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Abstract Digital reconstruction of neuronal cell morphol-
ogy is an important step toward understanding the function-
ality of neuronal networks. Neurons are tree-like structures
whose description depends critically on the junctions and
terminations, collectively called critical points, making the
correct localization and identification of these points a cru-
cial task in the reconstruction process. Here we present
a fully automatic method for the integrated detection and
characterization of both types of critical points in fluo-
rescence microscopy images of neurons. In view of the
majority of our current studies, which are based on cultured
neurons, we describe and evaluate the method for applica-
tion to two-dimensional (2D) images. The method relies on
directional filtering and angular profile analysis to extract
essential features about the main streamlines at any loca-
tion in an image, and employs fuzzy logic with carefully
designed rules to reason about the feature values in order to
make well-informed decisions about the presence of a crit-
ical point and its type. Experiments on simulated as well
as real images of neurons demonstrate the detection per-
formance of our method. A comparison with the output
of two existing neuron reconstruction methods reveals that
our method achieves substantially higher detection rates and
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could provide beneficial information to the reconstruction
process.
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Introduction

The complexity and functionality of the brain depend crit-
ically on the morphology and related interconnectivity
of its neuronal cells (Kandel et al. 2000; Ascoli 2002;
Donohue and Ascoli 2008). To understand how a healthy
brain processes information and how this capacity is neg-
atively affected by psychiatric and neurodegenerative dis-
eases (Anderton et al. 1998; Lin and Koleske 2010; Šišková
et al. 2014) it is therefore very important to study neu-
ronal cell morphology. Advanced microscopy imaging tech-
niques allow high-sensitivity visualization of individual
neurons and produce vast amounts of image data, which
are shifting the bottleneck in neuroscience from the imag-
ing to the data processing (Svoboda 2011; Peng et al.
2011; Senft 2011; Halavi et al. 2012) and call for a high
level of automation. The first processing step toward high-
throughput quantitative morphological analysis of neurons
is their digital reconstruction from the image data. Many
methods have been developed for this in the past decades
(Meijering 2010; Donohue and Ascoli 2011) but the con-
sensus of recent studies is that there is still much room for
improvement in both accuracy and computational efficiency
(Liu 2011; Svoboda 2011).

A key aspect of any neuron reconstruction method is
the detection and localization of terminations and junc-
tions of the dendritic (and axonal) tree, collectively called
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“critical points” in this paper (Fig. 1), which ultimately
determine the topology and faithfulness of the resulting dig-
ital representation. Roughly there are two ways to extract
these critical points in neuron reconstruction (Al-Kofahi
et al. 2008; Meijering 2010; Basu et al. 2013). The most
often used approach is to start with segmentation or trac-
ing of the elongated image structures and then to infer the
critical points, either afterwards or along the way, by search-
ing for attachments and endings in the resulting subsets
(Dima et al. 2002, Xiong et al. 2006, Narro et al. 2007,
Vasilkoski and Stepanyants 2009, Bas and Erdogmus 2011,
Chothani et al. 2011, Dehmelt et al. 2011, Ho et al. 2011,
Choromanska et al. 2012, Xiao and Peng 2013). This
approach depends critically on the accuracy of the ini-
tial segmentation or tracing procedure, which usually is
not designed to reliably capture critical points in the first
place and thus often produces very fragmented results,
requiring manual postprocessing to fix issues (Peng et al.
2011; Luisi et al. 2011; Dercksen et al. 2014). The reverse
approach is to first identify critical points in the images and
then to use these as seed points for tracing the elongated
image structures. Critical points can be obtained either by
manual pinpointing, as in semiautomatic tracing methods
(Meijering et al. 2004; Schmitt et al. 2004; Narro et al. 2007;

Fig. 1 Fluorescence microscopy image of a neuron with manually
indicated junctions (red circles) and terminations (yellow circles). The
radius of each annotated critical-point region reflects the size of the
underlying image structure

Lu et al. 2009; Peng et al. 2010; Longair et al. 2011), or
by fully automatic detection using sophisticated image fil-
tering and pattern recognition methods (discussed in the
next section). The latter approach has barely been explored
for neuron reconstruction, but if reliable detectors can be
designed, they provide highly valuable information to the
reconstruction process.

Here we present a novel method – which we coin Neuron
Pinpointer (NP) – for fully automatic detection and char-
acterisation of critical points in fluorescence microscopy
images of neurons. We describe and evaluate the method
for studies where single (cultured) neurons are imaged
in 2D although all aspects of the method can in princi-
ple be extended to 3D. The method may also be useful
for reconstruction approaches based on 2D projections
(Zhou et al. 2015). For computational efficiency the method
starts with an initial data reduction step, based on local
variation analysis, by which obvious background image
regions are excluded. In the remaining set of foreground
regions the method then explores the local neighborhood
of each image pixel and calculates the response to a set of
directional filters. Next, an iterative optimization scheme is
used for robust peak selection in the resulting angular pro-
file, and a set of corresponding features relevant for the
detection task is computed. The feature set is then further
processed to make a nonlinear decision on the presence
of a critical point and its type (termination or junction)
at each foreground image pixel. To conveniently deal with
ambiguity and uncertainty in the data, the decision-making
is carried out by a fuzzy-logic rule-based system using
predefined rules specifically designed for this task. The pre-
sented work aims to facilitate the task of automatic neuron
reconstruction by contributing a general scheme for extract-
ing critical points that can serve as useful input for any
tracing algorithm.

This paper is a considerably extended version of our
recent conference report (Radojević et al. 2014). We have
modified the filtering algorithms and fuzzy-logic rules so
as to be able to detect both junction and termination points.
In addition we here present the full details of our method
and an extensive evaluation based on both manually anno-
tated real neuron images and computer generated neuron
images. To obtain the latter we here propose a new compu-
tational approach based on publicly available expert manual
tracings. We start with a brief overview of related work on
critical-point detection (“Related Work”) and then present
the underlying concepts (“Proposed Method”), implemen-
tational details (“Implementational Details”), and experi-
mental evaluation (“Experimental Results”) of our method,
followed by a summary of the conclusions that can be
derived from the results (“Conclusions”).
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Related Work

Detecting topologically critical points in images has been
a long-standing problem in many areas of computer vision.
Although an in-depth review of the problem and proposed
solutions is outside the scope of this paper, we provide a
brief discussion in order to put our work into context.

Examples of previous work include the design of filters
to find image locations where either three or more edges join
(“junctions of edges”) (Sinzinger 2008; Hansen and Neu-
mann 2004; Laganiere and Elias 2004) or three or more lines
join (“junctions of lines”) (Yu et al. 1998; Deschênes and
Ziou 2000). In biomedical applications, the predominant
type of junction is the bifurcation, with occasional trifurca-
tions, as seen in blood vessel trees, bronchial trees, gland
ductal trees, and also in dendritic trees (Koene et al. 2009;
Iber and Menshykau 2013). Hence, research in this area has
focused on finding image locations where three (or more)
elongated structures join (Tsai et al. 2004; Agam et al. 2005;
Bevilacqua et al. 2005; Bhuiyan et al. 2007; Zhou et al.
2007; Aibinu et al. 2010; Calvo et al. 2011; Obara et al.
2012b; Su et al. 2012; Azzopardi and Petkov 2013).

A common approach to find bifurcation points is to infer
them from an initial processing step that aims to segment
the elongated structures. However, the way these structures
are segmented may influence the subsequent critical-point
inference. Popular image segmentation methods use inten-
sity thresholding and/or morphological processing, in par-
ticular skeletonization (Hoover et al. 2000; Dima et al. 2002;
He et al. 2003; Weaver et al. 2004; Pool et al. 2008; Bevilac-
qua et al. 2009; Leandro et al. 2009; Aibinu et al. 2010),
but these typically produce very fragmented results. Popu-
lar methods to enhance elongated image structures prior to
segmentation include Hessian based analysis (Frangi et al.
1998; Xiong et al. 2006; Zhang et al. 2007; Al-Kofahi et al.
2008; Yuan et al. 2009; Türetken et al. 2011; Myatt et al.
2012; Basu et al. 2013; Santamarı́a-Pang et al. 2015), Lapla-
cean-of-Gaussian filters (Chothani et al. 2011), Gabor filters
(Bhuiyan et al. 2007; Azzopardi and Petkov 2013), phase
congruency analysis (Obara et al. 2012a), and curvelet
based image filtering approaches (Narayanaswamy et al.
2011). However, being tailored to elongated structures, such
filters often yield a less optimal response precisely at the
bifurcation points, where the local image structure is more
complex than a single ridge.

Several concepts have been proposed to explicitly detect
bifurcation points in the images without relying on an initial
segmentation of the axonal and dendritic trees. Examples
include the usage of circular statistics of phase informa-
tion (Obara et al. 2012b), steerable wavelet based local
symmetry detection (Püspöki et al. 2013), or combin-

ing eigen analysis of the Hessian and correlation matrix
(Su et al. 2012). The problem with existing methods is that
they often focus on only one particular type of critical point
(for example bifurcations but not terminations), or they
use rather rigid geometrical models (for example assum-
ing symmetry), while in practice there are many degrees
of freedom (Michaelis and Sommer 1994). Image filtering
methods for bifurcation detection have also been combined
with supervised machine-learning based approaches such
as support vector machines (Türetken et al. 2011), arti-
ficial neural networks (Bevilacqua et al. 2009), or with
multiple classifiers using AdaBoost (Zhou et al. 2007), but
these lack flexibility in that they require a training stage for
each application.

Robust neuron tracing requires knowledge of not only
the bifurcation points but also the termination points. Since
each type of critical point may vary considerably in terms
of geometry (orientation and diameter of the branches)
and image intensity (often related to the branch diameter),
designing or training a dedicated filter for each possible
case is impractical, and a more integrated approach is highly
desirable for both detection and characterization of the
different types of critical points. To the best of our knowl-
edge, no generic methods currently exist for critical-point
detection in neuron images. The method proposed in this
paper aims to fill this gap and to complement exploratory
neuron reconstruction algorithms that initialize on a set
of seed points.

Proposed Method

Our proposed method for detection and characterization
of critical points consists of three steps: feature extrac-
tion (“Feature Extraction”), fuzzy-logic based mapping
(“Fuzzy-Logic Based Mapping”), and, finally, critical-point
determination (“Critical-Point Determination”). Here we
describe each step in detail.

Feature Extraction

The aim of the feature extraction step is to compute a set
of quantitative features of the local image structure at each
pixel position that helps to discriminate between different
types of critical points. Since the tree-like neuronal image
structures typically cover only a small portion of the image,
we avoid unnecessary computations by first performing a
foreground selection step (“Foreground Selection”), which
discards image locations that are very unlikely to con-
tain neuronal structures and keeps only those regions that
are worthy of further examination. Next, the angular pro-
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Fig. 2 Example of foreground selection. The original image of 560 ×
780 pixels is divided into background (green transparent mask) and
foreground (gray-scale regions without mask) using rd = 8 pixels and
the 75th variation percentile as threshold. In this example, 25% of the
total number of pixels is selected for further processing

file (“Angular Profile Analysis”) of each foreground pixel
is constructed, from which the quantitative features are
computed.

Foreground Selection

To determine whether a pixel location (x, y) in a given
image I should be considered as foreground or background,
we analyze the local intensity variation ρ(x, y) within a cir-
cular neighborhood of radius rd centered at that location.
To avoid making strong assumptions about the local inten-
sity distribution we chose to use the difference between
the 95th and the 5th percentile of the intensities within the
neighborhood as the measure of variation:

ρ(x, y) = P95(Ixy) − P5(Ixy) (1)

Ixy =
{

I (m, n) | (m − x)2 + (n − y)2 ≤ r2
d

}
(2)

x, m ∈ [0, W − 1] and y, n ∈ [0, H − 1] (3)

where W and H denote, respectively, the width and the
height of I in pixels. The value of ρ is relatively low within
more or less homogeneous regions (background but also
the soma) but relatively high in regions containing neu-
ronal branches. Consequently, the histogram of ρ computed
over the entire image contains two clusters (representing
foreground and background pixels), which can be separated

using simple percentile thresholding (Doyle 1962). The per-
centile should be chosen such that background pixels (true
negatives) are removed as much as possible while at the
same time the foreground pixels (true positives) are retained
as much as possible (in practice this implies allowing for
false positives). We found that in our applications a per-
centile of around 75 is a safe threshold (Fig. 2). Small
gaps in the foreground region are closed by morphologi-
cal dilation. The resulting set of foreground pixel locations
is denoted by F . In our applications the parameter rd is
typically set to the diameter of the axonal and dendritic
structures observed in the image.

Angular Profile Analysis

For each selected foreground location, a local angular pro-
file is computed and analyzed. The key task here is to assess
the presence and properties of any curvilinear image struc-
tures passing through the given location. To this end we
correlate the image with a set of oriented kernels distributed
evenly over a range of angles around that location (Rado-
jević et al. 2014). The basic kernel used for this purpose is of
size D×D pixels and has a constant profile in one direction
and a Gaussian profile in the orthogonal direction (Fig. 3):

G(x, y) = e−x2/2σ 2
D /S (4)

where S is a normalization factor such that the sum of
G(x, y) over all kernel pixels is unity. We chose the Gaus-
sian both because we observed that the cross-sectional
profile of axons and dendrites in our applications is approx-
imately Gaussian-like and because the Gaussian is a theo-
retically well-justified filter for regularization purposes. The
parameters D and σD determine the size and shape of the

Fig. 3 Geometry involved in the computation of the angular profile.
In effect, the value of p(x, y, α, k, D) is the correlation of the image
I (x, y) with the kernel G(m, n) of size D×D pixels, after rotating the
kernel patch over angle α and shifting it over kD with respect to (x, y)
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kernel profile and should correspond to the expected branch
diameter.

Using the kernel we compute the local angular profile at
any pixel location (x, y) in the given image I as:

p(x, y, α, k, D) =
∑
m

∑
n

I (xm,n, ym,n)G(m, n) (5)

where the transformed image coordinates are obtained as:

[
xm,n

ym,n

]
=

[
x

y

]
+kD

[
sin α

−cos α

]
+

[
cos α −sin α

sin α cos α

] [
m

n

]

(6)

and the summation is performed over all (m, n) for which
the kernel is defined. That is, p(x, y, α, k, D) is the cor-
relation of the image with the kernel patch rotated over
angle α and shifted over a distance kD with respect to
(x, y) in the direction corresponding to that angle (Fig. 3).
In practice, p is calculated for a discrete set of angles,
αi = i/(2πNα), i = 0, . . . , Nα − 1, where Nα is automati-
cally set such that the circle with radius kD is sampled with
pixel resolution. The parameter k is typically set slightly
larger than 0.5 so as to scan the neighborhood around
the considered pixel (x, y). To obtain the image inten-
sity at non-integer transformed locations (xm,n, ym,n), linear
interpolation is used.

In contrast with previous works, which used differen-
tial kernels for directional filtering and profiling (Yu et al.
1998; Can et al. 1999; Zhang et al. 2007), we employ
the matched kernel (4), which avoids noise amplification.
Although applying a set of rotated kernels is computation-
ally more demanding than Hessian or steerable filtering
based methods, it provides more geometrical flexibility in
matching the kernels with the structures of interest while
retaining excellent directional sensitivity. In our framework,
the computational burden is drastically reduced by the fore-
ground selection step, and further reduction is possible since
the filtering process is highly parallelizable.

After computing the angular profile we further process
it in order to extract several features (Fig. 4) relevant for
critical-point detection and characterization:

Peaks At each foreground pixel location we first determine
how many and in which direction line-like image structures
pass through it. This is done by finding the local max-
ima (“peaks”) in the angular profile at that location. Since
the oriented kernels act as low-pass filters, the profile is
sufficiently smooth to extract the peaks reliably using the
iterative line searching algorithm (Flannery et al. 1992). The
found peaks correspond to angles α̂i , i = 1, . . . , Nα̂ , in
which directions the image intensities are the highest. Here
Nα̂ ≤ 4 to accommodate terminations, normal body points,
and junctions (bifurcations and crossovers).

Fig. 4 Flowchart of the feature extraction scheme. The example show-
cases a bifurcation but the same scheme is used also for terminations.
The scheme, which starts with the angular profile p(x, y, α, k, D) and
is executed clockwise, is applied to each pixel in the selected fore-
ground regions and results in the set of features li , ui , and ci , where i

indexes the streamlines. See main text for details

Likelihood For each α̂i we calculate a likelihood li ∈ [0, 1]
from the angular profile according to:

li = p(x, y, α̂i , k, D) − pmin

pmax − pmin
(7)

where pmin and pmax denote, respectively, the minimum and
maximum of p(x, y, α, k, D) over α.

Energy Next we consider the local grid πi (x, y, α̂i , k, D)

for each α̂i (Fig. 4), consisting of the transformed coordi-
nates (xm,n, ym,n) corresponding to α = α̂i (6), and we
extract a refined centerline point set λi (or “streamline”) on
this grid by finding for each n the local maximum over m:

λi = {
(xm̂n,n, ym̂n,n)

}
n ∈ [−D/2,D/2] (8)

m̂n = arg max
m∈ [−D/2,D/2]

I (xm,n, ym,n) (9)

We quantify how much the streamline deviates from a
straight line by estimating its bending energy ui ≥ 0 as:

ui = 1

Δm

∑
n

(
m̂n−1 − 2m̂n + m̂n+1

)2 (10)

where Δm is the pixel spacing in the direction of m and
the summation extends over all n for which the summand
can be evaluated. This calculation is a discrete approxima-
tion of the integral squared second-order derivative of the
centerline function if it were continuously defined.
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Correlation Given a streamline λi we estimate the orthog-
onal direction at each point in the set by averaging the
orthogonal directions of the two neighboring streamline
segments corresponding to that point (that is, from the
point to the next point, and from the point to the previous
point). Using these direction estimates we sample a refined
local grid Πi (x, y, α̂i , k, D), consisting of image coordi-
nates (x̃m,n, ỹm,n) relative to the streamline (Fig. 4), and
compute a normalized cross-correlation (Lewis 1995) score
ci ∈ [−1, 1] as:

ci =
∑

m

∑
n

[
I (x̃m,n, ỹm,n) − Ī

] [
G(m, n) − Ḡ

]
√∑

m

∑
n

[
I (x̃m,n, ỹm,n) − Ī

]2 ∑
m

∑
n

[
G(m, n) − Ḡ

]2
(11)

where, similar to the angular profile calculation (5), the
summations extend over all (m, n) for which the kernel is
defined, and Ī and Ḡ denote the mean of the image inten-
sities and of the kernel values, respectively. Effectively ci

quantifies the degree to which the template G matches a
straightened version of the streamline. To cover a range of
possible scales (radii of the underlying image structures),
we take the largest score of a set of templates with standard
deviations of the Gaussian profile model (Su et al. 2012)
covering

{
1, . . . ,

⌊
D
2

⌋}
set of values measured in pixels.

Fuzzy-Logic Based Mapping

The feature values extracted at each foreground image loca-
tion subsequently need to be processed in order to assess
the presence of a critical point and its type. Recognizing
that in practice everything is “a matter of degree” (Zadeh
1975), and allowing for nonlinear input-output mappings,
we chose to use fuzzy logic for this purpose. Fuzzy logic
has been successfully used in many areas of engineering
(Mendel 1995) but to the best of our knowlege has not
been explored for neuron critical-point analysis. We briefly
describe the basics of fuzzy logic (“Basics of Fuzzy Logic”)
and then present our specific fuzzy-logic system for calcu-
lating critical-point maps of neuron images (“Termination
and Junction Mapping”).

Basics of Fuzzy Logic

In a fuzzy-logic system (Fig. 5), numerical inputs are first
expressed in linguistic terms (the fuzzification step), and are
then processed based on predefined rules to produce lin-
guistic outputs (the inference step), which are finally turned
back into numerical values (the defuzzification step).

Fuzzification Given an input scalar value s ∈ R, the fuzzi-
fication step results in a vector s̃ whose elements express
the degree of membership of s to input fuzzy sets, each
corresponding to a linguistic term describing s. A fuzzy

Fig. 5 Scheme of a single input/output fuzzy-logic (FL) system. A
scalar input value s is converted to a vector s̃ containing the mem-
berships of s for each of the input fuzzy sets, resulting in a vector z̃
containing the memberships of z for each of the output fuzzy sets

set is defined by a membership function μ : R → [0, 1]
quantifying the degree to which s can be described by the
corresponding linguistic term. Commonly used membership
functions are trapezoidal, Gaussian, triangular, and piece-
wise linear (Mendel 1995). As an example, we may have
linguistic terms LOW and HIGH, representing the subjec-
tive notions “low” and “high”, respectively. The degrees
to which “s is low” (which in this paper we will write as
s = LOW) and “s is high” (s = HIGH) are given by
membership values μLOW(s) and μHIGH(s), respectively.
The output of the fuzzification step thus becomes s̃ =
[μLOW(s), μHIGH(s)]T .

Inference The input fuzzy set memberships are processed
by the inference engine to produce a fuzzy output based on
rules expressing expert knowledge. The rules can be either
explicitly defined or implicitly learned by some training
process, and may express nonlinear input-output relation-
ships and involve multiple inputs. In engineering applica-
tions, the rules are commonly given as IF-THEN statements
about the input and output linguistic terms. For example,
the output terms could be OFF, NONE, and ON, indicat-
ing whether a certain property of interest is “off”, “none”
(expressing ambiguity), or “on”. A rule could then be:

Ri : IF (s1 = HIGH) ∧ (s2 = LOW)

THEN (z = OFF)
(12)

where z ∈ R is the variable over the output range. This is not
a binary logical statement, where the input and output condi-
tions can be only true or false, but a fuzzy logical statement,
where the conditions are expressed in terms of member-
ships, in this case μHIGH(s1), μLOW(s2), and μOFF(z). Input
conditions are often combined using the operators ∧ (denot-
ing fuzzy intersection) or ∨ (denoting fuzzy union), which
are commonly defined as, respectively, the minimum and
maximum of the arguments (Mendel 1995). In our exam-
ple, the IF-part of Ri (12) would result in the following
intermediate value (degree of verity):

υi = min {μHIGH(s1), μLOW(s2)} (13)

This value is then used to constrain the fuzzy set corre-
sponding to the output linguistic term addressed by Ri , in
this case OFF, resulting in the output fuzzy set:

ϒi(z) = min {μOFF(z), υi} (14)
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In practice there may be many rules Ri, i = 1, . . . , NR ,
which are aggregated by the inference engine to produce
a single output fuzzy set ϒ . The common way to do this
(Mendel 1995) is by means of a weighted fuzzy union:

ϒ(z) = max
{
w1ϒ1(z), . . . , wNR

ϒNR
(z)

}
(15)

Although it is possible to assign a different weight to each
rule by setting wi ∈ [0, 1], in our applications this is not
critical, and therefore we simply use wi = 1 for all i.

Defuzzification In the final step of the fuzzy-logic system,
the fuzzy output ϒ is converted back to a scalar output
value. Although there are many ways to do this, a common
choice is to calculate the centroid (Mendel 1995):

ẑ =
∫

zϒ(z)dz∫
ϒ(z)dz

(16)

With this value we can finally calculate the vector of output
fuzzy set memberships: z̃ = [μOFF(ẑ), μNONE(ẑ), μON(ẑ)]T .

Termination and Junction Mapping

To determine the presence and type of critical point at
any foreground image location, we use a cascade of
two fuzzy-logic systems, representing two decision lev-
els (Fig. 6). The first level takes as input vectors si =
[li , ui, ci], i = 1, . . . , 4, which contain the features for
each of the streamlines extracted in the angular profile
analysis step at the image location under consideration
(“Angular Profile Analysis”). For each streamline (Fig. 7),
the features are fuzzified (μ) and processed by the first
fuzzy-logic module (FL1), which determines the degree to
which the streamline indeed represents a line-like image
structure (ON), or not (OFF), or whether the image struc-
ture is ambiguous (NONE). In cases where less than four
streamlines were found by the angular profile analysis step,
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Fig. 6 Architecture of the proposed fuzzy-logic system for critical-
point detection. A cascade of two fuzzy-logic modules (FL1 and FL2)
is used, where the first determines the degree to which streamlines
(up to four) are present at the image location under consideration, and
based on this information the second determines the degree to which
that location corresponds to the possible types of critical points
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Fig. 7 Architecture of the proposed fuzzy-logic system for processing
the information of one streamline. Input feature values are fuzzified
into linguistic terms LOW and HIGH, which are translated by the
first fuzzy-logic module (FL1) into intermediate linguistic terms OFF,
NONE, ON, which are finally translated by the second fuzzy-logic
module (FL2) into linguistic terms END, NONE, JUN

the feature vectors of the nonexisting streamlines are set
to 0. The fuzzy output for all four streamlines together
forms the input for the second decision level, where another
fuzzy-logic module (FL2) determines the degree to which
the image location corresponds to a junction (JUN), or a
termination (END), or neither of these (NONE).

The input streamline features, li , ui , ci , are expressed in
linguistic terms LOW and HIGH using membership func-
tions μLOW and μHIGH defined for each type of feature.
In our application we use trapezoidal membership func-
tions, each having two inflection points, such that μLOW and
μHIGH are each other’s complement (Fig. 8). For example,
the degrees to which li = LOW and li = HIGH, are given
by lLOW

i = μL
LOW(li) and lHIGH

i = μL
HIGH(li) = 1 − lLOW

i ,
respectively, and because of this complementarity we often
simply write μL to refer to both membership functions
(Fig. 7). Similarly, the membership degrees of ui and ci are
given by μU and μC , respectively. Summarizing, we use
the following notations and definitions for the fuzzification
step:

μL : li → l̃i = [
lLOW
i , lHIGH

i

]T

μU : ui → ũi = [
uLOW

i , uHIGH
i

]T

μC : ci → c̃i = [
cLOW
i , cHIGH

i

]T
(17)

and the lower and higher inflection points of μL are denoted
by LLOW and LHIGH, and similarly ULOW and UHIGH for
μU , and CLOW and CHIGH for μC (Fig. 8).

Taken together, the input to FL1 is the matrix of mem-
berships s̃i = [l̃i , ũi , c̃i], and the output is the vector õi of
memberships to the linguistic terms OFF, NONE, ON:

FL1 : s̃i → õi =
[
oOFF
i , oNONE

i , oON
i

]T

(18)

To calculate these memberships we introduce scalar vari-
able o, where o = 0 corresponds to OFF, o = 1 to NONE,
and o = 2 to ON, and we define Gaussian membership
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Fig. 8 Input membership
functions used in the
fuzzification step for FL1.
Example LOW and HIGH
membership values are shown
(right column) for input values
(dashed vertical lines in the
plots on the left) li = 0.35 (top
row), ui = 10 (middle row), and
ci = 0.85 (bottom row). The
inflection points of the
membership functions are,
respectively, LLOW = 0.05 and
LHIGH = 0.4 for μL, UHIGH = 5
and ULOW = 20 for μU , and
CLOW = 0.5 and CHIGH = 0.95
for μC . Notice that features ui

(the centerline bending energies
of the streamlines) are
reinterpreted here to express the
degree of smoothness (hence the
inverted membership functions
as compared to the other two)
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functions μO
OFF, μO

NONE and μO
ON, centered around 0, 1, and

2, respectively (Fig. 9), and with fixed standard deviation
0.4 so that they sum to about 1 in the interval [0, 2]. The
rules used by FL1 to associate the input terms LOW and
HIGH to the output terms OFF, NONE, and ON, are given
in Table 1. They are based on the heuristic assumption that
a line-like image structure exists (ON) if the evidence repre-
sented by all three features support it (HIGH). By contrast,

if the likelihood is LOW and at least one other feature is also
LOW, this indicates that no such structure exists (OFF). In
all remaining cases, some structure may exist, but it is not
line-like (NONE). As an example, rule R8 (Table 1) is given
by:

R8 : IF (l = HIGH) ∧ (u = HIGH) ∧ (c = HIGH)

THEN (o = ON) (19)

Fig. 9 Output membership
functions used in module FL1.
Example output fuzzy sets ϒi

corresponding to rules Ri from
Table 1 are shown as the
textured areas. Value ô (left
panel) represents the centroid of
the aggregated output fuzzy sets.
The resulting output
membership values (right panel)
serve as input for module FL2
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Table 1 The set of rules
employed by FL1 Ri l u c o

1 LOW LOW LOW OFF

2 LOW LOW HIGH OFF

3 LOW HIGH LOW OFF

4 LOW HIGH HIGH NONE

5 HIGH LOW LOW NONE

6 HIGH LOW HIGH NONE

7 HIGH HIGH LOW NONE

8 HIGH HIGH HIGH ON

which results in the verity value:

υ8 = min
{
μL

HIGH(l), μU
HIGH(u), μC

HIGH(c)
}

(20)

and the output fuzzy set:

ϒ8(o) = min
{
μO

ON(o), υ8

}
(21)

All the rules are resolved and combined as:

ϒ(o) = max {ϒ1(o), . . . , ϒ8(o)} (22)

and centroid defuzzification then results in a scalar out-
put value ô. This procedure is repeated for each streamline,
yielding ôi , i = 1, . . . , 4, from which the output of each
FL1 (18) is calculated using the membership functions:

õi =
[
μO

OFF(ôi), μO
NONE(ôi), μO

ON(ôi)
]T

(23)

Moving on to the next level, the input to FL2 is the
matrix of memberships õ = [

õ1, õ2, õ3, õ4
]
, and the

output is the vector z̃ of memberships to the linguistic
terms END (termination), NONE (no critical point), JUN
(junction):

FL2 : õ → z̃ =
[
zEND, zNONE, zJUN

]T

(24)

To calculate these memberships we introduce scalar vari-
able z, where z = 1 corresponds to END, z = 2 to
NONE, and z = 3 to JUN, and we define corresponding

Gaussian membership functions μZ
END, μZ

NONE, and μZ
JUN,

centered around 1, 2, and 3, respectively, and with fixed
standard deviation 0.4 as before (Fig. 10). The rules used
by FL2 to associate the input terms OFF, NONE, ON to
the output terms END, NONE, JUN are given in Table 2.
They are based on the heuristic assumption that there is
a termination (END) if a single streamline is confirmed
to correspond to a line-like image structure (ON) and the
other three are confirmed to not correspond to such a struc-
ture (OFF). Conversely, if at least three are ON, there must
be a junction at that location. Finally, if two are ON and
two are OFF, or if at least two streamlines are ambigu-
ous (NONE), we assume there is no critical point. Similar
to FL1, all the rules of FL2 are evaluated and their results
combined as:

ϒ(z) = max {ϒ1(z), . . . , ϒ22(z)} (25)

which, after centroid defuzzification, results in a scalar out-
put value ẑ, from which the output of FL2 (24) is calculated
using the membership functions:

z̃ =
[
μZ

END(ẑ), μZ
NONE(ẑ), μZ

JUN(ẑ)
]T

(26)

The proposed fuzzy-logic system is applied to each fore-
ground pixel location (x, y) ∈ F (“Foreground Selection”)
so that all memberships introduced above may be indexed

Z
OE

(
JUNDμ N

Z μN NE
Z μ

ϒ5 z)
ϒ6(z)
ϒ7(z)
ϒ8(z)

0

1

1 ẑ 3
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Fig. 10 Output membership functions used in module FL2. Example
output fuzzy sets ϒi corresponding to rules Ri from Table 2 are shown
as the textured areas. Value ẑ (left panel) represents the centroid of the
aggregated output fuzzy sets. The resulting output membership values

(right panel) indicate the degree to which there may be a termination
(END), junction (JUN), or neither of these (NONE) at the image pixel
location under consideration
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Table 2 The set of rules
employed by FL2. Empty
entries indicate “don’t care”
(could be OFF, NONE, or ON)

Ri o1 o2 o3 o4 z

1 OFF OFF OFF OFF NONE

2 OFF OFF OFF ON END

3 OFF OFF ON OFF END

4 OFF OFF ON ON NONE

5 OFF ON OFF OFF END

6 OFF ON OFF ON NONE

7 OFF ON ON OFF NONE

8 OFF ON ON ON JUN

9 ON OFF OFF OFF END

10 ON OFF OFF ON NONE

11 ON OFF ON OFF NONE

12 ON OFF ON ON JUN

13 ON ON OFF OFF NONE

14 ON ON OFF ON JUN

15 ON ON ON OFF JUN

16 ON ON ON ON JUN

17 NONE NONE NONE

18 NONE NONE NONE

19 NONE NONE NONE

20 NONE NONE NONE

21 NONE NONE NONE

22 NONE NONE NONE

by (x, y). Based on this we calculate the following two
maps:

IEND(x, y) =
{

zEND(x, y) if (x, y) ∈ F

0 otherwise
(27)

IJUN(x, y) =
{

zJUN(x, y) if (x, y) ∈ F

0 otherwise
(28)

which indicate the degree to which any pixel (x, y) belongs
to a termination or a junction, respectively.

Critical-Point Determination

The ultimate aim of our method is to provide a list of critical
points in the neuron image, with each point fully charac-
terized in terms of type, location, size, and main branch
direction(s). Since each critical point of a neuronal tree typi-
cally covers multiple neighboring pixels in the image, giving
rise to a high value at the corresponding pixels in the maps
IEND and IJUN, the final task is to segment the maps and to
aggregate the information within each segmented region.

Due to noise, labeling imperfections, and structural ambi-
guities in the original image, the values of neighboring
pixels in the maps may vary considerably, and direct thresh-
olding usually does not give satisfactory results. To improve
the robustness we first regularize the real-valued scores in
the maps by means of local-average filtering with a radius

of 3-5 pixels. Next, max-entropy based automatic thresh-
olding (Kapur et al. 1985) is applied to segment the maps,
as in contrast with many other thresholding methods we
found it to perform well in separating the large but relatively
flat (low information) background regions from the much
smaller but more fluctuating (high information) regions of
interest. The resulting binary images are further processed
using a standard connected components algorithm (Sonka
et al. 2007) to identify the critical-point regions.

Each critical region consists of a set of connected pixels
xp = (xp, yp), p = 1, . . . , Np, where Np denotes the num-
ber of pixels in the region. From these, the representative
critical-point location xC = (xC, yC) is calculated as:

xC = 1

Np

Np∑
p=1

xp (29)

while the critical-point size is represented by the radius of
the minimum circle surrounding the region:

rC = max
p

{||wp||} (30)

where wp = xp − xC (Fig. 11). To obtain regularized
estimates of the main branch directions v̂i for the criti-
cal point, we aggregate the directions corresponding to the
angular profile peaks α̂i (“Angular Profile Analysis”) of
all the xp in the region as follows. For each xp we have
Nα̂ ≤ 4 angular profile peak direction vectors ap,i =
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v̂3
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v̂1

(xC , yC)
rC

(xC , yC)

(xp, yp)

wp

t ap,i

ep,i

Fig. 11 Critical-point determination. A critical point is characterized
by its type, centroid location (xC, yC), radius rC , and its main branch
directions v̂i (left panel, in this case a bifurcation), aggregated from
the pixels (xp, yp) in the corresponding critical region (right panel)

[cos α̂i (xp), sin α̂i (xp)]T . Each of these vectors defines a
line a(t) = xp +t ap,i parameterized by t ∈ R. We establish
the projection of this line onto the circle ||x − xC ||2 = r2

C

by substituting x = a(t) and solving for t . From this we
calculate the contributing unit vector (Fig. 11):

ep,i = 1

rC
(wp + t ap,i) (31)

which points from xC to the intersection point. This is done
for all p = 1, . . . , Np in the region and i = 1, . . . , Nα̂

for each p, resulting in the set of vectors {ep,i}. Next, a
recursive mean-shift clustering algorithm (Cheng 1995) is
applied to {ep,i}, which converges to a set {v̂i}, where the
cluster vectors v̂i , i = 1, . . . , L, represent the branches. For
a critical region in IEND, we need only one main branch
direction, which we simply take to be the direction v̂1 to
which the largest number of ep,i were shifted. For a criti-
cal region in IJUN, we take as the main branch directions the
v̂i (at least three) to which the largest number of ep,i were
shifted. These calculations are performed for all critical
regions.

Implementational Details

The method was implemented in the Java programming
language as a plugin for the image processing and anal-
ysis tool ImageJ (Abràmoff et al. 2004; Schneider et al.
2012). Since the feature extraction step (“Feature Extrac
tion”), in particular the matched filtering for angular profile
analysis, is quite computationally demanding, we applied
parallelization in multiple ways to reduce the running time
to acceptable levels (on the order of minutes on a regular
PC). Specifically, the directional filtering was split between
CPU cores, each taking care of a subset of the directions
(depending on the number of available cores). After this,
the angular profile analysis and calculation of the features
was also split, with each core processing a subset of the
foreground image locations. This was sufficient for our

experiments. Further improvement in running time (down
to real-time if needed) could be achieved by mass paral-
lelization using GPUs (graphical processing units) instead
of CPUs.

Essential parameters that need to be set by the user are the
scale parameters k and D (“Angular Profile Analysis”) and
the inflection points LLOW, LHIGH, ULOW, UHIGH, CLOW,
and CHIGH of the input membership functions used by
fuzzy-logic module FL1 (“Termination and Junction Map-
ping”). In our applications we set D to the expected neuron
diameter in a given set of images while k = 0.7 was kept
fixed. The L inflection points are always in the range [0, 1]
since the corresponding feature (likelihood) is normalized.
Based on ample experience with many data sets we typi-
cally set LLOW close to 0 and LHIGH around 0.5 (Fig. 8).
By contrast, the inflection points U correspond to a feature
(centerline bending energy) that is not normalized and may
vary widely from 0 to any positive value. To obtain sensible
values for these we rely on the histogram of all calculated
energy values in the image. Parameter ULOW is set to the
threshold computed by the well-known triangle algorithm,
while typically UHIGH � ULOW. We note that the mem-
bership functions defined by these parameters are inverted
(Fig. 8) such that the energy becomes a measure of smooth-
ness. Finally, the C inflection points correspond again to a
feature (correlation) with a fixed output range [−1, 1]. In
our applications we usually set them to CLOW ∈ [0.1, 0.5]
and CHIGH = 0.95 (Fig. 8).

All other aspects of our method that could be con-
sidered as user parameters either follow directly from
these essential parameters or are fixed to the standard
values mentioned in the text. For example, the radius
rd of the circular neighborhood in the foreground selec-
tion step (“Foreground Selection”) can be set equal to
D, and the standard deviation σD of the Gaussian profile
(“Angular Profile Analysis”) can be set to D/6 to get a rep-
resentative shape. Also, the output membership functions
of FL1 (input to FL2) as well as the output membership
functions of FL2 are Gaussians with fixed levels and stan-
dard deviation (“Termination and Junction Mapping”), as
they are not essentially influencing the performance of
the algorithm.

Experimental Results

To evaluate the performance of our method in correctly
detecting and classifying neuronal critical points we per-
formed experiments with simulated images (using the
ground truth available from the simulation) as well as
with real fluorescence microscopy images (using man-
ual annotation as the gold standard). After describ-
ing the performance measures (“Performance Measures”),
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Fig. 12 Examples of simulated triplet images and detection results.
Each triplet consists of three branches with different diameters which
join at one end to form a bifurcation point and with the other ends
being termination points. Images were generated at SNR = 2, 3, 4, 5

(left to right panel). The detection results with our method are indi-
cated as red circles (bifurcation points) and yellow circles (termination
points), where the radius of each circle reflects the size of the critical
region found by our method

we present and discuss the results of the evalua-
tion on simulated images, including synthetic triplets
(“Evaluation on Simulated Triplet Images”) and neurons
(“Evaluation on Simulated Neuron Images”), and on real
neuron images (“Evaluation on Real Neuron Images”), as
well as the results of a comparison of our method with two
other methods (“Comparison With Other Methods”).

Performance Measures

Performance was quantified by counting the correct and
incorrect hits and the misses of the detection with respect to
the reference data. More specifically, we counted the true-
positive (TP), false-positive (FP), and the false-negative
(FN) critical-point detections, and we used these to cal-
culate the recall R = TP/(TP + FN) and precision
P = TP/(TP + FP). Both R and P take on values in
the range from 0 (meaning total failure) to 1 (meaning
flawless detection). They are commonly combined in the
F-measure (Powers 2011), defined as the harmonic mean
of the two: F = 2 R P/(R + P). The F-measure was com-
puted separately for each type of critical points considered
in this paper, yielding FEND for terminations and FJUN

for junctions. As a measure of overall performance we
also computed the harmonic mean of the two F-measures:
FBOTH = 2 FEND FJUN/(FEND + FJUN).

Evaluation on Simulated Triplet Images

Before considering full neuron images we first evaluated
the performance of our method in detecting terminations
and junctions in a very basic configuration as a function
of image quality. To this end we used a triplet model, con-
sisting of a single junction modeling a bifurcation, having
three branches with arbitrary orientations (angular inter-
vals) and diameters (Fig. 12). Orientations were randomly
sampled from a uniform distribution in the range [0, 2π ]
while prohibiting branch overlap. Since in principle the
directional filtering step (“Angular Profile Analysis”) uses
a fixed kernel size D, we wanted to investigate the robust-
ness of the detection for varying ratios dmax/dmin between
the maximum and the minimum branch diameter in a triplet.
For this experiment we considered ratios 1,0.33,2,2.5,3 by
taking normalized diameter configurations (d1, d2, d3) =
(0.33,0.33,0.33), (0.3,0.3, 0.4), (0.2, 0.4,0.4), (0.2,0.3,0.5),
(0.2,0.2,0.6), where in each case the actual smallest diam-
eter was set to 3 pixels (the resolution limit) and the other
diameters were scaled accordingly. For each configuration
we simulated images with 1,000 well-separated triplets for
signal-to-noise ratio levels SNR = 2, 3, 4, 5 (see cropped
examples in Fig. 12). We chose these levels knowing that
SNR = 4 is a critical level in other detection problems
(Smal et al. 2010; Chenouard et al. 2014). Poisson noise

Fig. 13 Performance of our
method in detecting
terminations and junctions in
simulated images of triplets. The
values of FEND and FJUN are
shown (left panel) for the
various branch diameter ratios
dmax/dmin at SNR = 4. The
distribution of FBOTH values is
shown as a box plot (right panel)
for the various SNR levels 0.0
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Fig. 14 Examples of simulated
neuron images based on expert
reconstructions from the
NeuroMorpho.Org database.
The images show a wide range
of morphologies (one type per
row) and image qualities of
SNR = 2, 3, 4, 5 (from left to
right per row)

was used in simulating fluorescence microscopy imaging of
the triplets. From the results of this experiment (Fig. 13) we
conclude that our method is very robust for diameter ratios

dmax/dmin ≤ 2 1
2 and an image quality of SNR ≥ 4. We also

conclude that our method is somewhat better in detecting
terminations than detecting junctions. Example detection

Fig. 15 Performance of our
method in detecting
terminations and junctions in 30
simulated images of neurons.
The distributions of the FEND,
FJUN, and FBOTH values are
shown as box plots for SNR = 4
(left panel) and in addition the
distribution of FBOTH is shown
for SNR = 2, 3, 4, 5 (right
panel) JUN END BOTH
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results for dmax/dmin ≤ 2 for the considered SNR levels are
shown in Fig. 12.

Evaluation on Simulated Neuron Images

To evaluate our method on more complex images, but for
which we would still know the truth exactly, we simu-
lated the imaging of complete neurons. Although there
are various ways this could be done (Koene et al. 2009;
Vasilkoski and Stepanyants 2009), we chose to use existing
expert reconstructions from the NeuroMorpho.Org database
(Ascoli et al. 2007). A total of 30 reconstructions from
different neuron types were downloaded as SWC files
(Cannon et al. 1998), in which the reconstructions are repre-
sented as a sequence of connected center-point locations in
3D with corresponding radii in micrometers. Fluorescence
microscopy images were generated from these reconstruc-
tions in 2D by using a Gaussian point-spread function model
and Poisson noise to emulate diffraction-limited optics and
photon statistics. For each reconstruction we generated
images of SNR = 2, 3, 4, 5 (Fig. 14). This way we obtained
simulated images of neurons for which the termination and
junction point locations were known exactly from the SWC
files.

From the evaluation results (Fig. 15) we confirm the con-
clusion from the experiments on triplets that our method
performs well for SNR ≥ 4 and is somewhat better in
detecting terminations than detecting junctions. For SNR =
4 we find that the performance for junction detection is
FJUN ≈ 0.85 while for termination detection FEND ≈
0.95. The higher performance for termination detection may
be explained by the fact that the underlying image struc-
ture is usually less ambiguous (a single line-like structure
surrounded by darker background) than in the case of junc-
tions (multiple line-like structures that are possibly very
close to each other). Example detection results are shown
in Fig. 16.

Evaluation on Real Neuron Images

As the ultimate test case we also evaluated our method
on real fluorescence microscopy images of neurons from a
published study (Steiner et al. 2002). A total of 30 repre-
sentative images were taken and expert manual annotations
of the critical points were obtained to serve as the gold
standard in this experiment. Needless to say, real images
are generally more challenging than simulated images, as
they contain more ambiguities due to labeling and imaging
imperfections, and thus we expected our method to show
lower performance. Since in this case we have no control
over the SNR in the images we report the detection results of
all images together. From the evaluation results (Fig. 17) we
find that the median performance in detecting critical points

Fig. 16 Example detection results in simulated neuron images at
SNR = 4. The images are contrast enhanced and show the detected ter-
minations (yellow circles) and junctions (red circles) as overlays with
fixed radius for better visibility. The value of FBOTH in these examples
is a 0.69, b 0.85, c 0.85, d 0.77, e 0.75, f 0.68, g 0.86

is FJUN = 0.81 for junctions and FEND = 0.73 for termina-
tions while FBOTH = 0.76. As expected, these numbers are
lower than those of the simulated neuron images. Surpris-
ingly, we observe that in the real images our method is better
in detecting junctions than detecting terminations. A possi-
ble explanation for this could be that in the simulated images
we used a constant intensity for the neuron branches, as a
result of which terminations are as bright as junctions but
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Fig. 17 Performance of our method in detecting terminations and
junctions in 30 real fluorescence microscopy images of neurons. The
distributions of the FEND, FJUN, and FBOTH values for all images
together are shown as box plots

much less ambiguous due to a clear background, while in
the real images the terminations are usually much less clear
due to labeling imperfections and the fact that the branch
tips tend to be thinner and thus less bright than the junctions.
This illustrates the limitations of the simulations. Example
detection results are shown in Fig. 18.

Comparison With Other Methods

Finally we sought to compare the performance of our Neu-
ron Pinpointer (NP) method with other methods. Since
we were not aware of other methods explicitly designed
to detect and classify critical points in neuron images
before reconstruction, we considered two existing soft-
ware tools relevant in this context and we compared their
implicit detection capabilities with our explicit method. If
our method performs better, this would indicate that the
existing methods may be improved by exploiting the output
of our method.

The first tool, AnalyzeSkeleton (AS) (Arganda-Carreras
et al. 2010), available from http://fiji.sc/AnalyzeSkeleton,
is an ImageJ plugin for finding and counting all end-
points and junctions in a skeleton image. To obtain skele-
ton images of our neuron images, we used the related
skeletonization plugin available from the same develop-
ers, http://fiji.sc/Skeletonize3D, which is inspired by an
advanced thinning algorithm (Lee et al. 1994). The input
for the latter is a binary image obtained by segmentation
based on smoothing (to reduce noise) and thresholding.
For our experiments we considered a range of smoothing
scales and manually selected thresholds as well as automat-
ically determined thresholds using the following algorithms
from ImageJ: Intermodes, Li, MaxEntropy, RenyiEntropy,
Moments, Otsu, Triangle, and Yen. All of these were tried in
combination with the AS method and the highest F-scores
were used.

Fig. 18 Example detection results for four real neuron images. The
images show the detected terminations (yellow circles) and junctions
(red circles) as overlays with fixed radius for better visibility. The
value of FBOTH in these examples is a 0.82, b 0.78, c 0.68, d 0.65

The second tool, All-Path-Prunning (APP2) (Xiao and
Peng 2013), is a plugin for Vaa3D (Peng et al. 2010; Peng
et al. 2014), available from http://www.vaa3d.org/. It was
not designed specifically for a priori critical-point detection
but for fully automatic neuron reconstruction. Neverthe-
less, in producing a tree representation of a neuron, the
reconstruction algorithm must somehow identify the branch
end-points and junctions, and for our experiments we can
easily retrieve them from the SWC output files. In princi-
ple, any neuron reconstruction method is also implicitly a
critical-point detection method, and we can quantify its per-
formance by comparing the output tree nodes with the ref-
erence data. The interesting question is whether an explicit

http://fiji.sc/AnalyzeSkeleton
http://fiji.sc/Skeletonize3D
http://www.vaa3d.org/
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Fig. 19 Critical-point detection performance of our method (NP)
compared to two other methods (AS and APP2). The median values
of FJUN (left plot) are 0.81 (NP), 0.65 (AS), and 0.47 (APP2). The

median values of FEND (middle plot) are 0.73 (NP), 0.28 (AS), and
0.21 (APP2). Finally, the median values of FBOTH (right plot) are 0.76
(NP), 0.35 (AS), and 0.29 (APP2)

detector such as NP outperforms the implicit detection car-
ried out in a tool such as APP2. We manually adjusted the
user parameters of the tool to get optimal performance in
our experiments.

A comparison of the F-scores of NP, AS, and APP2 for
the 30 real neuron images used in our experiments is pre-
sented in Fig. 19. From the plots we see that the detection
rates of our NP method are substantially higher than those
of AS and APP2. The difference is especially noticeable
for the termination points. More specifically, the differ-
ence between FEND and FJUN is relatively small for NP, but
much larger for both AS and APP2. This indicates a clear
advantage of using our explicit and integrated approach for
detecting critical points, as accurate neuron reconstruction
requires accurate detection of both junctions and termi-
nations. However, with the current implementation, this
advantage does come at a cost: timing of the three meth-
ods on a standard PC (with Intel Core i7-2630QM 2GHz
CPU and 6 GB total RAM) revealed that with our images
of 105 to 106 pixels in size, NP took about 40 seconds per
image on average, while both AS and APP2 took only about
1.5 seconds per image. Fortunately, since virtually all the
computation time of our method is spent in the directional
filtering step, which is highly parallelizable, this cost can
be reduced to any desired level by employing many-core
hardware (such as GPUs).

Conclusions

We have presented a novel method for solving the important
problem of detecting and characterizing critical points in
the tree-like structures in neuron microscopy images. Based
on a directional filtering and feature extraction algorithm in
combination with a two-stage fuzzy-logic based reasoning
system, it provides an integrated framework for the simul-
taneous identification of both terminations and junctions.
From the results of experiments on simulated as well as real
fluorescence microscopy images of neurons, we conclude

that our method achieves substantially higher detection
rates than the rates that can be inferred from existing neu-
ron reconstruction methods. This is true for both junction
points and termination points, but especially for the latter,
which are of key importance in obtaining faithful recon-
structions. Altogether, the results suggest that our method
may provide important clues to improve the performance of
reconstruction methods.

Actual integration of our detection method with exist-
ing tracing methods was outside the scope of the present
study, but we are currently in the process of developing a
new neuron tracing method and, in that context, we aim
to perform an extensive evaluation of the beneficial effects
of the presented method also on existing tracing meth-
ods. For this purpose we also aim to extend our method
to 3D, where the exact same workflow could be used,
except that the angular profile analysis and the final critical-
point determination step would involve two angles (azimuth
and elevation) instead of one. Also, it would require mass
parallelization of the image filtering step to keep the run-
ning times of the method acceptable, but this should be
straightforward in view of the highly parallel nature of
this step.

Although we focused on neuron analysis in this work, our
method may also be potentially useful for other applications
involving tree-like image structures, such as blood vessel or
bronchial tree analysis, but this requires further exploration.
For this purpose it may be helpful to increase the robust-
ness of the detection method to larger branch diameter ratios
than tested in this paper. This could be done, for exam-
ple, by using multiscale filtering approaches, or by selective
morphological thinning (or thickening).
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