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Abstract

Regulatory elements control gene expression through transcription initiation (promoters)

and by enhancing transcription at distant regions (enhancers). Accurate identification of reg-

ulatory elements is fundamental for annotating genomes and understanding gene expres-

sion patterns. While there are many attempts to develop computational promoter and

enhancer identification methods, reliable tools to analyze long genomic sequences are still

lacking. Prediction methods often perform poorly on the genome-wide scale because the

number of negatives is much higher than that in the training sets. To address this issue, we

propose a dynamic negative set updating scheme with a two-model approach, using one

model for scanning the genome and the other one for testing candidate positions. The devel-

oped method achieves good genome-level performance and maintains robust performance

when applied to other vertebrate species, without re-training. Moreover, the unannotated

predicted regulatory regions made on the human genome are enriched for disease-associ-

ated variants, suggesting them to be potentially true regulatory elements rather than false

positives. We validated high scoring “false positive” predictions using reporter assay and all

tested candidates were successfully validated, demonstrating the ability of our method to

discover novel human regulatory regions.

Author summary

Identification of regulatory elements (promoters and enhancers) is important for under-

standing gene expression patterns. The set of promoters and enhancers is not complete

for non-model organisms and even for the human genome there are still unannotated

regions, such as alternative promoters for the known genes or promoters that are only

expressed in a small fraction of cells or under specific conditions. Despite the development

of experimental techniques, the regulatory regions annotation remains expensive and
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laborious and computational methods can speed up this process by providing candidates

for the validation. We developed an easy-to-use tool capable of regulatory regions annota-

tion in eukaryotic genomes. The developed method reduces the number of false positives

made by including difficult samples in the training set. The method consists of two deep

learning models, where one model scans the genome and identifies putative regulatory

regions while the other model pinpoints the Transcription Start Site (TSS) location within

the identified region. The predicted regions were validated using reporter assay, finding

previously unknown regulatory regions in the human genome. The trained model

achieved good genome-wide performance and was supported by meaningful extracted

biological features.

Introduction

The study of gene regulation is primarily concerned with two classes of regulatory elements:

promoters, which define the Transcription Start Site (TSS), and enhancers, that amplify the

transcription [1]. The TSS is the first nucleotide that is copied at the 5’ end of the correspond-

ing mRNA. A core promoter is a minimal promoter region that typically spans several hun-

dred bp up- and downstream of a TSS and is capable of initiating basal transcription [2]. Core

promoters have complex and gene-specific architectures consisting of unique compositions of

binding sites for Transcription Factors (TFs) involved in specific regulation of transcription.

Transcription is further stimulated by enhancer elements, which can be located at a long dis-

tance from the target core promoter. These distal locations are able to affect the transcription

due to a favorable folding of the genome in the three-dimensional space [3]. Enhancer

sequences are also capable of bidirectional transcription of RNAs (eRNAs) at a large scale.

This means that gene promoters and enhancers share a similar promoter architecture, each

bound by RNA pol II when active [4]. Recent studies have shown that promoters and enhanc-

ers share several properties and functions related to their chromatin and sequence architec-

tures [5]. The distinction between these regulatory elements is further reduced by the fact that

promoters can enhance transcription at a distant site [6] while enhancers can drive local tran-

scription initiation [7]. This provides a motivation to consider these elements together when

trying to understand transcription regulation and build models for their identification.

Thanks to the development of advanced experimental techniques, significant progress has

been made in identifying gene regulatory sequences [8–10]. However, a detailed experimental

exploration of transcripts is still an expensive and difficult procedure. Therefore, in addition to

experimental efforts, accurate computational identification of putative regulatory regions, for

both individual genes and entire genomes, remains an important challenge of genomics stud-

ies. Computational prediction is important for guiding experimental biologists, providing

putative regions which can be validated using reporter gene assays.

Accurate computational identification of regulatory elements remains a difficult task due to

the high diversity of DNA sequence features and tissue specificity of the transcriptional regula-

tion. Some promoters and enhancers are only active in a small fraction of cells or under spe-

cific conditions. This makes it difficult to get a complete list of regulatory regions in the

human genome, such as alternative promoters for the known genes. There are numerous

computational tools developed in an attempt to predict promoters and enhancers [11–14].

However, many of them focus on discrimination between fixed sets of promoter/enhancer

sequences and random genomic sequences. The reported performance deduced from such
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small and balanced test sets does not hold when evaluated at the level of the whole genome,

which is a much more difficult task due to the huge number of tested locations [15].

It has been shown that accurate regulatory element prediction can be achieved on the

genome wide scale by using epigenetic data, such as DNA methylation and histone modifica-

tion profiling [16]. For example, H3K4me1, H3K4me3, and H3K27ac marks are associated

with promoter and enhancer activities [17]. In recent years, a number of methods have been

developed that utilize local epigenetic marks for regulatory element prediction, based on

machine learning algorithms such as random forests [16,18], support vector machines [19,20],

and deep learning [21,22]. However, there is still a need for methods that can provide accurate

predictions based on DNA sequences, in particular for annotating the genomes of species

where epigenetic data are not widely available.

In this study, we developed ReFeaFi (Regulatory Feature Finder), a general genome-wide

promoter and enhancer predictor, using the DNA sequence alone. Using Cap Analysis Gene

Expression (CAGE) data [23] as the ground truth for promoters and enhancers, we used a

dynamic training set updating scheme to train the deep learning model, which allows us to

have high recall while keeping the number of false positives low, improving the discrimination

and generalization power of the model. ReFeaFi achieved comparable performance when the

model trained on the human genome was applied to other vertebrate species, showing the gen-

erality of our model. We found that unannotated regulatory regions predicted by our method

are enriched for genetic variants associated with disease [24,25], suggesting that they might be

real regulatory elements. High scoring unannotated predictions were validated using reporter

assays and all the candidates showed strong luciferase signal. By analyzing synthetic promot-

ers, we found that the predicted score strongly correlates with measured expression strength.

We used the trained deep learning model to study the architecture of regulatory elements and

to find out how conserved elements affect transcription strength. Finally, we have developed a

novel model analysis technique that reveals related positions around the TSS.

Results

Genome-wide identification of regulatory elements

The overview of our method is shown in Fig 1. The method is two-tiered and consists of a scan

model and a prediction model, which are trained iteratively to reduce false positives (FPs).

Briefly, the scan model picks candidate regions for the prediction model, which then makes a

decision if these regions contain one or more TSS. If an unannotated region receives a score

above the threshold, it is added to the negative set. The whole process is repeated several times

to generate a difficult negative set which forces the model to learn more complex features for

the identification of regulatory regions. We trained our model on the human genome, with

chromosome 1 used as the test set and the rest of the genome for training and validation. The

positive set of regulatory region annotations used was constructed by merging the human

robust promoter set and human permissive enhancer set downloaded from the FANTOM5

website [26]. We initially compared our method against several previously published promoter

predictors (Basset [27], PromPredict [28], and EP3 [11]), which are capable of genome-wide

TSS predictions. Using human chromosome 1 for evaluation (see Methods), our developed

model achieved good performance, significantly outperforming other methods (Table 1 and

Fig 2A). In particular, ReFeaFi generated substantially less FPs than a deep learning-based

method for regulatory elements prediction (Basset), for all recall values, see Fig 2A. For the

general recall rate of 0.50, promoters of the protein coding genes were predicted with recall

0.77 and 0.41 recall was obtained for promoters of the long non-coding RNAs. Since enhancers
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have weaker transcriptional output, only 9 percent of the permissive enhancers were detected

using the strict decision threshold (S1 Table).

We subsequently applied the model trained on human CAGE data to genomes of other spe-

cies, without re-training (Fig 2B). The obtained result for the mouse genome was similar to the

human performance, achieving comparable recall and FP rate. For other species, the recall was

high, but the FP rate was significantly higher than for human and mouse. This is expected and

due to the fact that the transcriptomes of these species have been profiled at considerably

lower depth, and there are thus much fewer CAGE peaks known for these species (S2 Table,

most of them are related to housekeeping genes which are easier to detect due to higher GC

content [29]). This gives rise to a high recall, where additional FPs are most likely related to tis-

sue-specific promoters, which have not been detected in the currently available CAGE datasets

for these organisms.

Validation of unannotated predicted regions by reporter assay

We next set out to investigate the extent to which predicted regulatory regions marked as false

positives in the initial evaluation might represent regions with true regulatory potential, but

not yet discovered by the current experimental annotations. To this end, we performed

reporter assays of 17 high scoring regions and three regions with a low score but still predicted

Fig 1. Workflow of the proposed method for genome-wide regulatory elements prediction. The scan model uses a sliding window approach to pick putative

regulatory regions. The prediction model finds TSS positions inside these regions by testing each position. The false positive predictions made by the second model are

added to the negative set for the next round of training. The whole process is repeated iteratively to generate a difficult negative set which forces the model to learn how

to distinguish the difficult negatives from the real regulatory sequences.

https://doi.org/10.1371/journal.pcbi.1009376.g001

Table 1. Comparison of the performance of different TSS identification methods. The decision thresholds for these methods were adjusted to achieve the same

recall of 0.50.

Method Recall Precision F1 score FP per correct FP per 1 Mb

ReFeaFi 0.50 0.52 0.51 0.93 46.44

EP3 0.50 0.20 0.29 4.01 198.26

Basset 0.50 0.07 0.12 13.48 664.92

PromPredict 0.50 0.07 0.12 13.44 666.26

https://doi.org/10.1371/journal.pcbi.1009376.t001
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as regulatory by our model. The tested sequences included regions with and without classic

promoter elements (INR and TATA box, S3 Table) and were chosen so that they were at least

5kb away from any known CAGE peaks or GENCODE annotations. All the chosen candidates

showed significantly higher luciferase signals than negative controls (empty vector and ran-

dom sequence, Fig 2C), with several sequences showing intensity similar to the GAPDH pro-

moter used as the positive control.

Highly accurate prediction of VISTA enhancers

The VISTA Enhancer Browser contains experimentally validated human and mouse enhanc-

ers with their activity measured in transgenic mice [30]. VISTA enhancers were previously

used by Yang et al. to validate their enhancer predictor BiRen [13], where like our method, the

model is trained using DNA sequences alone, unlike methods that use epigenetic information

to predict enhancers [19,20]. In this validation approach, a test set is constructed by using

VISTA enhancers as a positive set, with a negative set that contains ten times as many non-

enhancer sequences. When evaluated, BiRen achieved AUC of 0.945, improving over DEEP

[14] and SVM [31] enhancer predictors which achieved AUC of 0.883 and 0.621, respectively.

We adopted the same experimental setup, constructing a positive set with all the VISTA

human and mouse enhancers from chromosome 1 and 10 times more random genomic

regions for the negative set. Our model achieved almost perfect accuracy, with AUC> 0.99.

The same result was obtained when repeating the experiment with 100 times more negative

sequences (AUC 0.98, Fig 2D).

Predicted score correlates with measured expression

Weingarten-Gabbay et al. devised a high-throughput assay to quantify the activity of fully

designed sequences that were integrated and expressed from a fixed location within the

human genome [32], using the method to investigate binding regions of core promoters. We

applied our model to the designed sequences and computed the correlation between the mea-

sured expression and our predicted scores (Fig 2E). Correlation between the score and mea-

sured expression was 0.73, further showing the generality of our model, since it had not seen

any of these synthetic sequences during training and suggesting that our model may be useful

for designing new promoters with desired strength by screening potential candidate

sequences.

Non-annotated predicted regions are enriched for disease-associated

variants

Nucleotide variation in enhancers and promoter regions has been shown to be associated with

human diseases. Indeed, most of the disease-associated genome-wide association studies

(GWAS) hits fall in the non-coding regions of the human genome [33]. GWAS helps to under-

stand disease mechanisms and provides the starting point for the development of medical

diagnosis, prognosis, and treatments. We tested if our genome-wide predictions are enriched

Fig 2. The performance evaluation of the proposed method. (A): Performance of TSS predictors on human chromosome 1. Our method, ReFeaFi, significantly

outperforms other predictors. (B): Performance of the proposed method applied on different vertebrate species, without re-training the model. Due to the small

number of known CAGE peaks, there is a significant difference between human/mouse and other organisms. (C): Results of the reporter assay on the predicted

unannotated regulatory regions. Each chosen sample is at least 5kb away from any known CAGE peaks or GENCODE annotations. Empty vector and random

sequences were used as negative controls, while GAPDH promoter is used as positive control. All the candidates passed the validation, with several candidates

showing intensity similar to the positive control. (D): ReFeaFi achieves outstanding performance on discriminating VISTA enhancers and 100 times as many

random genomic regions. (E): Correlation between score predicted by our method and measured mean expression of the synthetic promoters. (F): The number of

Clinvar genetic variants located in the vicinity of low and high scoring predicted regions. (G): GWAS genetic variants overlap with the predicted regions.

https://doi.org/10.1371/journal.pcbi.1009376.g002
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for genetic variants from GWAS [33] and Clinvar [25] databases. First, we computed the over-

lap between the known CAGE peaks and GWAS and Clinvar sets with a margin of 200 bp rela-

tive to the TSSs. Next, we compared the overlap with the variant sets for the same number of

low scoring and high scoring predicted regions, excluding predictions overlapping known TSS

or enhancers. The Clinvar set overlapped the high scoring regions three times more compared

to the low scoring regions (Fig 2F), suggesting that they represent novel regulatory elements.

The GWAS disease-associated SNPs were overrepresented in the high scoring regions as well,

overlapping them two times more than expected by chance, Fig 2G. Together with the experi-

mental results, this shows that the unannotated predicted regulatory regions we detected

might have regulatory potential to a significant degree, and that they may be useful for prioriti-

zation of further studies of disease-associated variants.

Non-annotated predicted regions are enriched for meaningful epigenomic

marks

To further validate the regulatory potential of the predicted unannotated regions, we decided

to check if they are enriched for epigenomic marks associated with regulatory activity. We

have downloaded 129 ROADMAP [34] epigenome datasets, keeping marks associated with

promoter and enhancer activity. They were averaged per epigenomic mark and then normal-

ized. Next, we computed the overlap with our low scoring and high scoring predicted regions.

As shown in Table 2, the high scoring false positive regions are more enriched for the marks

associated with regulatory activity compared to the low scoring regions.

Model analysis reveals known and novel regulatory features

Given the limitations of the biochemical assays used to identify and characterize core promoter

elements, it has been difficult to assign a clear function to each of these elements [2]. By feeding

in modified regulatory sequences to our deep learning model, we can study how each core pro-

moter element fine-tunes the gene expression. To measure the effects of each known motif on

the promoter score, we searched for them using previously constructed PWMs for core pro-

moter elements [35] and replaced them with random nucleotides. New promoter scores were

computed for the modified sequences and the change in the predicted score was recorded for

each motif. The most important motifs were TATA-box and INR with 35% and 9% effect on

the score, respectively (Fig 3). Mutation of DPE and CCAT motifs had no strong effect on the

predicted score, suggesting that they do not play a significant role in regulating human pro-

moter activity. The same observations were made in a recent human promoter study [32]. In

fact, the order in terms of gene expression impact is the same for the motifs we analyzed.

We next used the model to identify important locations in the input sequences that contrib-

ute most to the predicted score. Using a sliding window moving from the beginning of a regu-

latory sequence, we built a performance profile that reflects an effect of a random sequence,

inserted in each sequence position in place of an original sequence, on the predicted score.

The results for promoter and enhancer sequences (shown in Fig 4A and 4B respectively)

revealed that for promoters, the TSS and TATA regions are extremely important, while for

Table 2. Enrichment for epigenomic marks of low scoring and high scoring predictions.

Epigenomic mark Low scoring High scoring Increase

H3K4me1 0.074 0.123 1.662

H3K4me3 0.010 0.046 4.600

H3K27ac 0.027 0.052 1.926

https://doi.org/10.1371/journal.pcbi.1009376.t002
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enhancers, TSS regions contribute less to the total score compared to other regions. For exam-

ple, mutation of the eRNA TSS nucleotides only reduces the score by two percent on average,

while for promoters this value is 35 percent.

Despite the main effect on score coming from the core promoter region, in some cases

replacing part of the sequences outside core promoter had a significant effect on the score,

reducing it up to 50%. Motifs within core promoters have been extensively studied, but not

much is known about distant motifs important for promoter activity. We tested if transcrip-

tion factor binding motifs from the JASPAR database [36] have a significant effect on the pre-

dicted score, and observed that even though there was often a perfect match of a known

binding motif inside the promoter region, replacing it with random nucleotides did not

change the output of the model in many cases. However, some of the motifs affected the score

significantly, even when they were located far away from the TSS. Interestingly, the set of most

influential motifs for promoters and enhancers were close to each other, suggesting that they

are regulated by a similar set of TFs (S4 Table).

To assess the contributions of different nucleotides in different positions of the regulatory

sequences, we employed a modification of a feature mutation map for our test set. Fig 4C

shows the mutation maps for the core promoter in the promoter sequences, while the muta-

tion maps for the enhancer sequences is shown in Fig 4D. To build these maps, we studied

Fig 3. Effect of substituting promoter conserved motifs with random nucleotides on the score predicted by the deep learning model.

https://doi.org/10.1371/journal.pcbi.1009376.g003
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how nucleotide substitutions will change the output score computed by our model. At each

position of the tested sequences, we replaced a nucleotide with a different one in all the

sequences and computed their average score change. The rows represent nucleotides that are

used for replacement and the columns show different positions inside the regulatory regions.

If the new score on average increases, it is represented by a red-colored square. Decreasing the

score is shown by using a blue-colored square. The intensity of color is proportional to the

effect of substitution on the score. Since core promoters are very diverse, if we draw a mutation

map for all the sequences, we cannot capture all the information from our model. To alleviate

this, we clustered the mutation matrices based on their similarity (Frobenius norm) into sev-

eral clusters using the k-means algorithm with k = 10.

Fig 4. Analysis of the trained model. (A): Effect of 7 bp sequence window substitution by a random sequence on the predicted score of the promoters. (B): The same

substitution procedure applied to the enhancer sequences. (C): Mutation maps for the promoter sequences. K-means with k = 10 was applied to the mutation matrices

before averaging and the two biggest clusters are shown. (D): Mutation maps for the two biggest clusters of enhancer mutation matrices.

https://doi.org/10.1371/journal.pcbi.1009376.g004
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Analysis of the mutation maps showed that promoters have higher GC content than

enhancers and conserved C and A nucleotides at positions -1 and +1 respectively, which corre-

sponds to the Initiator motif (Fig 3). Enhancers do not have a conserved TSS nucleotide. How-

ever, clustering reveals that many of the enhancers have a CCGACC motif around the TSS. For

promoters, the revealed motifs in the TSS region are GGCATAC and GTCAGAC.

Mutation/saliency maps and convolutional filter analysis are often used to understand deep

learning models, but they cannot detect long-range interactions in the input sequence. We

attempted to overcome this limitation by developing a novel technique to measure dependency

between each pair of nucleotides—pair dependency map. Fig 5A shows the dependency

between positions inside the core promoter region for the promoter sequences. Here every ele-

ment of the matrix V(i,j) is the difference between two values: the change in the predicted

score when removing the pair (i, j) compared to the sum of changes caused by removing i and

j separately. Every input sequence generates a symmetric matrix, and we draw the averaged

matrix. The red color is used for positive elements of V, and the blue color is for negative ele-

ments. Intensity shows the absolute value of the element. Negative matrix elements occur typi-

cally when the pair i and j is involved in a motif where these two positions are correlated.

The pair maps for the enhancer sequences are shown in Fig 5B. As shown in previous

experiments, interactions between TSS and the TATA-box are very important for the pro-

moter sequences, while interactions in enhancer sequences are more uniformly distributed.

This is especially easy to see after performing the k-means clustering of the matrices before

averaging.

The proposed pair map analysis reveals related positions. Unlike the single position muta-

tion map analysis, if a position changes a score significantly but independent of other posi-

tions, pairs involving it will be shown with a light color. The pair dependency map strongly

suggests that our model can capture long range dependencies between different elements in

the regulatory sequences, and that the trained model does not simply detect conserved core

promoter elements but also complex interactions between them. Based on the pair map idea,

we created a tool that can test whether two given positions (or two regions) are independent

according to our model, which may be useful for creating hypotheses such as if two transcrip-

tion factors regulate a subset of promoters together. Using the described approach, we ana-

lyzed interaction between JUND and BATF TFs, which was reported in the previous studies

[37,38]. Searching for their motifs inside the regulatory regions using FIMO [39] with default

parameters, the interaction between JUND and BATF was compared to the interaction of

JUND with random locations of the same motif length. As expected, a strong relationship

between the two binding motifs was detected (p = 3.04e-11, t-test).

Discussion

We have demonstrated that by using a dynamic training set, it is possible to tackle the problem

of genome-wide regulatory elements prediction. This is a very difficult problem because many

non-regulatory regions are very similar to the true ones in terms of their nucleotide sequences.

Unlike common machine learning problems, prediction at the genome-wide scale is extremely

unbalanced, which makes it difficult to achieve high sensitivity. Despite all these challenges,

the proposed model achieves a good performance on the human genome and can be directly

applied to genomes of other animals as well without significant loss of performance. It can also

be used to pinpoint promoter and enhancer candidates in regions of interest in the human

genome. Many regulatory regions might still be unannotated which is supported by the results

of the reporter assay experiment and epigenomic mark enrichment analysis we performed. We

showed that the false positive regions are enriched with GWAS signals. For the SNPs which
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Fig 5. Pair dependency map reveals long-range interactions captured by our model. The red color means interaction, the blue color shows correlation, and the white

color represents that the positions are independent. The results are clustered into ten groups using k-means algorithm and the two biggest groups are shown. (A):

Promoter pair maps show relationships between conserved promoter elements, which have much stronger interactions than other pairs. They include TSS interactions

with TATA and BRE elements in the upstream region, DCE and DPE elements in the downstream region. (B): Dependencies captured by our model for predicting

enhancers are spread out in the [-40: +40] region. Unlike promoter sequences, there are no strong short-range interactions in the TSS region.

https://doi.org/10.1371/journal.pcbi.1009376.g005
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fall into previously unknown regulatory regions, our predictions provide a hypothesis which

can be tested in a further analysis.

In this study, we have shown that the trained model can identify motifs and positions

important for the activity of regulatory elements, which allows for further exploration of the

promoter architecture. Furthermore, we identified long-range interactions in enhancer and

core promoter regions using a pair dependency map. The next step would be to validate these

findings using reporter assays by constructing synthetic promoters and enhancers. This would

help to better understand transcriptional regulation and also design new regulatory sequences

with desired strength.

To further improve the results, it is necessary to consider the cell type when predicting pro-

moters and enhancers. It has been shown that promoter prediction can also be improved

using extra information as input, for example chromatin data [40] or possibly applying non-

parametric methods as described and tested on promoter regions of a model dicot plant Arabi-

dopsis thaliana [41]. However, the approach described in this paper has the advantage that it is

very general. It will be straightforward to apply it to many different organisms where addi-

tional information like chromatin profiles might not be available.

Methods

Data sets used

The data we used for training our models consist of 210250 promoters and 65423 enhancers

downloaded from FANTOM5 website. Sequences of length 1001 bp were extracted from the

human genome (GRCh37) centered around the TSSs. All the regulatory regions from chromo-

some 1 were used for testing, 90% of the remaining peaks were used for training, and the rest

for validation to choose deep learning parameters and perform early stopping during training.

GENCODE version 34 was used when picking candidates for reporter assay validation to

avoid picking regions near any known gene. GWAS and Clinvar sets were downloaded from

their respective websites on 2020-07-06. The motif analysis used PWMs from the JASPAR

2020 version.

Negative set generation

One of the reasons the reported performance in previous studies does not extrapolate to the

whole human genome is because of an inadequately chosen set of negative sequences [15].

Often the negative set consists of random genomic sequences which are very different from

the regulatory regions or sequences from specific positions (e.g., fixed distance away from

TSS) which introduces bias. To tackle this problem, we used an iterative approach that updates

the set of non-promoter sequences used in the training set based on the false positive errors

made in the previous iteration [42]. By including difficult non-promoter sequences in the

training set, the predictor is forced to learn promoter patterns to rule out such sequences. This

scheme allowed us to achieve high sensitivity while keeping the number of false positive pre-

dictions low. S1 Fig illustrates that without using these difficult negatives, the model mostly

uses the GC content to make a prediction.

When a difficult negative set is obtained, the neural network struggles to discriminate pro-

vided positive and negative sequences. This can result in over-fitting, when the model simply

memorizes some difficult negatives despite the regularization methods that are used. To avoid

this issue, we have developed a new regularization technique. During each epoch, we added a

small shift to the negative sequences, moving them upstream or downstream from the initial

positions by a random distance, see S2 Fig. This virtually makes the negative set very large and

impossible to memorize. The neural network can only learn very general patterns to rule out
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the negatives. We have found that this specific technique is superior to any other changes that

one can do to the negative set. If parts of DNA sequence are manually changed, it is very easy

for the neural network to detect such alterations, e.g., replacement, insertions, mirroring, gen-

eration of a new DNA sequence with specific nucleotide frequency. When such alterations are

used, the network is trained to distinguish the original DNA sequence from an altered one,

instead of discriminating promoters from non-promoters.

Genome-wide regulatory elements prediction

Since it is difficult to test every possible TSS location in the genome, we used a two-fold predic-

tion procedure. One model is used to scan each chromosome using a sliding window

approach. Because of the random shift added to both positive and negative sequences during

the training, the input for the scan model does not need to be centered perfectly around the

TSS. This allowed us to use a relatively large step for the sliding window, 50 bp. When the

model outputs values above the threshold (0.5), the 100 bp region centered around the current

position is scanned using position specific second model with the step equal to one. Predic-

tions of the second model with scores higher than 0.5 are sorted and filtered based on the dis-

tance between them. The remaining results are output by the method. The models are trained

to detect regulatory elements on both strands without explicitly performing reverse comple-

ment. The strand is decided by a special model, which decides the direction of transcription:

either positive (+) or negative (-) for promoters and both (.) for enhancers. This design deci-

sion was made to make genome-wide TSS identification faster.

Evaluation criteria

During the evaluation, all the predictions more than 500 bp away from a known CAGE peak

were considered as FPs. The margin for error is rather big to deal with the alternative promot-

ers for the same gene, since the TSSs can be located a large distance from each other [43]. One

or more TSS predictions inside the regulatory region count as a TP, however if there is not

even one prediction in this region, we count it as a FN. We measured our performance using

F1 score:

Precision ¼
TP

TP þ FP
;

Recall ¼
TP

TP þ FN
;

F1 ¼ 2 �
Recall � Precision
Recallþ Precision

:

We also calculated two additional metrics suitable for genome-wide setting, FP per correct

prediction and FP rate per 1 Mb:

FP per correct ¼
FP
TP

;

FP per 1 Mb ¼ 1000000 �
FP

chr1 size
:

PLOS COMPUTATIONAL BIOLOGY ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009376 September 7, 2021 13 / 18

https://doi.org/10.1371/journal.pcbi.1009376


Deep learning architecture

The deep learning architecture is based on deep residual networks [44]. The network consists

of 5 residual blocks followed by a Softmax layer, S3 Fig. To avoid the problem of vanishing gra-

dient, we employed batch normalization [45]. The activation function used throughout the

model is Leaky ReLU [46]. Weight decay and dropout are used to improve the generalization

capability of the model. Weight decay effectively limits the number of free parameters in the

model to avoid over-fitting. Introducing weight decay makes it possible to regularize the cost

function by penalizing large weights. The main idea of dropout is to randomly set some nodes

of the neural network to zero during training to prevent co-dependency among them. During

the training, the dropout for the feature vector with keep probability of 0.5 is used. The Adam

optimization algorithm is used to train the weights [47], which is an improved version of sto-

chastic gradient descent. TensorFlow [48] is used as the framework to construct the deep neu-

ral network. The training was performed on a workstation with four NVIDIA Quadro RTX

6000 GPUs and took about 5 days to complete. The method requires eight hours to scan and

predict regulatory regions on chromosome 1 with the standard parameters.

Reporter assays

We used reporter assays to validate the candidate sequences. Double strand DNA cassette was

constructed by annealing the DNA oligo that has SpeI site/I-CeuI site and the DNA oligo that

has BamHII site/I-SceI site. Specific DNA primers were designed for amplification of the test

candidates. Using these primers and Human Genomic DNA as template, PCR was performed

with KOD-Plus-Neo. After QC with electrophoresis, PCR products (insert DNAs) were

digested by I-CeuI/I-SceI. We selected and prepared human GAPDH promoter region as posi-

tive control and random sequences (backbone of pMCS-Cypridina Luc vector (201 bases

long)) as negative control. The prepared vector and insert DNA were ligated using Rapid DNA

ligation Kit, and One Shot TOP10 Chemically Competent E. coli was transformed by the

ligated vector. These transformed E. coli cells were cultured in large scale and assay vectors

were extracted using QIAGEN Plasmid Mini Kit. For quality checking, PCR was performed

with assay vector and primers for checking. After this, electrophoresis was performed to con-

firm the presence of the desired insert DNA fragment in the assay vector.

Until the day before doing assay, HEK293T cells were pre-cultured. At the day before doing

assay, pre-cultured HEK293T cells were spread on 96-well plate and incubated at 37˚C CO2

5% for 16-24h. After incubation, assay vector was transfected into HEK293T cells using Turbo-

fect Transfection Reagent according to the kit protocol. After incubation, Cells were lysed

using Cell lysis buffer included in Pierce Cypridina-Firefly Luciferase Dual Assay Kit. Prepared

reagent mixture containing D-Luciferin was added to the cell lysate and measurement of lumi-

nescence from luciferin-luciferase reaction was performed by luminometer. Detailed descrip-

tion of the experimental setup is provided in the S1 Appendix.

Alternative methods

We have obtained Basset from the GitHub repository and followed the provided guide for

peak prediction (https://github.com/calico/basenji/tree/master/manuscripts/basset). The data

were replaced with two of our bed files for promoters and enhancers. After generating the

data, we modified the target neurons number, setting it to 2. The training took 18 epochs and

was stopped automatically after the validation AUROC did not improve (0.75301). The trained

model was then applied to chromosome 1 with the default test stride of 192 using provided

script: basenji_predict_bed.py. EP3 and PromPredict do not require extra training, which is

why we applied them directly on both chromosome 1 and its reverse complement.
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Synthetic promoters analysis

The synthetic sequences were inserted into the same genomic background as in the original

publication before using them as an input for our model. To undo the effect of Softmax which

makes all the output values very close to 0 or 1, our predicted score was adjusted as follows: log
(1+Score/(1−Score)).

Supporting information
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their mutation map. a. Random negatives model. b. Difficult negatives model.

(TIF)
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size and prevents overfitting.
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