j to denote the activity of neuron j in the layer B)
are compared with a threshold and multiplied. In this way, both long term potentiation
can be simulated, when activity of both neurons is above the threshold, and long term
depression, when one neuron activity is above the threshold and the other is below the
threshold. Furthermore, the synaptic change is applied only after a reward or a punishment,
when a dopamine change occurs.

However, in order to avoid that, a synapse is reinforced when both the pre-synaptic
and post-synaptic activities are below the threshold (i.e., when both neurons are scarcely
active, a condition which should not produce any synaptic change), we introduced a func-
tion “positive part” either to the post-synaptic or pre-synaptic term in the Hebb rule (see
Equations (7)–(9)): this signifies that, the Hebb rule should be applied only when the
corresponding neuron is active. In this way, different alternative forms of the Hebb rule
can be simulated and tested. Asdemonstrated in the Section 2, these different rules have
different behavior in the hetero-associative paradigm used in this work.

In previous papers, we used the following version of the Hebb rule, that is similar to
a rule used in [40], assuming that the activity of the presynaptic neuron must be above the
threshold to have a synaptic change. We can write:

∆wAB
ij = σ

(
yB

j − ϑPRE
)+(

yA
i − ϑPOST

)
(7)
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where ∆wAB
ij represents the variation of the synapse between the pre-synaptic neuron j

in layer B (B = S or C) and the post-synaptic neuron i in layer A (A = G or N) and the ()+

represents the function “positive part”, that is: (x)+ = x if x > 0; otherwise (x)+ = 0.
Since the function “positive part” is applied to the presynaptic neurons (both in the

Sensory cortex S and in the motor Cortex, C), this rule (Equation (7)) will be named the
pre-pre synaptic rule.

However, as shown in the Section 2, and further illustrated in the Supplementary
Materials SII, we observed that the previous rule, when applied to a probabilistic hetero-
associative problem, does not work properly. Hence, we tested different rules.

In a rule named post-post synaptic rule (Equation (8)), we assumed that the function
“positive part” applies to the post-synaptic neurons, both in Go and NoGo pathways:

∆wAB
ij = σ

(
yB

j − ϑPRE
)(

yA
i − ϑPOST

)+
(8)

Hence, the synapse change is applied only if the post synaptic neuron is active.
As analyzed in the Supplementary Materials SII of this work, the previous equations

may have advantages and disadvantages when applied to the schema in Figure 12. So,
we considered also the possibility that the postsynaptic rule applies to synapses connecting
the sensory cortex to the striatum, while the pre-synaptic rule applies to synapses con-
necting the motor cortex to the striatum. Hence, two alternative rules have been applied
depending on the upstream region:

∆wAC
ij = σ

(
yC

j − ϑPRE
)+(

yA
i − ϑPOST) (from the motor cortex)

∆wAS
ij = σ

(
yS

j − ϑPRE
)(

yA
i − ϑPOST)+ (from the sensory cortex)

(9)

where the post-synaptic neuron i belongs to layer A (A = G or N). In the following,
Equations (9) are named the post-pre synaptic rule.

Finally, we also tested two additional more traditional rules. In the first, we applied
the covariance Hebb rule, which only excludes the possibility of potentiation when both
neurons are below threshold (as in the exclusive or operation). This rule, named the ex-or
covariance rule (Equation (10)):

∆wAB
ij =

σ
(

yB
j − ϑPRE

)(
yA

i − ϑPOST) i f yB
j ≥ ϑPRE or yA

i ≥ ϑPOST

0 i f yB
j < ϑPRE and yA

i < ϑPOST
(10)

Finally, we also tested the Oja rule (Equation (11)), which is a classic Hebb rule (without
threshold) with the inclusion of a forgetting factor to have depotentiation:

∆wAB
ij = σ

(
yB

j yA
i − yA

i wAB
ij

)
(11)

Finally, for any of the previous rules, we assumed that synapse cannot decrease below
zero nor can increase above a maximum value (say, wmax). That is, after any learning step,
we checked:

wAB
ij = wmax i f wAB

ij > wmaxwAB
ij = 0 i f wAB

ij < 0 (12)

4.4. Training the Network

The network was trained using a probabilistic reinforcement learning paradigm,
in which a combination of inputs is given to the network in the sensory cortex and the
chosen action is rewarded or punished with a pre-assigned probability. If the stimulus
changes, the chosen action also changes. This is a more difficult protocol compared with
a case in which an action is always rewarded or always punished following a given
stimulus-response combination. It is also a more realistic paradigm, compared with the
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case when only one forced choice is implemented (i.e., a choice which does not depend on
the context or stimulus S). Moreover, after a learning period, we modified the probability
associated with rewards and punishments, to simulate a reversal learning paradigm; hence,
the preliminary choices are necessarily modified on the basis of a new experience in a non-
stationary environment.

Since the BG are especially involved in a slow learning of positive and negative
outcomes, resulting in motor habits [20,68], we used a slow value for the learning factor
(σ in Equations (7)–(11)); as a consequence, the training required different epochs to reach
a clear discrimination between responses.

It is worth noting that, while the number of elements in the motor cortex always
corresponds to the number of possible actions, the dimension of the sensory representation
S can be independent of the number of selected actions and can be chosen to simulate
inputs with different complexity. In this work, we used a vector S with dimension 2 × 1
and 4 × 1, for 2 and 4 channels, respectively, just for the sake of simplicity, to facilitate the
analysis of synapses.

4.4.1. Two-Choice Experiment

In a first paradigm, we simulated a two-choice experiment, where one of two actions
(described through channels 1 and channels 2 in the model) in response to two alterna-
tive stimuli must be selected. A schematic representation of the experiment is shown in
Figure 13. The network starts from a naïve condition, in which all synapses have the same
values for each channel (hence no action is preferentially selected) and the synapses from
each element of the input stimulus are identical (hence the stimuli in the vector S have
initially an identical meaning). The values of these initial synapses have been given so that
the activity of the Go and the NoGo neurons in the winner channel, before any reward or
punishment, settle at a value as high as 0.5 (which is the middle since the activity is scaled
between 0 and 1). Rewards increase the activation of the winner Go neuron well above
0.5, while punishments decrease activation to a small value. The opposite occurs for the
NoGo neuron in the winner channel. A Gaussian white noise was added to all neurons in
the motor cortex (zero mean value, standard deviation 0.2) to have a different response at
each trial.

Each training procedure consisted of 200 epochs. Each epoch consists of the two stim-
uli, S1 = [1 0.3] and S2 = [0.3 1], permuted in a random fashion. A total of 10 independent
learning procedures (each with 200 epochs starting from the naïve network and different
noise realizations, with different seed of noise) were performed, to simulate 10 different
networks independently trained.

At each trial, a reward or punishment is given whenever the network performs a single
choice. This occurs if one neuron in the motor cortex reaches a value higher than 0.9 in the
final steady state condition, while all other neurons in the motor cortex have activity close
to zero (thanks to the winner takes all dynamics). The cases in which no neuron reaches
the value 0.9 (absence of a response), or more than one neuron overcomes the value 0.9
(multiple responses) are considered as no-response, and neither a reward nor a punishment
is assigned.

During the basic learning phase, in response to the first stimulus, S1, the first action is
randomly rewarded with a probability as high as 0.8 (otherwise the action is punished),
while the second action is randomly rewarded with a probability as low as 0.3 (otherwise
punished). When a second stimulus S2 is given the reward probabilities are 0.3 for the first
choice and 0.8 for the second one. We also tested different values for the probabilities to
implement a simpler task (probabilities 0.9 and 0.2) or a more challenging task (probabilities
0.7 and 0.4). As seen in the Section 2, we presented the results for the intermediate task
only, which represents a sufficient level of complexity. A few details on the other tasks have
been given at the end of the Section 2.
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Figure 13. Training design of two-choice experiment. The upper panel refers to the basic learning
phase: after the presentation of the stimulus S1, the first action (in this case A1) has a probability P of
0.8 to be rewarded (otherwise punished), whereas the second action A2 is rewarded with a probability
of 0.3 (otherwise punished). When a stimulus S2 is given, the reward feedback probabilities are
0.3 and 0.8 for A1 (first action) and A2 (second action), respectively. The thick arrow between the
stimuli S1 and S2 indicates the random permutation. It is worth noting that action A1 is more
frequently rewarded for the stimulus S1, and action A2 for the stimulus S2, during basal training. The
bottom panel gives a schematic representation of the reversal learning phase: when S1 is presented,
action A1 receives a positive feedback with a probability of 0.3 (otherwise punished), whereas the
probability of reward for the second action A2 is 0.8 (otherwise punished); after S2 presentation, A1

and A2 are rewarded with a probability of 0.8 and 0.3, respectively, (otherwise punished). During
reversal learning, the second action (A2 for the stimulus S1 and A1 for the stimulus S2) refers to
actions with reward probabilities as high as 0.8, i.e., the more frequently rewarded actions.

Reversal learning can theoretically be initiated after any epoch during the basal learn-
ing. However, the longer the previous learning period (i.e., the greater the number of epochs
used for learning), the more difficult is the reversal. For this reason, reversal learning was
attempted at different moments, namely after 50 epochs and after 75 epochs of previous
learning. Reversal consists in the same inputs S1 and S2, randomly permuted at each epoch,
but with the opposite associated reward probabilities: action 1 is associated with 0.3 reward
probability after presentation of the stimulus S1 and with 0.8 reward probability after S2;
action 2 is associated with 0.8 and 0.3 reward probabilities after S1 and S2, respectively.

The capacity of the network to learn the more probable reward, still maintaining
the capacity to explore different possibilities, is tested via a testing procedure. In total,
100 trials are executed, by using the inputs S1 and S2 50 times each, but without rewards or
punishments, and the number of responses (either the reinforced action or the unreinforced
action) is counted. Correct learning is characterized by a greater percentage number of the
reinforced responses, and a smaller number of unreinforced ones. This testing procedure
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has been performed starting from the network obtained after different epochs of learning
(1, 25, 50, 75, 100, 150, 200) to assess the effect of a longer learning on the network behavior.
During the test, random Gaussian noise was applied not only to cortical neurons, but also
to the input stimuli (simulating a noisy environment).

4.4.2. Four-Choice Experiment

The simulations were then repeated using a more complex 4-actions paradigm. In this
case we used the stimuli indicated below, associated with the reward probabilities for the
four actions

S1 = [1.0 0.3 0.1 0.1] associated with the reward probabilities: P1 = [ 0.8 0.3 0.1 0.1]
S2 = [0.3 1.0 0.1 0.1] associated with the reward probabilities P2 = [ 0.3 0.8 0.1 0.1]
S3 = [0.1 0.1 1.0 0.3] associated with the reward probabilities: P3 = [ 0.1 0.1 0.8 0.3]
S4 = [0.1 0.1 0.3 0.1] associated with the reward probabilities: P4 = [ 0.1 0.1 0.3 0.8]

During reversal learning, the probabilities P1 and P2 were inverted for the stimuli S1
and S2, and the probabilities P3 and P4 were inverted for the stimuli S3 and S4. Each epoch
consists of each four possible inputs, given in a randomly permuted order. The test phase
consisted of 200 trials, and each input is used 50 times.

4.5. Sensitivity Analysis

In order to better understand the role of some parameters in the model, a sensitivity
analysis was performed. Indeed, the most important parameters in the model are the tonic
dopaminergic input, Dtonic, and the dopamine fall during punishments, Ddrop (we remind
that the dopaminergic increase after a reward (∆Dreward) was always equal to +Dtonic,
i.e., a twofold increase in the dopaminergic input). The parameter Ddrop was essential to
control learning, especially in the reversal phase, hence its role was tested carefully by
repeating learning with different values of Ddrop. We assume that this parameter must be
under control of top-down regulating mechanisms (see Section 3).

Different values of D (tonic condition) were tested, to analyze how learning can be affected
by dopamine imbalances, as those occurring in Parkinsonian subjects, or after medication.

4.6. Active Control of the Phasic Dopamine

The simulation results suggest that a different phasic dopamine should be used during
reversal learning compared with the basic learning, to avoid excessive competition between
a previously learned choice and a new choice (in particular unexpected punishments
should have a strong impact during a reverse choice, to depotentiate the synapses). Hence,
in the last series of simulations shown in the Section 2, we repeated the basic learning
procedure and the reversal learning procedure assuming that the phasic dopamine changes
are controlled by the activity of the winner Go neuron. Briefly, we can consider that the value
of the winner Go neuron, at the instant of the reward/punishment, signals the expected
probability of a reward. This quantity is automatically updated by the network, on the
basis of a previous history of rewards and punishments, and also depends on the input
stimulus (hence on the context). Consequently, we decided that the higher the Go activity,
the smaller the phasic dopamine reward (in case the action is rewarded) or the higher the
phasic dopamine punishment (in case the action is punished).
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