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Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease
resulting in reduced insulin production due to dysfunction/destruction of pancreatic b
cells. Currently, there continues to be a need for immunotherapies that selectively
reestablish persistent b cell-specific self-tolerance for the prevention and remission of
T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target
specific immune cell populations inducing autoimmune-driven pathology. Several mAb
have proven to be clinically safe and exhibit varying degrees of efficacy in modulating
autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a
targeted cell population regardless of antigenic specificity. However, this treatment
strategy can prove detrimental resulting in the loss of acquired protective immunity.
Nondepleting mAb have also been applied to modulate the function of immune effector
cells. Recent studies have begun to define novel mechanisms associated with mAb-
based immunotherapy that alter the function of targeted effector cell pools. These results
suggest short course mAb therapies may have persistent effects for regaining and
maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties
permits the development of novel strategies to target multiple antigens and/or deliver
therapeutic drugs by a single mAbmolecule. Here, we discuss current and potential future
therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease defined by the immune-mediated destruction and/
or dysfunction of the insulin producing b cells within the pancreatic islets of Langerhans (1–11).
Both genetic and ill-defined environmental factors (e.g. viral infection, diet) influence T1D
susceptibility (4–6, 12–16). Typically, it takes a number of years from the initiation of
autoimmunity to diagnosis of clinical diabetes (5–9). When the functional b cell mass is reduced
by ~80%, production of insulin becomes insufficient to regulate the body’s glucose levels. Currently
there is no established curative treatment, and T1D is managed via daily exogenous insulin
treatment and monitoring of blood glucose levels. Insufficient control of daily glucose levels can lead
to severe complications including blindness, atherosclerosis, and neuropathy (6, 7).

T1D is a consequence of the breakdown of peripheral tolerance to b cell antigens, such as
proinsulin, insulin, and glutamic acid decarboxylase (GAD65). The triggering event of T1D is
org February 2021 | Volume 11 | Article 6245681
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poorly understood, and likely involves an environmental insult.
CD4+ and CD8+ T cells are generally considered to be the
primary drivers of b cell destruction in T1D patients. For
instance, the strongest genetic risk factor for T1D is associated
with specific alleles of HLA class II and class I molecules, and
CD4+ and CD8+ T cells are found infiltrating the islets of T1D
subjects (5, 6, 9, 13–33). Furthermore, the more aggressive
childhood versus adult T1D onset is marked by an expanded
effector T cell (Teff) response to proinsulin and insulin (20–22).
However, examples of human islets lacking a T cell infiltrate have
also been reported (24, 34, 35). Other adaptive immune cell
populations such a B cells, and various innate effectors such as
dendritic cells (DC), macrophages (MF), and natural killer (NK)
cells reside in the islets of T1D subjects as well (24, 34, 35).
Autoantibodies to islet proteins are also detected prior to clinical
T1D diagnosis, and have been used to establish the risk of
individuals progressing to overt diabetes (36–41).

Studies using the non-obese diabetic mouse (NOD), a model
of spontaneous T1D have provided important information
regarding disease progression and prevention (10, 11).
Genetically manipulated NOD mice and adoptive transfer
strategies have shown a direct role for CD4+ and CD8+ T cells
as well as B cells in mediating b cell destruction. For example, in
the absence of T or B cells, overt diabetes fails to develop (10, 11,
42–44). b cell-specific T cell reactivity is initiated by DC that
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ferry islet antigens from the pancreas into the draining
pancreatic lymph node (PLN) (Figure 1) (45–49). In the PLN,
naïve CD4+ and CD8+ T cells preferentially differentiate into
proinflammatory Teff subsets, based on the cytokine milieu
(Figure 1) (50–55). Release of IL-12 by DC induces the
generation of type 1 CD4+ and CD8+ Teff, Th1 and Tc1,
respectively, marked by expression of the transcription factor
T-bet and the cytokine IFNg (52, 56). Th1 and Tc1 cells have
been closely linked to T1D development in both NOD mice and
T1D patients (20, 52, 57, 58). However, IL-17A and IL-21-
secreting Th17 cells, and IL-21-secreting T follicular helper
(Tfh) cells also contribute to b cell destruction (50–52, 59–61).
Th17 differentiation is driven by an IL-1b, IL-6, TGFb, and IL-23
cytokine milieu (50, 52, 62), whereas IL-6 and IL-21 favor Tfh
differentiation (51, 53–55). After APC-antigen encounter, self-
reactive Teff migrate into the islets and promote b cell damage
via direct cytolysis, and indirectly through production of
proinflammatory cytokines, such as IFNg, IL-1b and TNFa
(Figure 1) (63–65). b cell damage and induced stress further
exposes autoantigens, which leads to epitope spread and
expansion of the pool of b cell-specific T cells (66, 67). Islet
resident DC, MF and NK cells further promote b cell damage by
maintaining the proinflammatory environment (5, 6, 9, 11, 24,
34, 45, 46, 57, 68–70). As islet inflammation or insulitis
progresses, functional b cell mass declines until insulin
FIGURE 1 | Type 1 diabetes (T1D) pathogenesis. Cellular events associated with driving T cell-mediated T1D are depicted within the pancreatic lymph node (PLN)
and pancreas. Upon initiation of b cell autoimmunity via an ill-defined event, dendritic cells (DC) migrate from the pancreas ferrying islet autoantigens into the PLN.
Here, naïve b cell-specific CD4+ and CD8+ T cells are activated and differentiate into distinct Teff subsets associated with T1D progression including CD8+ Tc1, CD4+

Th1, Th17, and Tfh. Early indication of ongoing autoimmunity is marked by the detection islet-specific autoantibodies (AutoAbs). Teff traffic into the pancreas and
initiate b cell damage, which gradually increases over time prompting nominal insulin production.
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production can no longer be sustained at sufficient levels to
maintain appropriate blood glucose levels and overt diabetes is
diagnosed (Figure 1) (5, 8, 9).

Based on findings made in NODmice and T1D patients, T cells,
and to a lesser extent B cells, have been the focus of most
immunotherapy strategies (10, 11, 42–44, 71). Nevertheless, due
to the heterogeneity and complexity inherent with the diabetogenic
response, designing effective immunotherapies to prevent and/or
treat T1D has been challenging. Numerous therapeutic strategies to
prevent and/or reverse T1D have been met with varying degrees of
clinical success and disappointment (72).

The use of monoclonal antibodies (mAb) has been one
approach clinically tested to prevent and/or treat T1D and other
autoimmune diseases (73–75). The development of therapeutic
mAb involves a number of key steps including: mAb generation,
screening/selection, humanization, affinity maturation, molecule
optimization, and engineering for commercial production (73,
74). Notably, advances in in vivo and in vitro generation of
antigen-specific mAb, and engineering of immunoglobulin (Ig)
molecules have greatly aided the production and application of
mAb for therapeutic use. Clinically applied mAb and related
molecules have provided safe and selective therapeutic targeting
of biologically relevant proteins for the treatment of several diseases
ranging from cancer to autoimmunity (73–75). For instance, mAb
therapy targeting TNFa is being used in rheumatoid arthritis (RA)
to mitigate disease severity (76, 77).

In T1D, mAb treatment must suppress ongoing b cell
destruction while reestablishing long-term self-tolerance.
Maintenance of long-lasting self-tolerance is largely mediated by
various subsets of regulatory T cells (Treg). The timing of T1D
immunotherapy is believed to be a critical factor impacting clinical
efficacy. Intervention with mAb at early stages of b cell
autoimmunity, when the frequency of pathogenic immune
effectors infiltrating the islets is relatively low and the functional b
cell mass high, is expected to be the most effective time to modulate
the autoimmune response. Alternatively, if treatment is started later,
it may be necessary to couple mAb therapy with strategies that
enhance the expansion and function of the residual b cell mass in
recent onset and long-standing diabetic individuals. Therapeutic
mAb typically function via two general mechanisms: i) depletion of
target cell populations, and ii) blockade of cell receptor function
(Figure 2). However, advancements in mAb development have
provided novel uses for therapeutic mAb such as inducing select
receptor signaling and the delivery of therapeutic drugs to a target
cell. This review will discuss strategies applied and advancements
made in mAb therapies for T1D prevention and treatment.
DEVELOPMENT OF THERAPEUTIC MAB

Production of Antigen-Specific mAb
The advent of B cell hybridoma technology in the mid 1970’s
provided the means to generate antigen-specific mAb, and in
turn jump-started the field of mAb immunotherapy (78). The
approach entails harvesting Ab-producing B cells from antigen
immunized mice that are immortalized via fusion with myeloma
cells to generate hybridoma cell lines (79). Although still a standard
Frontiers in Immunology | www.frontiersin.org 3
protocol for mAb production, the hybridoma method is generally
time consuming and labor intensive (80). Accordingly, a variety of
other approaches have been developed to provide more rapid
production and expand the repertoire of antigen-specific mAb.

One such technique is phage display pioneered in the mid
1980’s (81). The general approach entails cloning a gene into
gene III of filamentous phage, and having the encoded protein/
peptide displayed on the surface of the phage (82). The
engineered phages are then exposed to a protein that binds the
ectopic protein/peptide, the protein-bound phages expanded in
bacteria, and subjected to additional cycles of screening. This
method has been adapted for Ab phage display (APD) to screen
libraries of variable regions of antigen binding fragments (Fab)
or recombinant single-chain variable fragments (scFv) expressed
on the surface of phages (83). With large human Ig libraries
readily available, the process of generating and screening
sequences of complementary-determining regions (CDR) of
human Ig is rapid (84). In addition, human Ig sequences
negate the need for humanization (see below). Adalimumab
(D2E7) was the first fully human anti-TNFa mAb developed
using APD technology. Adalimumab exhibited comparable
inhibitory efficiency to a murine anti-human TNFa mAb
(MAK195), which was used as a template (85). APD can also
be used for optimization of mAb generation and production (86,
87). This method allows immunization steps to be bypassed,
which is a significant advantage for developing mAb against non-
immunogenic, toxic, or self-antigens. Despite numerous benefits,
a key drawback of APD is that the selection of heavy and light
chains is based on random selection events that may not
represent a functional Ig in vivo (88, 89). Nevertheless, APD
provides an accelerated mAb discovery and screening method
compared to the classic hybridoma mAb technique.

Humanization of mAb
AmurinemAb targeting the CD3 epsilon polypeptide of the human
T cell receptor (TCR) complex was the first developed and approved
for treatment in patients as an immunosuppressant drug to prevent
acute allograft rejection after organ transplantation (90). Despite
observed therapeutic benefits, severe side-effects emerged that
limited clinical application (91). Patients treated with the murine
mAb rapidly developed a human anti-mouse Ab (HAMA) response
that ranged from the development of rashes to lethal kidney failure.
In addition to significant safety issues, immune reactivity also
reduces mAb efficacy and half-life. To overcome immune
responses to mAb produced in non-human species, the Ig
molecules undergo a “humanization” process. Here, non-human
portions of the Ig molecule are reduced to minimize
immunogenicity without compromising antigen binding. Initially,
chimeric Ig molecules were generated consisting of a murine
variable region coupled with a human constant region. However,
the murine portion, making up ~30% of the Ig molecule, is still
sufficient to elicit immune reactivity (92–94). Further mAb
humanization, increasing the human content to ~85%, is
accomplished by grafting the non-human CDR into similar
human frameworks. However, this grafting can lead to the loss of
antigen-binding affinity due to conformational alteration of the
CDR loops (95, 96). The first FDA-approved humanized mAb
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daclizumab, an anti-CD25 mAb, was generated by grafting murine
CDR, which resulted in markedly reduced binding affinity (97).
Distinct residues in framework regions, known as vernier zone
residues, are responsible for maintaining Ig binding affinity and
need to be retained during humanization (98–100). However,
murine residues found in vernier zones still can elicit HAMA
responses (101). Therefore, efforts continue to preserve antigen
Frontiers in Immunology | www.frontiersin.org 4
binding while limiting HAMA responses for mAb engineered with a
non-human binding domain on a human Ab backbone.

The use of transgenic rodents that express human (Hu)-Ig is
one approach to generate bona fida human mAb following
antigen immunization (102, 103). Transgenic mice, lacking
endogenous Ig expression, have been established that express
human light chain genes coupled with a germline human Vk
FIGURE 2 | mAb therapies to ameliorate type 1 diabetes (T1D). (A, B) Monoclonal antibodies (mAb) treatments can be broadly divided into two categories:
depleting mAb or nondepleting (ND)/neutralizing mAb. Some promising mAb treatments are depicted that have been used in either animal models or clinical trials to
alter T1D progression. (A) Depleting mAb have been used to target T and B cells in the clinic. Transient depletion of T and B cells delays the progression of b cell
autoimmunity. (B) ND mAb have been applied to neutralize cytokines to suppress the proinflammatory milieu of the pancreatic lymph node (PLN) and islets, as well
as modulate the properties and activity of various immune effector cells. (C) The relationship between functional b cell mass versus islet inflammation is characterized.
Over time, increased chronic islet inflammation results in decreased functional b cell mass, first detected via metabolic abnormalities, and ultimately leading to
deficient insulin production, prompting clinical diagnosis of T1D. Individuals at different stages of T1D progression have treated with mAb therapies to alter T1D
progression, and in turn (D) prevent diabetes onset, or (E) rescue residual b cell mass after clinical T1D diagnosis. Typically, these clinical trials have used metabolic
readouts for b cell function as primary endpoints to determine therapeutic efficacy (C).
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region. Human heavy chain genes encoding m and g1 are also
expressed to allow class switching. Transgenic Hu-Ig mice have
been used in combination with conventional hybridoma
technology to produce several human mAb applied in the
clinic including: zanolimumab (anti-CD4), canakinumab (anti-
IL-1b), ustekinumab (anti-IL-12/23p40), and golimumab (anti-
TNFa) (104–108).

Fc Engineering
In addition to epitope binding, mAb elicit a wide range of effector
functions that are dependent on the Ig Fc region. Effector
functions include Ab-dependent cell-mediated cytotoxicity
(ADCC), Ab-dependent cell-mediated phagocytosis (ADCP),
and complement-dependent cytotoxicity (CDC) (109).
Glycosylation of the Fc region impacts binding to Fc receptors
(FcR) on effector cells and subsequent ADCC and ADCP
responses. Accordingly, mAb effector function can be
manipulated via modification of glycosylation of the Fc region.
For example, enhanced ADCC by tumor resident NK cells is seen
with a human IgG1 lacking fucosylated glycan at Asn297 in the
Fc region, leading to increased tumor rejection (110, 111).
Modification of the Fc region has also been important in
reducing unwanted adverse events associated with mAb
effector function. Initial clinical trials using anti-human CD3
OKT3 IgG1 for the treatment of T1D resulted in cytokine release
syndrome (CRS), driven by FcRg binding (112, 113). Alanine
substitutions at amino acid positions 234 and 235 were
introduced into the CH2 Fc region of the g1 backbone that
reduce glycosylation and FcRg binding. Consequently, the
resulting mAb, teplizumab (huOKT3g1(Ala-Ala)), exhibits only
minimal CRS (114). A similar approach has been used with the
anti-human CD3 otelixizumab, a humanized aglycosylated IgG1
tested in T1D clinical trials (115, 116). The Fc region, however, is
important for structural stability and reduced Fc binding to the
neonatal receptor, FcRn, leads to shortened Ab serum half-life
(117, 118). Therefore, engineering of the Fc region is important
for mAb development that needs to be optimized for both drug
safety and pharmacokinetics.
THE APPLICATION OF DEPLETING
MAB FOR T1D

mAb targeting cellular antigens are typically depleting due to
ADCC, ADCP, and CDC responses. The goal of using a
depleting mAb in the context of autoimmunity is to eliminate
the pathogenic immune effectors preventing further tissue
damage. In T1D, depleting mAb treatments in preclinical or
clinical settings have targeted various cell populations. Transient
depletion of T and B cells via mAb for example, have shown at
least short-term benefits in recent onset T1D subjects (Figure 2)
(119–123).

Anti-CD3 Therapy
Arguably, the most successful clinical immunotherapy for T1D
to date has been administration of anti-CD3 mAb. The first
Frontiers in Immunology | www.frontiersin.org 5
murine IgG2a specific for the human CD3 epsilon-subunit
(OKT3) was developed in 1979, and approved by FDA as the
first human mAb immunotherapy in 1986 (124). Treatment
successfully prevented acute graft rejection and graft-versus-
host-disease (GvHD) in organ transplant patients (124, 125).

In 1994, Chatenoud and Bach showed that anti-CD3 therapy
reversed new onset diabetes in NOD mice, and established long-
term remission and b-cell-specific tolerance (126). The
mechanisms of protection induced by anti-CD3 mAb therapy
have been extensively studied in mice (127–129). Following anti-
CD3 mAb binding, increased TCR signaling promotes T cell
activation-induced cell death (AICD) (130, 131). Interestingly,
AICD by anti-CD3 mAb is selective for conventional T (Tconv)
cells with limited effects on FoxP3-expressing CD4+ Treg
(Foxp3+Treg) (132). In NOD mice, the depletion of islet
infiltrating Teff by anti-CD3 suppresses ongoing b cell
destruction, albeit at the expense of transient systemic
depletion of Tconv (126, 133). Additionally, the ingestion of
apoptotic T cells enhances TGFb production by MF, which
promotes Foxp3+Treg differentiation (128, 129, 134). This
increased pool of Foxp3+Treg plays a critical role in
maintenance of diabetes remission in NOD mice (128).

During a randomized, controlled, open-label phase I/II
clinical trial, newly diagnosed T1D patients were given a 14-
day course of treatment of teplizumab (120). Although diabetes
reversal was not observed, the teplizumab-treated group had
several promising metrics. Over a 2 year period C-peptide
responses and insulin production were sustained, which
correlated with decreased acetylated hemoglobin (HbA1c) and
insulin dependency (119). Otelixizumab also was shown to
preserve b cell function and reduce insulin use for 4 years in a
phase II placebo-controlled trial (135). The beneficial effects of
otelixizumab were most pronounced in patients with higher
residual b cell function, but the therapeutic effects diminished
by 24 months, suggesting overall efficacy was limited. In
addition, otelixizumab treatment resulted reactivation of
Epstein Barr virus in some subjects (121). Although the effects
of otelixizumab were transient, this study indicated that
intervening at an earlier time post-diagnosis enhanced efficacy.

Patients who received anti-CD3 mAb experienced significant
reduction of peripheral T cells, which rebounded within a month
after therapy (119, 120, 123, 136, 137). This reduction in
numbers is in part believed to be due to T cell egress from the
circulation (138). Evidence also indicated that anti-CD3 affected
the T cell phenotype in treated T1D subjects. For example, the
frequency of circulating central memory CD8+ T cells and
exhausted islet-specific CD8+ T cells (TIGIT+KLRG1+PD-1+)
were increased (136, 139, 140). Interestingly, recent studies show
that aggressive T1D correlates with the presence of activated
islet-specific HELIOS+ CD8+ memory T cells (Tmem) found in
peripheral blood (141). On the other hand, slower progressing
T1D is marked by peripheral blood islet-specific CD8+ Tmem
exhibiting an exhausted phenotype characterized by
upregulation of EOMES, 2B4, PD-1, TIGIT, and CD160 (141).
These results suggest that anti-CD3 induced T cell exhaustion
plays a role in the protective effect.
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The phase III trials using either teplizumab or otelixizumab
did not meet the primary endpoint goal (142–144). Nevertheless,
post-hoc analyses showed a reduced loss of C-peptide in a subset
of patients receiving teplizumab (142). On the other hand, the
otelixizumab phase III trial was terminated after an untested and
reduced dose of the mAb failed to significantly improve C-
peptide levels compared to the control groups. A phase I/IIa
repeat dose escalation study of otelixizumab has shown a dose-
dependent relationship between anti-CD3-TCR engagement and
TCR downregulation [NCT02000817 (145)]. The dosing of
otelixizumab was also found to be well tolerated and preserved
b cell function over 18 months (146). A new randomized,
double-blind, placebo-controlled teplizumab phase III trial
addresses the safety and tolerability of the treatment in recent-
onset T1D young patients as well as the effect on b cell
preservation using the most effective dosage and modified
primary outcome based on earlier findings (NCT03875729).

A recent phase II study in high-risk, nondiabetic relatives of
T1D patients, investigated the efficacy of teplizumab to prevent
diabetes onset (NCT01030861). Subjects receiving a single 14-
day course of teplizumab exhibited an average delay of 24
months in the onset of diabetes (136). Notably, the largest
response to teplizumab was seen in subjects with reduced
median levels of C peptide at the time of intervention,
indicative of a later stage of disease progression. In addition,
HLA haplotype was found to influence the efficacy of teplizumab.
This latter result suggests that the TCR repertoire, likely
reflecting the size of the activated Teff pool, are parameters
influencing the response to teplizumab. Importantly, this study
provides the first evidence that anti-CD3 treatment can delay
T1D onset in at-risk individuals, as well as further substantiate
targeting the T cell compartment as a general means to modulate
the human disease process. Consequently, teplizumab has been
granted PRIority MEdicines (PRIME) designation by European
Medicines Agency and Breakthrough therapy designation by the
U.S. Food and Drug Administration (147, 148).

The route of administration of anti-CD3 is also being assessed
to enhance efficacy and safety. Initial studies with oral anti-CD3
treatment in murine experimental autoimmune encephalitis
have demonstrated decreased side effects and increased efficacy
at lower dosages (149). Of note, oral administration of anti-CD3
failed to alter the CD3/TCR complex or induce pronounced
downstream TCR related signaling events such as depletion or
release of proinflammatory cytokines (150). Instead tolerance
was achieved by induction of TGFb1-expressing Th3 cells (149,
151). However, the therapeutic efficacy of oral anti-CD3
treatment in T1D has yet to be clinically tested.

Anti-CD20 Therapy
B cells are critical to the pathogenesis of T1D, and are
consistently detected within the pancreatic islet infiltrate (9, 24,
42–44, 70). Development of diabetes is prevented in NOD mice
treated with a B cell depleting anti-CD20 at a preclinical stage of
T1D (Figure 2) (152). Similarly, anti-CD22 mediated B cell
depletion in NOD mice prevents diabetes, and has been reported
to induce remission in new onset animals (153).
Frontiers in Immunology | www.frontiersin.org 6
Studies suggest that B cells are also key drivers in the
progression of human T1D. For example, the aggressive, early
onset of diabetes correlates with high numbers of islet infiltrating
CD20-expressing B cells (57, 154). Rituximab, a mouse-human
chimeric IgG1 mAb specific for human CD20, has been studied
in recent onset T1D patients (122). One year after treatment,
rituximab versus control treated subjects exhibited an
improvement in the levels of HbA1c and C-peptide, as well as
the requirement for insulin indicating preserved b cell function.
However, CD19+ B cells slowly repopulated the periphery and no
long-term benefit was detected after two years (155). Previous
studies have indicated that disease promoting autoreactive B cells
may not be completely deleted after anti-CD20 treatment (156,
157). Further studies regarding the timing, potential as a
preventative treatment, and dosage of rituximab are needed to
optimize this therapeutic potential for T1D.

Anti-CD2 Therapy
CD2 is a surface adhesion molecule expressed by a variety of cell
populations including T cells, NK cells and DC (158–160).
Notably, CD2 levels are increased on Tmem (158, 159).
Alefacept, a fusion protein consisting of the CD2-binding
domain of LFA3 fused to the Fc region of human IgG1
(IgG1Fc), has been utilized to treat psoriasis (88, 161). The
fusion protein preferentially binds to Tmem, and induces
apoptosis mediated by IgG1Fc binding to FcRg expressed by
NK cells (162). Accordingly, individuals treated with alefacept
have reduced levels of Tmem. Regarding T1D, a 12 and 24
month clinical trial with recent onset patients demonstrated a
reduced frequency of activated T cells and increased ratio of Treg
to Tmem in blood. Additionally, C-peptide levels were improved
after a mixed meal test (MMT) in the alefacept versus placebo
group [NCT00965458 (163, 164)]. This correlated with reduced
exogenous insulin requirements, and suggested that alefacept
prolongs b cell function (163, 164). Interestingly, in psoriasis
patients, alefacept reduced activated CD11c+/CD83+ DC subsets
and inflammatory gene expression levels (165). Therefore, this
strategy may restore peripheral tolerance via targeted deletion of
activated self-reactive T cells and APC plus increasing Treg to
dampen the ongoing autoimmune response.

Overall, depletion of immune populations via mAb has been
effective in influencing b cell autoimmunity in both mice and
humans. Nevertheless, there is the risk of limiting protective
immunity following broad depletion of a given immune cell type,
particularly if treatment requires continued mAb administration.
THE APPLICATION OF NONDEPLETING
MAB FOR T1D

In addition to depletion, mAb have the capacity to block and/or
modulate intercellular and effector molecule interactions.
Naturally occurring or engineered nondepleting (ND) mAb
have been clinically used to block cytokine/chemokine-receptor
interactions and to inhibit cell surface receptor-ligand
engagement to affect an immune response (Figure 2). Human
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IgG4 for instance, has a low affinity for most FcRg, which limits
ADCC, ADCP, and CDC (166, 167). As noted above, modifying
glycosylation patterns can also be used to block the depleting
function of mAb, as well as enhance therapeutic efficacy, and Ig
half-life (168, 169). Overall, ND mAb have the therapeutic
advantage of preserving the pool of targeted immune effector
cells while disrupting an ongoing autoimmune response.

mAb Neutralization of Soluble Immune
Effector Molecules
The combination of the proinflammatory cytokines IL-1b, IFNg,
and TNFa is cytotoxic to b cells (63, 64). IFNa also enhances
CD8+ T cell-mediated destruction of b cells via upregulation of
MHC class I by b cells (170–173). Therefore, mAb therapies have
been used to neutralize the proinflammatory environment within
the islets and preserve functional b cell mass (Figure 2). Two
different therapies to inhibit IL-1b, an anti-IL-b mAb
(canakinumab) and an antagonist of the IL-1R (anakinra),
have been ineffective at maintaining b cell function in recent
onset T1D patients [NCT00947427, NCT00711503 (174)]. In
contrast, etanercept, an anti-TNFa fusion protein that binds to
and removes TNFa from circulation, has demonstrated efficacy
based on reduced Hb1Ac levels in recently diagnosed children
[NCT00730392 (175)]. An ongoing clinical phase II trial is
testing the tolerability and effects on b cell autoimmunity of
etanercept in combination with vitamin D plus GAD65 prepared
in Alum adjuvant (NCT02464033). The goal here is to suppress
islet inflammation while inducing GAD65-specific Treg.
Simponi, a neutralizing Ab that binds to both soluble and
membrane bound TNFa, is also being investigated to maintain
b cell mass (NCT02846545). Early evidence indicates that
simponi may prolong insulin production, but long-term
efficacy still needs to be determined (176).

Studies in NOD mice have shown that blocking IFNa or its
receptor reduces T1D incidence (177, 178). Furthermore, mAb
neutralization of IFNg can prevent the progression of b cell
autoimmunity in adoptive transfer models of T1D when
administered at distinct treatment windows (179–181). In
contrast, IFNg-deficient NOD mice continue to develop diabetes,
suggesting potential redundancy among proinflammatory cytokines
and highlighting the importance how timing of mAb intervention
can impact therapeutic efficacy (182–184). Overall, neutralizing a
single proinflammatory cytokine has generally had limited success.
This may in part reflect the relative role of a given cytokine in
general and/or at a particular stage in the disease process. Targeting
multiple cytokines that affect b cell viability and function may be
needed to enhance the efficacy of the approach.

mAb targeting of cytokines to modulate T cell subset
differentiation and effector function has also been a strategy to
alter the progression of b cell autoimmunity. Neutralizing IL-12,
which induces type 1 (e.g. Th1/Tc1) subset differentiation, limits
insulitis and prevents the onset of diabetes in NOD mice (10).
However, efficacy is dependent on continuous and frequent anti-
IL-12 administration (185).

Cytokine-specific mAb have also been used to block the
function and/or differentiation of other CD4+ T cell subsets
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involved in b cell autoimmunity, such as Th17 and Tfh cells (50,
52, 54, 55, 186). For instance, IL-21 secreted by Th17 and Tfh
cells, has been targeted. A role for IL-21 in T1D was initially
demonstrated in NOD mice lacking IL-21R, which exhibit
minimal insulitis and reduced diabetes incidence (60). Ectopic
expression of IL-21 by b cells also induces diabetes in non-
autoimmune prone C57BL/6 mice (187). Furthermore, blockade
of IL-21 reverses established T1D in NOD mice making IL-21 a
promising therapeutic candidate in the treatment of T1D (188).
Indeed, a phase II clinical trial of newly diagnosed T1D patients
treated with anti-IL-21 and liraglutide (a glucagon-like-peptide-1
agonist), designed to curtail autoimmunity and boost insulin
production, is underway (NCT02443155).

Diabetes incidence is reduced in NOD mice treated with anti-
IL-17A starting at 10 weeks of age, a relatively late preclinical
stage of T1D (59). Interestingly, protection correlates with an
increased frequency of Foxp3+Treg in the islets and PLN, likely
mediated in part by a dampened proinflammatory milieu. Both
Foxp3+Treg and Th17 cells differentiate in the presence of TGFb,
however in the absence of additional proinflammatory cytokines
such as IL-1b and IL-6, CD4+ T cell differentiation is skewed
toward the Foxp3+Treg subset (189, 190). Notably, anti-IL-17A
treatment initiated at an earlier stage of T1D progression is
ineffective at preventing diabetes onset in NOD mice (59). These
results suggest that interfering with Th17 differentiation and
function is effective when insulitis is well established. Similarly,
treatment of NOD mice at 10 weeks of age with recombinant IL-
25, which antagonizes Th17 differentiation, also decreases T1D
incidence (59). Thus, mAb therapies targeting Th17 and Tfh
subsets have yielded promising results in murine T1D that may
lead to beneficial clinical outcomes for human T1D treatment.

Modulating Immune Effector Cell
Activity via ND mAb
In addition to targeting soluble mediators regulating autoreactive
Teff differentiation and function, ND mAb therapies have been
applied to directly modulate Teff activity via binding to surface
molecules. Naïve T cells have the plasticity to differentiate into
various Teff subsets defined by unique transcription factor and
cytokine profiles. One key factor driving Th1/Tc1 subset
differentiation is a strong TCR signal, defined as the
culmination of TCR (signal 1), co-stimulatory molecule (signal
2) and cytokine (signal 3) signaling pathways (191–193).
Furthermore, continued TCR signaling is required to maintain
Teff function. Therefore, strategies to dampen these signaling
pathways are expected to prevent expansion and function of
pathogenic Teff. Blocking the T cell co-stimulatory molecule
pathway using abatacept, an anti-CTLA4-Ig fusion protein, slows
b cell functional decline and improves Hb1Ac values in new-
onset T1D patients, although insulin independence is not
achieved [NCT00505375 (194, 195)]. Interestingly, recent
studies have indicated clinical responsiveness to abatacept in
recent-onset T1D subjects is dependent on suppression of Tfh
cells, indicating that the therapy modulates the T cell pool (61).

Short-term ND mAb treatment targeting the T cell co-
receptors CD4 and CD8a both prevents and reverses diabetes
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in NOD mice while establishing long-term b cell-specific
tolerance (196–200). T cells examined shortly after mAb
treatment exhibit reduced TCR signaling and suppressed
production of proinflammatory cytokines (196, 197).
Importantly, mAb-bound T cells rapidly egress from the islets
and PLN (196–198). The latter is dependent on mAb-mediated
co-receptor cross-linking, and is marked by distinct changes in T
cell transcriptional activity, decreased sensitivity to local
retention cues, and enhanced responsiveness to tissue egress-
inducing chemokines (196, 197). Long-term maintenance of
tolerance is tissue-specific, mediated by an induced b cell-
specific Foxp3+Treg, while protective immunity is unperturbed
(198). Interestingly, a ND humanized anti-human CD4 IgG1
mAb, tregalizumab, has been reported to preferentially activate
and enhance the suppressor activity of FOXP3+Treg in vitro
(201). Short-term ND mAb treatment strategies targeting T cell
co-stimulatory molecules can inhibit b cell-specific T cell
reactivity long-term via changes in T cell transcriptional profiles.

mAb that recognize b cell-peptide-MHC complexes may
provide an additional strategy to alter TCR signaling, and
enhance targeting of autoreactive Teff. For example, a mAb
(mAb287) recognizing the peptide:MHC class II complex
insulin B:9-23 peptide in the context of IAg7 blocks IL-2
cytokine secretion and tetramer binding by an insulin specific
T cell hybridoma. Additionally, NOD mice treated weekly
starting at 4 weeks of age with mAb287 significantly delays
T1D onset (202).

mAb-mediated blockade of CD127, the IL-7Ra, both
prevents and reverses diabetes in NOD mice (203, 204).
CD127 is expressed by naïve T cells and Tmem, and is critical
for maintaining T cell homeostasis. Short-term anti-CD127
treatment induces increased PD-1 expression and diminished
proinflammatory cytokine production by Teff, consistent with an
exhausted T cell phenotype (203, 204). Indeed, the protective
effect induced by anti-CD127 mAb in NOD mice is reversed by
treatment with a PD-1 blocking mAb, known to rescue
exhausted T cells (203). T1D patients treated with the anti-IL-
7Ra mAb RN168 show a reduction in Tmem and activated T
cells while the FOXP3+Treg pool is maintained (205).
Nevertheless, C-peptide levels are not markedly altered, which
may reflect the dose and/or duration of RN168 administered.

ND mAb therapy has also been employed to alter NK cell
activity. Specifically, studies have examined the role of NK cell
activating receptor NKp46 or the mouse orthologue NCR1 in
affecting the diabetogenic response (68, 206, 207). Anti-NCR1
mAb (NCR1.15) treatment initiated early in disease progression
decreased diabetes incidence in NOD mice (206). This protective
effect correlated with a pool of NK cells with reduced NCR1 surface
expression, activation and degranulation (206). Although the ligand
for NKp46 has yet to be identified, NCR1-Ig and NKp46-Ig fusion
proteins bind to murine and human b cells respectively, indicating
that b cells express a NK cell activating ligand (68, 208). Recently a
humanized anti-NKp46 (hNKp46.02) has been shown to also
reduce NK cell degranulation and internalization of the NKp46
activating ligand (207). Therefore, future studies are poised to
investigate the efficacy of targeting NK cells for T1D treatment.
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Central to the development of T1D is the ability of pathogenic
autoreactive immune cells to traffic into the islets (209). T and B
cells require various adhesion molecules to facilitate extravasation
from circulation into sites of inflammation. Notably, NOD mice
deficient in the T cell adhesion molecule ICAM-1 are protected
from diabetes (209, 210). Accordingly, mAb-mediated blockade of
adhesion molecules has been assessed in NOD mice as a means to
prevent T and B cell trafficking into the islets (209). NOD mice
treated with anti-ICAM-1 mAb exhibit reduced diabetes onset (209,
211). Similarly, blockade of MADCAM-1 in young NOD mice also
reduces diabetes incidence. However, once islet infiltration has been
established, MADCAM-1 blockade is ineffective (209, 212). These
findings suggest that the timing of mAb blockade of adhesion
molecules is critical, and that the approach is more effective at earlier
stages of b cell autoimmunity when only a limited number if islets
are infiltrated.

Taken together, ND mAb offer a promising therapeutic
approach for prevention and treatment of T1D. Initial clinical
and a substantial number of preclinical studies demonstrate that
the function of effector molecules and properties of various
immune cell types driving b cell autoimmunity can be
modulated by ND mAb and fusion molecules. This is achieved
without significant changes in systemic numbers of immune
effectors or disruption of protective immunity.

mAb-Cytokine Complexes
Cytokine-based therapy has been used to modulate immune-
mediated pathology, including autoimmunity and T1D.
However, systemic delivery of cytokines is problematic due to
pleiotropic effects, and non-specific cell signaling that leads to
potentially severe adverse effects. To overcome these obstacles,
mAb-cytokine complexes are being developed and applied to
target specific cell populations, and in this way enhance efficacy
and safety. An example is the use of IL-2-Ab complexes (213).

IL-2 is predominantly produced by activated T cells and
promotes expansion and survival of Teff (214). Additionally,
IL-2 is essential for Foxp3+Treg differentiation, fitness, and
maintenance (214). Development of murine T1D has been
linked to reduced IL-2 production by T cells leading to
Foxp3+Treg dysfunction and heightened b-cell-specific Teff
responses (215–221). Similarly, polymorphisms in the CD25
gene are associated with human T1D susceptibility, and in
part, result in reduced sensitivity of FOXP3+Treg to IL-2 (215–
222). Upon activation the IL-2 receptor complex, consisting of
CD25, CD122, and CD132, is upregulated on Tconv. In contrast,
Foxp3+Treg constitutively express elevated levels of the high
affinity IL-2 receptor component CD25 (223). Increased CD25
expression by Foxp3+Treg provides a competitive advantage to
acquire local IL-2 and therefore prevent Teff expansion and
function (221, 223). Two murine anti-IL-2 mAb have been
developed that exhibit distinct biological functions in vivo
when bound to recombinant IL-2 (213, 224). The anti-IL-2
clone S4B6 establishes an IL-2 complex that preferentially
binds to Teff. S4B6 binding to IL-2 prevents IL-2 interaction
with CD25 causing selective binding of IL-2 to CD122 on Teff
(213, 224). In contrast, the JES-61A2 anti-IL-2 clone establishes
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an IL-2 complex that is preferentially bound by Foxp3+Treg
(213, 224). Here JES-61A2 binding to IL-2 prevents interaction
with CD122 causing IL-2 to signal through CD25 (213, 224). Co-
treatment of NOD mice with b cell peptide loaded tetramers and
IL-2-JES-61A2 mAb complexes selectively expands b cell-
specific Foxp3+Treg reducing diabetes incidence (225). A key
benefit of mAb-IL-2 complexes is that the half-life of IL-2 is
extended which aids pharmacokinetics (226). Low dosage IgG-
IL-2 complexes significantly enhances FOXP3+Treg numbers
and function in human peripheral blood as well as in
cynomolgus monkeys for the treatment of GvHD (227).

Bispecific mAb
Bispecific Ab (bsAb) contain two distinct antigen binding sites.
Structurally bsAb typically consist of two different Fab arms, or
two unique Ab linked by a common Fc region (228). bsAb can be
used in autoimmunity to: i) neutralize multiple cytokines or
receptors simultaneously, ii) force cell-cell interactions of
different immune populations, and iii) initiate receptor co-
localization on the cell surface (228, 229). The first clinically
applied bsAb was blinatumomab, a CD19- and CD3-specific
recombinant, for the treatment of non-Hodgkins B cell
lymphoma. Blinatumomab forces an interaction between B
cells and cytotoxic T cells. The result of this interaction is
efficient elimination of the B lymphoma cells, expansion of
protective T cells, and an increased life expectancy in the
majority of patients (228, 230).

A bsAb specific for the b cell specific glucose transporter 2
molecule (Glut2) and the T cell inhibitory receptor CTLA-4 has
been tested in NOD mice (231). This bsAb binds to b cells via
Glut2 and engages CTLA-4 on Teff to suppress function. Glut2-
CTLA-4-specific bsAb treatment of NODmice results in reduced
T cell proliferation and proinflammatory cytokine production,
and decreased diabetes incidence (231). While the application of
bsAb for the treatment of T1D has been limited to date, several
enticing therapeutic strategies exist. bsAb that promote
interactions between Foxp3+Treg and Teff, such as a CD25 and
CD122, would be one approach. Another therapeutic option
would be to use bsAb to establish “dual” anti-inflammatory
cytokine complexes. An IL-12-IL-2 mAb fusion protein for
example, has been used to simultaneously deliver both IL-2
and IL-12 to enhance Teff and NK function for cancer
treatment (232). In the context of autoimmunity, dual cytokine
fusion complexes of IL-2 and TGFb may prove to be an effective
strategy to induce and expand adaptive Foxp3+Treg. As
autoimmune diseases are driven by several events, bsAb
provide a novel therapeutic avenue to modulate multiple
drivers of autoimmunity simultaneously.
SUMMARY

The ultimate goal of an immunotherapy for T1D is to suppress
ongoing b cell autoimmunity by restoring peripheral tolerance
without affecting protective immunity, and preserve b cell
function. The complexity of the disease process, marked by
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multiple immune effectors (Figure 1), and varying kinetics of
disease progression among individuals, however, has made the
development of effective immunotherapies highly challenging to
date (5–8, 72).

In general, mAb therapies have been applied to alter disease
progression by deleting immune effector cells, altering effector
cell phenotype/function or blocking soluble/cell-surface protein
interactions (Figure 2). Clinical therapies targeting T and B cells
via anti-CD3 and anti-CD20, respectively, have demonstrated
safety and efficacy in maintaining b cell mass in newly-diagnosed
patients (Figure 2) (136, 233, 234). However, these therapies and
others fail to reestablish self-tolerance long-term. This may in
part be due to insufficient induction/expansion of FOXP3+Treg
or adaptive Treg subsets, and/or failure to adequately tolerize
relevant pools of pathogenic Teff and Tmem. In this regard, it is
noteworthy that efficacy of anti-CD3 to delay diabetes onset in at
risk subjects is in part dependent on HLA haplotype (136). This
finding suggests that parameters such as TCR repertoire, the
avidity/affinity of the Teff, and/or the size of the pathogenic Teff/
Tmem pool contribute to therapeutic outcome. The results are
intriguing and further underscore the complexity associated with
effectively manipulating the complete autoimmune response.

One key variable that influences the efficacy of mAb in T1D is
the timing of intervention in relationship to disease progression
(7, 8, 72). The diabetogenic response in human T1D can be
viewed as a succession of stages marked by: 1) the initiation of
autoimmunity detected by presentation of multiple islet
autoantibodies , 2) ongoing autoimmunity with the
presentation of metabolic abnormalities that indicate aberrant
stress on b cell mass, and 3) the onset of overt diabetes indicating
loss of function of the majority of b cell mass (Figure 2). The
majority of clinical trial interventions have been applied at the
second and third stages of disease progression. It is well
established by preclinical studies that a given mAb treatment
may only be effective at a particular stage of T1D progression
(72). Recent clinical results indicating that the efficacy of anti-
CD3 therapy to delay diabetes onset is dependent on ongoing
autoimmunity, further highlight this key aspect of T1D
immunotherapy. Notably, a similar temporal effect is seen in
NOD mice in which anti-CD3 therapy fails to prevent diabetes
onset when given to NOD mice at an early stage in disease
progression (133). The nature of the effector cells and molecules
being targeted will ultimately determine clinical efficacy at a
given stage of T1D progression. Here, it is critical that the
mechanism by which a therapeutic mAb induces tolerance be
fully understood to help better predict efficacy when
administered at a given stage of disease progression, as well as
the likelihood of induction of long-term tolerance without the
need of persistent intervention. At earlier and less stringent
stages of T1D, strategies that limit trafficking of effectors into
the islets and/or activation and/or differentiation of pathogenic
effectors are expected to be effective. In contrast, during late
preclinical T1D stages or at the onset of diabetes the therapy
must be sufficiently robust to rapidly tolerize an established and
sizable pool of islet resident pathogenic effectors. In both settings
induction and/or expansion of Treg subsets is needed to
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maintain tolerance by limiting subsequent differentiation,
expansion and/or function of pathogenic Teff. In an attempt to
minimize temporal effects of disease progression, mAb therapies
that establish long-term, b cell-specific tolerance broadly over
preclinical and clinical T1D stages in NOD mice and other
rodent autoimmune models, need to be identified and
prioritized. In this regard, the use of ND mAb specific for CD4
and CD8 is noteworthy. A short course of ND anti-CD4 and
CD8amAb prevents diabetes onset when administered to young
NOD mice and results in rapid reversal of diabetes and tissue-
specific long-term tolerance in NOD mice (196–199, 235).

In view of the complexities of the diabetogenic response in
general, and the varied parameters linked to effectively tolerizing
immune effectors, it is likely that multiple cell types and/or
effector molecules will need to be targeted with combinations of
mAb (Figure 1). For example, expansion of b cell-specific
Foxp3+Treg may be enhanced by combining mAb-IL-2
complexes with mAb that quench the proinflammatory milieu
of the PLN and islets and/or block Teff differentiation and
function (225). Alternatively, b cell-specific Treg subsets can be
induced and/or expanded via more traditional antigen-specific
based strategies following “broad” tolerization of Teff via mAb
therapy. The application of bsAb may be particularly
advantageous for combinatorial strategies. The simultaneous
targeting of multiple proteins (e.g. proinflammatory cytokines)
by a single therapeutic agent simplifies treatment dosing and
regimen, and limits potential drug-drug interactions (228, 229).
Importantly, regardless of the mAb strategy, the ability to restore
lasting peripheral tolerance to prevent further b cell destruction
is necessary for clinical success.

An important consideration in selecting a given set of mAb
strategies is whether b cell autoimmunity is driven by T cells
versus innate cells, and/or b cell intrinsic defects. Currently,
evidence indicates that the rapid, aggressive disease developing in
children is largely T cell-mediated. However, adult onset T1D
may be driven by T cells, and/or innate effectors and/or b cell
intrinsic defects leading to dysregulation of insulin production
(236). Needed are sensitive disease readouts and biomarkers that
distinguish between the respective scenarios or endotypes, to
ensure that the appropriate therapeutic strategy is being applied
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(237). Consideration is also needed in defining successful
endpoints for testing a therapeutic approach in the clinic
(237). The ideal scenario is that a given mAb immunotherapy
protects or rescues b cell function measured in part by metabolic
indicators (Figure 2). Nevertheless, in the absence of a successful
metabolic outcome, there is much value in determining whether
an immunotherapy has induced tolerance within the targeted
effector cell pool. As alluded to above, establishing tolerance in
one compartment of the disease process may be insufficient to
achieve a therapeutic benefit. However, determining that
tolerance is indeed established would provide justification to
combine in a rational manner, appropriate complementary
strategies to enhance therapeutic efficacy. In the case of T cells,
single cell transcriptome analysis of T cells bound by b cell-
specific multimers and sorted from the blood of test and control
subjects would be one approach sufficiently sensitive to detect
changes within the T cell compartment.

To date, mAb therapies have provided intriguing results in
affecting the progression of T1D. Nevertheless, an effective strategy
to reestablish self-tolerance long-term is still required. Ongoing T1D
research continues to characterize novel genes and potential targets
involved in T1D disease susceptibility and progression. The ability to
customize the mAb target and respective effector function provides
immense flexibility to discover and develop a successful mAb
treatment for T1D.
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